
OJ
)>
Vl

()

0
,0
' ,m
I

1-V
II&JS mm&Radio4

I nederlandse ornroep
stichting

I THE CHIP SHOP

BASICODE2

mmmRadio4

-
Broadcasting Support Services

©NOS nederlandse omroep stichting, Hilversum, Netherland

ISBN 0-906965-14-4

This edition first published by Broadcasting Support Services January 1984

THE CHIP SHOP
BBC Radio4
British Broadcasting Corporation
Portland Place
London W1A 1AA

All rights reserved. This handbook and the accompanying
computer programs are copyright. No part of this handbook or
the accompanying computer programs may be reproduced,
translated, copied or transmitted by any means whatsoever
without the prior written permission of the copyright owners.

The publisher assumes no responsibility for errors, nor liability
for loss or damage, however caused, arising from the use of the
Basicode 2 kit.

The BASICODE-2 kit is available for £3.95 frorr::

Broadcasting Support Services
P.O. Box?
London W3 6XJ

Please make cheques or postal orders payable to Broadcasting
Support Services.

Published for The Chip Shop, Radio 4, by Broadcasting Support
Services- an independent educational charity providing follow­
up services for viewers and listeners.

CONTENTS

1. INTRODUCTION 5
2. HOW TO USE BASICODE-2 7
3. BASICODE- THE SPECIFICATIONS 9
4. BASICODE-2 PROTOCOL 12
5. APPLE II & lie 26
6. BBC (A& B) 29
7. COMMODORE COMPUTERS 31
8. SHARP MZSOA 36
9. SINCLAIR ZX81 37

10. TANDY TRS-80 & VIDEOGENIE 41
11. THE FUTURE 47

Introduction

BASICODE-2

BASICODE has been developed by the radio programme Hobbyscoop
which is broadcast weekly by Nederlanse Omroep Stichting (NOS),
the Dutch domestic service.

This book is based very heavily on the handbook published by
Hobbyscoop and we would like to thank all our Dutch friends and
colleagues for their help in producing this English version.

In particular, special thanks to:

.1-/ans Janssen, Producer, NOS, Hobbyscoop
Jonathan Marks, Producer, Radio Netherlands, (Media

Network)
Klaas Robers, Inventor BASICODE
Hochem Herrmann, Developer BASICODE-2

And contributors:

J.J.H.M. Duyf, J. Haubrich, R. Jansen, M. Reinders
S. Faber, lr. P.G.M. Maathuis, David Dawson, H.J. Koevets

TREVOR TAYLOR, Producer, The Chip Shop, BBC Radio 4

Klaas Robers

Chapter One

INTRODUCTION

This book and the accompanying cassette contain the details of NOS­
BASICODE. It has been designed as a standard for software exchange
between different brands of computers. These include some of the most
popular brands being used in many different parts of the world

APPLE II & lie TRS-80
BBC Models A & B VIC 20
Commodore 64 Videogenie
Sharp MZSOA ZX81

Side 1 of the cassette contains the various translation programs, each
specific to a particular brand of computer. In simple terms you first teach
your computer the BASICODE standard by loading the translation
program, then you can read and write, using the standard. Instructions on
how to do this are contained in the following chapters.

Of course, it's possible that your brand of home computer is not listed. If so,
in Chapter Four, the BASICODE protocol is described, which will help you
compile a translation program for your computer. Naturally, you will need
some programming experience, but if you succeed, let us know so we can
then include it in future editions of this handbook. Translation programs
should be sent to us on cassette with a printed listing if possible. The
address is The Chip Shop, BBC, London W1A 1AA.

Programs following the BASICODE protocol are also welcome. These may
be used on the air so that others can benefit. Credit will be given to the
author.

It is important to stress that BASICODE has been produced on an entirely
non profit-making basis.

It has its origins in the weekly radio programme Hobbyscoop which is
broadcast by the Dutch domestic service, Nederlandse Omroep Stichting
(NOS).

Hobbyscoop transmitted its first computer program in 1978, at which point
many listeners wrote to ask if there was something wrong with their radio
receiver! The following year computer data was transmitted each week in
cooperation with TELEAC which is roughly equivalent to the Open Univer­
sity.

INTRODUCTION 5

At that time four brands of computer were popular: Apple, Exidy Sorcerer,
PET and Tandy TRS-80. Each computer therefore had its own week in the
month when machine-readable data could be transmitted. But this led to
problems for the broadcasters. Two of the computers used a very slow
baud rate which meant that intelligent programs took up far too much
airtime on a national radio network. Up to eight minutes of objectionable
noises was too much even for the enthusiasts! Added to this, the cassette
systems proved to be rather unreliable on two of the four computers. Only
a very small group of the Dutch computing public was being reached at any
onetime.

Klaas Robers, who is a well-known inventive radio amateur in The
Netherlands, then came up with an interesting proposal. This involved. the
creation of a type of Computer Esperanto which could be read and wntten
by various home computers. A group of computing hobbyists got together
and BASICODE was the result of many months of research. Later, when the
limitations of the first BASICODE were recognised, Klaas Robers, together
with Jochem Herrmann, developed the improved BASICODE-2. This has
now been in regular on-air use since January 1st 1983.

It was soon discovered that the Dutch medium wave signal was reaching
outside the Dutch borders. Letters came from computer enthusiasts in
England, Germany, Belgium, France and Denmark asking for more infor­
mation. Further international interest was created when the Dutch external
service which broadcasts worldwide on short wave, took an interest in
BASICODE. The Thursday English language programme Media Network
ran a feature on the code. They also tried a series of popular experiments
with a slowed down version of BASICODE running at 300 Baud. The data
went out on short wave and listeners within 1,200 miles of the transmitters
reported success.

The weekly Hobbyscoop programme is in Dutch, naturally, but it can be
received in some parts of the UK. It can be heard on Sundays at 1810 GMT
in winter 1710 GMT in the summer months, on medium wave 747kHz, or
401 met~es. Because listeners in Denmark, Belgium, Southern Britain and
West Germany can load BASICODE programs from medium wave without
problems the computer segment of the programme (aroun~ 1840 or 1740
GMT), now includes short explanations in English. If you are m range of the
medium wave broadcasts, tune in and see if you can receive them.

Apart from the people named above who have been involved with the
success of BASICODE, many individuals in The Netherlands have helped
us in the production of translation programs and, in some cases, hardware
designs. We thank them.

6 INTRODUCTION

Chapter Two

HOW TO USE BASICODE-2

BASICODE-2 was developed because different micro-computers not only
speak different dialects of BASIC, but also record or save the programs
onto cassette in different ways. All micro-computers that use cassettes
record their programs as a series of bleeps but different machines use
different frequencies and various methods of coding. BASICODE-2 is an
audio encoding standard that can be used to store and retrieve software
and can be used with a large number of micro-computers. Once a micro­
computer has been taught BASICODE-2 it can then run programs w.ritte.n
on different makes of micro-computer. The only problem that remams IS

the differences in BASIC dialect but BASICODE-2 again gives us the
solution. Our Computer Esperanto interprets the program instructions so
that they will work on all the micro-computers listed in Chapter One. This
does mean that if you want to write programs for BASICODE-2 you should
write them according to some simple rules. You will find these in the
chapter written specifically for your micro.

How to load BASICODE-2
On the first side of the tape you will find a number of different versions of
BASICODE-2. They are each preceded by an introduction, so find the one
for your micro-computer and load it in the normal way. There will be some
special points to bear in mind for your particular computer so refer to the
relevant chapter for full details.

Once you have loaded BASICODE-2 you are ready to try out some
BASICODE-2 programs. On the second side of the tape you will find some
demonstration programs. To load one of these programs you should follow
the instructions on the screen and also, for some micros, refer to the
instructions in the relevant chapter. When the program starts loading you
will see the program being listed on the screen. You will be able to check
the program for errors and make corrections before running it.

Now that BASICODE-2 is running on your micro here's how you can use
the Chip Shop programs.

Chip Shop Takeaway
The Takeaway service allows you to get software from your radio. The BBC

HOW TO USE BASICODE-2 7

is broadcasting software late at night on Radio 4. Check in the Radio Times
for details of transmission times. The software being transmitted is written
in BASICODE-2, so, armed with the translation tape, you will be able to run
the programs on your micro.

To make sure that the programs run properly you need to make a good
recording. Here are some tips:

l. If possible record off VHF, because it's a higher quality signal and less
susceptible to interference. If that's not possible then use long wave or
medium wave. For frequencies see the Radio Times.

2. Use a direct connection between your tape recorder and the radio. If
you use a microphone someone's bound to burst into the room at the
crucial moment!

3. Set the recording level before the software is transmitted. Don't over­
record as this may distort the signal and the program might not work.

4. Use a short tape if possible: C15 or C30. These are less likely to stretch
and it can be frustrating looking for programs on very long tapes.

Once you have successfully recorded the program on the tape you can
load it as you did with the demonstration programs.

One final point. When the Dutch started broadcasting software on medium
wave, they received reports of near perfect recordings from Germany,
Belgium, France, UK and Denmark. We hope that the Takeaway service will
be as widely received as possible, inside and outside the UK.

Writing BASICODE-2 programs

Having run some programs in BASICODE-2 you might like to write some
programs. These will then run on any micro using the translation program.
Because of the different BASIC dialects, you will need to write the
programs according to a set of rules. BASICODE-2 ensures that certain
operations (like clearing the screen or moving the cursor) will always work,
no matter what make of computer you use. Details of how this is achieved
can be found in Chapter Three. The programming rules for your particular
micro can be found in the relevant chapter. Some micros have smaller
memories than others, so you may find that very large programs don't run
on all the machines.

8 HOW TO USE BASICODE - 2

Chapter Three

BASI CODE- THE
SPECIFICATIONS

Tone Modulation
Two tones are used to record data onto cassette tape, the frequencies are
1200 and 2400Hz. A "0" is defined as one full cycle of 1200Hz.

A "1" is defined as two full cycles of 2400Hz.

LfUl
Sequence code

The speed of BASICODE is 1200 Baud. A byte comprises the following
sequence:

1 startbit (logic 0)
8 databits (the least significant first)
2 stop bits (logic 1)

For example:

---,f-
a:
;:;ooo
if)

8

BASIC information

5

The BASIC program is coded either in the form in which it has been typed
in, or as it is displayed on the screen when the command LIST is given. In
most cases, however, this is not the form in which it is retained in the com­
puter's memory.

BASICODE- THE SPECIFICATIONS 9

All letters and ciphers are presented in American Standard Code for Infor­
mation Interchange (ASCII), and each BASIC line is closed with CR (Hex
8D). Each ASCII byte in the program receives an eighth bit= 1.

The tone sequence

The cassette tape recording of a BASICODE program will consist of:

Leader: 5 seconds of stopbit(=2400 Hz)
ASCII Start Text (Hex 82)
BASIC Information in ASCII
Checksum
Trailer: 5 seconds of stopbit(=2400 Hz)

Checksum

A note about the checksum. This is a simple code used to check that the
program has been read from the tape successfully. If an error is indicated
by the checksum then BASICODE-2 will tell you and you should list the
program and correct the error. Then you can SAVE the program in the
usual way.

Technical note: the checksum is a number stored as an 8 bit computer
word. It is calculated by performing an exclusive - or on all the previous
bytes in the block. Unlike all the other transmitted ASCII characters, the
checksum's eighth bit is not set to "1" but may be "1" or "0".

The improved BASICODE-2

The idea of the first BASICODE was to be able to transmit machine­
readable programs over the air. For the most part this worked extremely
well. A program from microcomputer X could be read by computer Y,
simply by using the BASICODE translation code tape in between. The
regular transmission of BASICODE programs since 1979 by the Dutch
domestic service (NOS) showed that BASICODE was extremely reliable,
often better than the computer's own cassette interface standard. Radio
amateurs in the Netherlands soon obtained permission from the Dutch PTT
to experiment with computer data transfer using BASICODE, and excellent
results have been reported using VHF links.

However, the regular broadcasts also highlighted some of the limitations of
the original BASICODE, mostly as a result of the various BASIC dialects.
The rules of the original protocol did not work in all cases.

So, based on experience, improvements were made to the standard to
create BASICODE--2. Ttle working of various BASIC instructions was
examined in the various dialects. In doing so, many differences were
discovered. However, there was common ground amongst the computers

1 0 BASICODE - THE SPECIFICATIONS

taking part in the BASICODE working group.

All computers worked in Microsoft-BASIC, or had the possibility of doing
so. A subset of standard BASIC instructions has now been drawn up, which
has the same meaning in all the various BASIC dialects. These are dealt
with in more detail in the next chapter. There are also a number of very
important functions which are brought into action using different
commands on different computers. These include the clearing of the
screen and the commands to a printer.

The solution in this case is in the form of subroutines on agreed fixed
BASIC line numbers. The subroutines are of course different for each
brand of computer, but they all work in much the same way. The-sub­
routines are called when a particular function is required.

This means a new discipline in programming and the adjustment of
existing programs to meet the new standard. However, the effort appears
to be worth the trouble, since BASICODE-2 programs now work on many
brands of computer without having to be adjusted by the user before they
will run.

The subroutines are contained in the BASICODE-2 translation programs
on Side 1 as part of the loading sequence and therefore do not have to be
part of BASICODE-2 programs you exchange with other users. The
cassette with this handbook contains the translation programs you will
need. In most cases it is possible to choose whether or not the subroutines
are read or recorded with the main BASICODE program.

BASICODE-2 is now the fruit of some years of experiments and is a
practical medium of data transfer. It is a simple solution in cases where
programs have to be distributed to a number of computer brands.

BASICODE - THE SPECIFICATIONS 11

Chapter Four

NOS BASICODE-2 PROTOCOL
We have already explained the Esperanto concept of NOS­
BASICODE, and the idea of writing one program that can be of
use to a number of different computers. What follows now is a
detailed description of the standard, designed for
programmers who wish to use BASICODE-2.

1. BASICODE-2: The ground rules

There are four basic rules in the BASICODE-2 protocol:

a. We only use BASIC statements that are understood by all brands of
computers. A list of these can be found in section 5 of this chapter.

b. Since rule a. leads to a lot of practical problems, such as the inability to
clear the screen in a standard way, line numbers below 1000 are reserved
for subroutines. These perform the extra functions needed in most
programs that cannot be achieved using the standard BASIC statements.
The precise function of these subroutines is described in section 3. GOSUB
100, for example, is used to clear the screen, GOSUB 110 puts the cursor at
a specific point on the screen, and so on. These routines are of course
specific to each computer brand and therefore they are not part of the main
program in BASICODE-2 standard. They are therefore included in the
translation programs for each brand of computer. When combined with the
BASICODE-2 data, the whole program is then complete.

c. We have to standardise the video display screen as consisting of 24
lines, each of 40 characters. If you are programming in BASICODE-2 then
it is important that you bear the screen size in mind! Unfortunately the rule
is not quite as simple as this. There are computers in the group with Only 16
lines on the screen (e.g. TRS-80) and some that can only accommodate 22
characters per line (e.g. VIC--20). So unless it is really necessary, do not use
more than 16 lines on the screen, and do not make lines longer than need
be. Better still, use a subroutine which adjusts the lines to the size of the
screen. This is possible using BASICODE-2.

d. A line should not be longer than 60 characters including the spaces and
the line number.

2. The program construction

The following line number scheme is used to build up a BASICODE-2
program:

0- 999: Standard routines (see section 3). These routines are
different for each computer and are therefore contained in
the translation program.

12 BASICODE -THE PROTOCOL

1000: first line of the BASICODE-2 program. It must be in the
following form: 1000 A=(value): GOTO 20: REM program
name. (value) is the maximum number of characters that
can be used by all strings together. Line 20 is used to
reserve memory space for the strings in those computers
which need it.

1010-32767: the main program. There are no restrictions on this
section, except that line numbers above 32767 are forbid­
den.

Although it is not compulsory, it is a good idea to build up your
BASICODE-2 program systematically. Other users can then quickly under­
stand your method of working, and it is then easier to adapt if necessary.
We suggest that you use the following scheme:

1000-19999: the main program.

20000- 24999: subroutines which you need for your program, but which
contain statements which are not allowed in BASICODE-2.

25000-29999: lines with DATA statements.

30000-32767: lines with REM statements. You can use this space for any
background details about the program, references or your
name and address.

It is worth noting at this point the use of the subroutine lines 20000--24999.
Try to avoid the use of statements that are not allowed in BASICODE-2. In
some cases, of course, this is unavoidable, for example, the storage of
variables on tape or disk. This is when you use the lines 20000--24999. It is
extremely important that you indicate exactly what these routines are
intended to do, or other brand users will not be able to follow your logic. It is
also good practice to use line numbers in steps of 10, thus leaving plenty of
room to insert lines at a later stage.

3. Operation of the BASICODE-2 standard routines

These are written specifically for each computer brand and form part of the
translation program. They look different in the various BASIC dialects but
in fact they do exactly the same in each case.

GOSUB 100:
This subroutine is used to clear the screen and set the cursor at position 0,0
(i.e. the top left-hand corner of the screen.)

GOSUB 110:

This places the cursor at a specific point on the screen. The exact point can

BASICODE -THE PROTOCOL 13

be chosen by specifying the variables HO and VE. HO is the position on a
line (0 is the furthest position to the left), and VE is the number of the line.
The top line on the screen is considered to be number 0. Remember that in
BASICODE-2, the maximum screen size is 24 lines, each of 40 characters.
For this reason HO must not be larger than 39, and VE cannot be greater
than 23. The variables HO & VE are not changed in value on calling the
subroutine.

GOSUB 120:
This gives the position of the cursor on the screen and sets the variables
HO and VE. HO=O is the first position on any line, and VE=O implies the top
line on the screen. By using this subroutine, and GOSUB 110, you can
move the cursor about the screen.

GOSUB200:
This checks if a key has been depressed, and if so, puts the character in
the variable IN$. If no key was pressed then IN$ is an empty string. In
principle it is possible to put any character on the keyboard into IN$, includ­
ing control characters. But be careful. Not all control characters have the
same function on different brands of computers. So it is best to avoid
control characters. The RETURN (or ENTER, NEWLINE, etc) key, though,
does have ASCII code 13 on all computers.

GOSUB210:
This subroutine waits until a key has been depressed and then sets the
character in the variable IN$. It differs from GOSUB 200 in that this sub­
routine waits until a key has been pressed, whilst GOSUB 200 only checks
whether a key has been depressed.

GOSUB250:
This is used to activate the beep on most computers with this facility. Note
that the pitch and length of the tone is not specified in this routine, and
therefore it is not suitable for making music.

GOSUB260:
This gives a random number in the variable RV. The number is always
smaller than 1 and larger than, or equal to, 0. It is a useful routine in
statistical programs or in games ..

GOSUB270:
This tidies up the variable space and reports how much memory space is
still available. The variables are not erased!! The number of free bytes over
is placed in the variable FR.

14 BASICODE -THE PROTOCOL

GOSUB300:
This creates a string SR$ using the value of the variable SR. This string has
no spaces at either the beginning or the end of the number, in contrast to
the BASIC statement STR$(). In some BASIC dialects it does contain
spaces, so the statement STR$() is thus forbidden in BASICODE-2.

GOSUB 310:
This routine creates a string SR$ which is determined by the variables CT,
CN, and SR. SR$ is equivalent in value to the variable SR and is always in
fixed-point notation. The total length of SR$ is thus CT characters, of which
CN characters come after the decimal point. If the number does not fit into
the given form, then SR$ will consist of CT asterisks. If necessary, SR will be
rounded off. The variables CT, CN, and SR are not changed by calling this
routine. Here are a few examples:

CT = 7: CN=3: SR=2/3: GOSUB 310 gives SR$ as "0.667"

CT =8: CN=5: SR=-1.1E-3: GOSUB 310 gives SR$ as "-0.00110"

CT =3: CN=O: SR=23.6: GOSUB 310 gives SR$ as "24"

CT =3: CN=1: SR=100: GOSUB 310 gives SR$ as"***"

GOSUB350:
Prints SR$ on the printer, but does not close that particular line. Thus you
can print more than once per line using this particular subroutine. But
remember that not all users have a printer and so try to include a choice in
your program between using the printer or the screen display.

GOSUB360:
Closes the line on the printer and begins with a new line.

4. Variables
There are a few restrictions governing the use of variables in BASICODE-2
programming. This is necessary to make the exchange between different
brands as simple as possible.

a. Numeric variables are real and single precision. Do not count on preci­
sion greater than 6 places of decimal.

b. Names for variables should be a maximum of two characters long. The
first character must be a letter, the second character (if used) can be either
a letter or a number. The names of the variables should be written using
BLOCK CAPITALS. Small letters are not allowed. In the case of string
variables, the name is always followed by a$. All other characters, such as
!, #, or %are forbidden.

BASICODE - THE PROTOCOL 15

c. Logic variables are those which are "true" or "false". You are not allowed
to use the numerical value of the logic variables. This is because in some
cases the "true" is interpreted as + 1, in other computers as -1. The result
can only be used in an IF ... THEN construction (i.e. A=3* (B=1) is not
allowed).

d. Before a variable is used, it must be given a value. Do not assume that a
variable is automatically given a zero value at the start of the program.

e. The maximum string variable length is 255 characters.

f. Names of variables may not begin with the letter 0. These are reserved
for use within the BASICODE-2 standard routines.

g. The following variables are excluded: AS; AT; FN; GR; IF; PI; ST; Tl; Tl$;
TO.

h. For communication with the BASICODE-2 subroutines use is made of
the following variables: HO; VE; FR; SR; CN; CT; RV; IN$; SR$.

5. BASIC statements and operators
ABS INPUT
AND INT
ASC LEFT$
ATN LEN
CHR$ LET
COS LOG
DATA MID$
DIM NEXT
END NOT
EXP ON
FOR OR
GOSUB PRINT
GOTO READ
IF REM

+

*
I

1\

<
>

RESTORE
RETURN
RIGHT$
RUN
SGN
SIN
SQR
STEP
STOP
TAB
TAN
THEN
TO
VAL

<>
<=
>=

Above we have listed the BASIC commands and operators, most of which
can be used without any problems in BASICODE-2 programs. We have no
intention at this point to examine in full each of the commands and
operators. Many books have already been written on the subject. However
we have decided to give a short summary since there are a few restrictions
on certain BASIC commands in BASICODE-2.

16 BASICODE -THE PROTOCOL

BASIC commands and their meaning
ABS Gives the absolute value of the stated variable. For

example:

AND

ASC

ATN

CHR$

cos

DATA

A= 1 O:B=ABS(A)
A=-20:B=ABS(A)
A=-1 :B=ABS(A-5)

B is now=10
B is now=20
B is now=6

Logic AND, can only be used for logic variables. The result
is a logical result. Use brackets to show clearly the order in
which the work is to be done. Examples:

IF (A=5) AND (B=O) THEN
O=(A-5) AND (B=O):IF Q THEN ..

This gives the ASCII value of the first character of the given
string. Examples:

A$="A":B=ASC(A$) B is now=65
A$="BEER":B=ASC(A$) B is now=66

Gives the arctangent in radians of the given variable. For
example:

PRINT ATN(1)
0.785398
PRINT ATN(-1)
-0.785398

This gives a character with the same ASCII value as the
given variable. The variable can be anywhere between 32
up to and including 127. Be very careful with values less
than 32, since control characters on different brands of
computers vary. Only the RETURN key always has the
same value, ASCII code 13. In addition not all computers
recognise lower case letters. So be careful with ASCII
codes larger than 96. For example:

A$=CHR$(66) A$ now contains the letter B

This gives the cosine of the given angle in radians. For
example:

PRINT COS(1)
.540302

After this term will follow numbers and/or strings until the
end of the line, which can be read using READ. On a DATA
line there should be no other statements, such as REM.

BASICODE -THE PROTOCOL 17

DIM

END

EXP

The elements should be separated by a comma. String
variables must be placed between quotation marks. For
example:

DATA 100,200, "HELLO", "BASICODE",4.6,89

This statement is used to dimension arrays. An array can
only be dimensioned once in a program, and before it is
used. The maximum number of dimensions is two, whilst
the maximum number of elements is limited by the size of
the memory. One DIM statement can be used for more
than one array. But there are two points to note:

1. In some computers arrays up to 10 elements do not
have to be dimensioned. In BASICODE-2 programs, an
array must always be dimensioned.

2. The element with number 0 is also allowed, so A(O) and
AD$(0,0) do exist. For example:

DIM A$(12), HD(100, 100), MP(1000)

Used to indicate the end of a program. Do not just let a
program stop. Always finish with an END statement.

Raises the number e (=2.71828 ..) to a specified power. For
example:

PRINT EXP(2)
7.38906

FOR .. TO .. STEP .. NEXT .. Program loop construction. The loop will be used
at least once. STEP can be left out, in which case the step
is automatically 1. NEXT must only be followed by a single
variable. For example:

FOR X=10 TO 100
Program in loop
NEXT X

FOR C=A TO B STEP -3
Program in loop
NEXTC

FOR 1=1 TO 10:FOR J=1 TO 5
Program in loop
NEXT J:NEXT I

Note: don't jump out of a FOR-NEXT loop before it has
ended. A way to end the loop is by raising the variable to
exceed the end point.

18 BASICODE -THE PROTOCOL

GOSUB

GOTO

IF .. THEN

INPUT

INT

Used to call a subroutine and indicated by the line number
following the statement. For example:

GOSUB 100.

Note, though, that A=100:GOSUB A is not allowed.

Indicates a jump to a given line number. For example:

GOTO 1500

Note, though, that A=1500:GOTO A is not allowed.

Conditional split, for between IF and THEN will be logical
variables or logical comparisons. If the logic is "true" then
the process continues through to statements after THEN. If
not, then the computer simply moves to the next line. A
line number may be given after THEN, from which the
program should continue. Note that ELSE is forbidden in
BASICODE-2. For example:

IF A=3 THEN B=O: C=5
IF A> 3 THEN 1500
C=(A>3):1F C THEN GOSUB 100

Note:
Use IF .. THEN 2000
and not: IF .. GOTO 2000.

Use IF .. THEN GOSUB 2000
and not: IF .. GOSUB 2000.

Asks the user to input either a number or a string variable.
A string may not consist of either commas or colons. If
commas or colons are needed, then it is better to make
use of subroutine 210. A prompt string is not allowed, and
neither is more than one variable after an INPUT. Most
BASICs print a question mark on the screen to show that
input is required. In some computers, when the RETURN
key is pressed, the line from the last cursor point to the
end of the line is erased. Examples:

PRINT "WHAT'S YOUR NAME":INPUT N$
PRINT "KEY VALUE IN": INPUT A: INPUT B

But note!!
INPUT "YOUR NAME"; A$ is forbidden.

Gives the largest whole number (integer) less than or
equal to the given variable. For example:

A 2.1: B INT(A) B is now 2
B INT(-1.5) B is now -2

BASICODE - THE PROTOCOL 19

LEFT$ Used to select a number of characters from a given string
starting with the character farthest to the left. You may
select a minimum of 1 character up to the maximum
number of characters in the string. For example:

A$= LEFT$("BASICODE",5)
A$ now consists of "BASIC".

But note that C$= LEFT$ ("BASICODE", 0) is not allowed.

LEN Reports the length of a given string. For example:

A$="BASICODE": A=LEN(A$) A is thus 8
A$="":A=LEN(A$) A is thus 0

LET The variable name left of the equal sign is assigned the
value of the string or expression to the right of the equal
sign. It is not really necessary, since LET A=5 is the same
asA=5.

LOG Calculates the natural log of the given variable or expres­
sion. For example:

PRINT LOG(1)
0
PRINT LOG(10)
2.302585

MID$ Takes a number of characters from a string. MID$(A$,X,Y)
gives Y characters from A$, beginning with the Xth
character. Note that the first character is number 1, so X=O
or Y =0 is forbidden. For example:

A$="THIS IS BASICODE"
B$=MID$(A$, 9, 8)
B$ now consists of "BASICODE"

NEXT Closing statement for a program loop (see FOR). A NEXT
statement must always be followed by a variable.
Examples are given under FOR.

NOT Logic negation, only usable on logic variables (see also
AND). For example:

A=5: B= NOT (A=6) B is "true"
A=(5=5): B= NOT A B is "false"

ON .. GOSUB ...
ON .. GOTO.. Makes a jump to either a subroutine or a program line.

After ON follows an expression or variable. After GOSUB

20 BASICODE- THE PROTOCOL

OR

PRINT

READ

or GOTO follows a series of line numbers. The expression
or variable should be a whole number and determines
which line number is to be chosen. You can think of the
line numbers as having numbers: if the variable is 1 then
the first line number is chosen, if the variable is 2 then the
second line number is chosen, etc. But the variable cannot
be greater than the number of line numbers given. For
example:

ON K GOTO 1100, 3400, 1500 K has to be 1, 2, or 3
ON (K-5)GOSUB 600, 700, 300 K has to be 6, 7, or 8

Logic OR can only be used with logic variables (see AND).
For example:

IF A=5 OR B< 3 THEN ...

C=(A-5) OR (B<3):1F C THEN ...

Prints a variable or a string on the screen beginning at the
present cursor position. More than one variable in a
PRINT statement must be separated by semi-colons. If it is
not desired that the computer should automatically
continue with the next line then the end of the instruction
must be finished off with a semi-colon. Some computers
print one or more spaces before and/or after the
number(s) being printed. If you do not want this, then use
subroutine 300 or 310. For example:

A=5: A$="HELLO": PRINT A;A$
5HELLO
PRINT "HELLO": PRINT "THERE"
HELLO THERE
CN=3:CT =5:SR=5:GOSUB 310:PRINT"FIVE ="; SR$
FIVE=5.000

Reads the elements after the DATA statements and gives
them to variable(s) which follow the READ statement.
More than one variable after a READ statement should be
separated by commas. After the RUN command, the
computer will read the DATA starting with the lowest line
number. All data on that line will be read before continuing
with any other DATA lines. But note: A numeric variable
must read only numbers, a string variable can only read
strings. For example:

DATA 1, "COMPUTER",3
READ A,A$:READ B or
READ A: READ A$:READ B or
READA,A$,B

BASICODE -THE PROTOCOL 21

REM

RESTORE

RETURN

RIGHT$

RUN

SIN

SGN

SQR

This is used for adding REMarks in the program to help
other users understand what you are doing. Anything after
a REM statement until the end of the line is ignored in
BASIC by the computer. But do not use a colon after the
REM statement as this gives problems with some com­
puters.

This statement resets READ-ing from the first DATA state­
ment in the program. But note that you may not give a line
number after a RESTORE statement.

Is used to indicate the end of a subroutine. The computer
then jumps back to the line after the respective GOSUB
statement that started the subroutine sequence. A sub­
routine should always be closed with a RETURN state­
ment.

Gives a number of characters of a given string, ending
with the last character. The minimum number that can be
asked is 1, the maximum being the length of the string. For
example:

A$="BASICODE": B$=RIGHT$(A$,4) B$ now consists of
"CODE".

But note that A$="PROTOCOL'': A=O:B$=RIGHT$(A$,A)
is not allowed because A=O.

Starts the program afresh, while all variables are erased.
Note that a line number after RUN is not allowed. For
example:

IF (A$="J") OR (A$="j") THEN RUN

Note that RUN 100 is forbidden.

Gives the sine of a variable which should be given in
radians.
See COS for further details.

Is used to give the sign of a variable, i.e. -1 if the variable is
negative, 0 if the variable is zero, and + 1 if the variable is
positive. For example:

A 5:Bc=SGN(A) B is now 1
A -.001: B =SGN(A) B is now -1

Calculates the square root of ? variable or expression,
which cannot be negative. For example:

22 BASICODE -THE PROTOCOL

STEP

STOP

TAB

TAN

THEN

TO

VAL

+

A=SOR(2*50) A is now 10

Sets the step size in a loop. See FOR.

Stops the program, but retains the possibility of going
further, keeping the same variables.

Is used in PRINT statements to move the cursor to a
specific point on the screen. You can only use TAB to
move the cursor further on a line, and depending on the
computer, either spaces will be printed or whatever is on
the line will be kept. Note that TAB(O) is not allowed.
Although most computers start counting from 0, there are
those that start at 1. So for this reason it is better to use
subroutine 110. For example:

PRINT"A"; TAB(5); "B"; TAB(10); "C" gives:
A B Con some computers and:
A B C on others.

Calculates the tangent of a given angle in radians. See
cos.

See IF.

See FOR.

Gives the numeric VALue of a string. But if the string is not
purely numeric, the result is not the same on all com­
puters. For exam pie:

A$="1.4E6": A=VAL(A$) A is now=1.4E6
A$="12D": A=VAL(A$) A is now undetermined, A=12 or
A=O being possible.

Summary

Now follows a short summary of the operators allowed in
BASICODE-2.

In the case of numbers of variables this operator adds two
numbers or variables together. In the case of strings, two
are coupled to each other. For example:

B=1:A=B+9 A is now=10
A$="BAS": B$="1CO": C$="DE.":
D$=A$+B$+C$
D$ therefore is "BASICODE.".

BASICODE- THE PROTOCOL 23

I

<

>

<>

Subtracts two numbers or variables from each other. For
example:

A=10-3-4 A is now=3

Multiplies two numbers or variables together. For
example:

A=5:B=3*2* A B is now=30

Divides two numbers or variables. For example:

A=5:B=100/A/2 B is now=10

Raises a number or variable to a specified power. For
example:

A=2:B= 16:C=A 1::::.. B C is now=65536

Logic operator: indicates equality between the two expres­
sions on either side of it. See also AND.
Or: the variable name to the left of the equal sign is
assigned the value of the string or expression to the right
of the equal sign. Examples:

A=(5=6) A is "false"
A=4*6 A is now=24
A$="HELLO" A$ now contains "HELLO"

Compares two numbers or expressions and checks
whether the one to the left of the operator is less in value
than the one to the right. The result is therefore a logic
variable. If strings are being compared, then the string to the
left of the operator is checked to see if it comes earlier in
alpha-numeric order than the string to the right. You can
use this operator for alphabetical sorting. For example:

A=5: B=(A< 7) B is "true"
A$="HO": B$="HA": A=(A<8) A is thus "false"

Identical to < except that the test is now "greater than" or
"later" in alpha-numeric order.

Checks to see whether two variables or expressions are
"un-equal". The result is a logical value. For example:

A=(6< >7) A is "true"
A$="HO": B$="H": A=(A$< >B$) A is therefore "true"
IF A< >5 THEN

24 BASICODE - THE PROTOCOL

< =

<=

Less than or equal to. For the function of this operator see
<, but substitute "less than or equal to" in place of "less
than".

Greater than or equal to. For the function of this operator
see> , but substitute "greater than or equal to" in place of
"greater than".

Note: When using the last three operators the order of the
two characters is important. For example: A=>5 is wrong.

We trust the BASICODE-2 protocol is explained clearly
enough, and we look forward to your program contribu­
tions. For details of how to contribute, see Chapter One.

Jochem Herrmann

BASICODE -THE PROTOCOL 25

I,

Chapter Five

APPLE II & lie

BASICODE is an encoding standard created to allow the interchanging of
programs written in BASIC, between different brands of computers. The
program listing is recorded on tape in ASCII using a special standard
called BASICODE. This program makes it possible to read and write
standard BASICODE through the cassette recorder interface.

No changes are required to the Apple nor to the tape-recorder connec­
tions. You can start right away! The program functions with or without DOS
and is independent of the size of the memory. However, at least 16K RAM
and Applesoft either in ROM or in the language card are required.

The BASICODE-2 system
To transfer programs from one computer to another, without too many
problems, the software must meet some special requirements. Briefly, it
amounts to the fact that a number of BASIC statements may not be used,
and some others only with certain limitations. Instead you will have a
number of subroutines replacing these statements.

Each computer has its own routines. A program consists now of two parts:
firstly, a machine-dependent part, different for each computer, and
secondly, the main program, which is identical for all computers. The main
program always starts at line 1000, and uses the subroutines located below
line 1000. The Apple standard subroutines have been included in this
program. What these subroutines do, and how to use them, is described in
Chapter Three.

Only the main program needs to be transferred, since the subroutines are
contained in the BASICODE-2 translation program which you already
have. Prior to loading a BASICODE-2 program you must have loaded the
subroutines.

How to use this program
By typing & and then RETURN you will get the main menu displayed on the
screen. Prior to reading in a BASICODE-2 program you can enter the sub­
routines by typing 1. You can check the subroutines by typing LIST. In this

26 APPLE II & liE

manner you can also load the subroutines if you want to write a program
using BASICODE-2 standards.

Option 2 loads a program from tape, and option 3 saves a program on
tape. A detailed description of the load and save options now follows.

The loading option
After typing 2 you will see 'START THE RECORDER AND TOUCH ANY
KEY' on the screen. Start the tape with the BASICODE program and as
soon as you hear the header tone, touch any key (the header is the tone at
the start). With the proper tape level the screen shows 'HEADER FOUND'.
The computer loads from the tape, indicated by the flashing characters at
the extreme top right of the screen. After detection of the trailer tone, and if
all is well, you will see the program listing start to scroll on the screen.

The newly loaded program is being added to what is already stored in the
memory. If errors occur during loading, the loading process will not stop at
the trailer. Press control C; the screen will now display 'LOADING ENDED'
followed by a selection menu. Typing 1 results in a listing of the program
read. This listing can be stopped by touching any key.

Pressing the SPACE key will restart the listing, any other key halts it. If there
are not too many errors, the program may still be entered by typing 2. Later
on you can correct it yourself. When there are too many errors, it is better to
type 3. return to BASIC and try another load with a different volume setting
of the cassette recorder.

If the program is too large for your Apple, the load stops with 'MEMORY
FULL' and 'LOADING ENDED'. You can then start to follow the interrupted
load sequence just described.

The write option
By typing 3 in the main menu you will be shown the next menu page.
Again there are three possibilities: option 1 checks for maximum line length
of 60 characters. This includes a space after the line number and a space
before the keywords 'TO', 'STEP', 'THEN', 'AND', 'OR', 'GOTO' and 'GOSUB'.
These spaces are automatically added by the save option.

The program is also checked for control characters. The numbers of the
lines containing errors are displayed on the screen; the lines can be
corrected before saving on tape. Option 2 saves the program on tape
starting at line 1000, the BASICODE-2 subroutines are not included. Option
3 saves the entire program, which in fact contradicts the BASICODE-2
protocol! However it is a useful contradiction.

APPLE & APPLE liE 27

Before writing, a table is generated followed by the message 'START THE
RECORDER AND TOUCH ANY KEY'.

After touching the key, the recording is started; when you hear the beep the
save process is complete. If the memory size of your Apple is too small to
store the program and the table, the program will be erased to make
space.

111 this case, you will see 'BASIC PROGRAM OVERWRITTEN'. If the table
size is such that it cannot fit in your memory, you will see 'OUT OF
MEMORY ERROR'. The program has been erased, but you can divide it in
sections which, after save and load, may be merged. The memory size of
most Apples is sufficient, so it will not be very often that you need to do this.

28 APPLE II & liE

Chapter Six

BBC MICRO (MODELS A & B)

You will find two translation programs for the BBC Micro on the cassette.
The first is the Load program and the second allows you to Save programs
that you have written in BASICODE-2. Both the programs are written in
assembly language for optimum efficiency and the code occupies the
memory addresses immediately below the screen memory. When running
BASICODE-2, HIM EM should not be changed and the micro should always
be in MODE 7.

It is not necessary to load both the Load program and the Save program
into memory at the same time. Normally you will be using the Load
program to translate programs that you have recorded from Radio 4. Once
the programs are translated, you can save them as BASIC programs in the
normal way and load them again without using the BASICODE-2 Load
program.

The Load program

Once the Load program is in memory, type RUN. The screen will then
display a reminder of what to type in order to load a BASICODE-2
program.

Remember that before you load in a new BASICODE-2 program, type
NEW. To load a program, set the tape at the beginning of the leader tone
and type in CALL &7AOO. As the program is being loaded it will be listed on
the screen. If there is a problem during the loading you will get the message
'CHECKSUM ERROR'. LIST the program to find the error and correct it. If
the program loads without problems, type RUN to set the program going.

When you want to load a new BASICODE-2 program, press the ESCAPE
key, type NEW and then proceed as before.

Apart from the main translator, the Load program also contains the
BASICODE-2 subroutines. The loading process puts the subroutines
below screen memory, following the machine code. When a BASICODE-2
program is being loaded, the subroutines are copied to PAGE and then the
BASICODE-2 program is copied from the tape to follow the subroutines.

BBC (A & B) 29

Once you have successfully recorded the BASICODE-2 programs off your
radio and loaded them into your micro, you should SAVE them as ordinary
BASIC programs.

The Save program
This translation program is provided in case you want to write your own
programs and save them in the BASICODE-2 standard. If you have
followed the BASICODE-2 programming guidelines given in Chapter Four
then you will be able to transfer the programs to a variety of other micro­
computers. So, to save your programs in the BASICODE-2 standard,
LOAD the Save program into the micro and RUN it. This will compile the
code and place it below screen memory. When the prompt appears on the
screen, type NEW and LOAD your BASIC program. When the program has
loaded, type CALL &7A03 if you want to save the program and the sub­
routines or CALL &7AOO if you just want to save the program on its own.
Now set up the cassette recorder to record the BASICODE-2 program and
press RETURN. You will see five seconds of dots on the screen as the
leader tone is being recorded, and there is a further five seconds of dots
after the program has been transferred, when the trailer tone is recorded.

If there are any lines longer than 60 characters the Save program will mark
them with a ':' in the 61st character. After the program has been saved, the
number of lines marked is displayed on the screen.

Note: The BASICODE program is generated by converting the BBC BASIC
keywords to ASCII code using the LIST command. The OSWORD vector is
altered to pass the interpreter

L.1000,

if only the BASIC program is to be saved or

L.

if the BASIC program and subroutines are to be saved. In changing the
OSWRCH vector the program inspects characters as they are sent to the
screen by the LIST command. The relevant characters are then also sent to
the cassette port.

30 BBC (A & B)

Chapter Seven

COMMODORE COMPUTERS

The instructions in this chapter apply to the following Commodore com­
puters:

Introduction

CBM-3008,3016 and 3032 (with new ROM's)
CBM-4016 and 4032
CBM-8032 and 8096
Commodore 64
PET- 2001 (with old ROM's)
VIC-20

The reading and writing of programs in the BASICODE-2 standard is
possible via the use of the translation programs supplied with this
handbook. Each of the computers mentioned above has a separate tran­
slation program specifically designed for that model. The translation
program checks that it is being loaded into the correct model, and if not, it
will automatically stop and give a relevant instruction. The working of the
translation program is slightly different with each model. However, as far as
the user is concerned, the instructions which follow apply to all Com­
modore models. If there are comments specific to certain models, these
appear on the screen.

There is no need to make any changes to your computer to use
BASICODE-2, since the programs work with the standard hardware
supplied by the manufacturer.

Description of the accompanying cassette translation program.
Proceed as follows: first LOAD the specific BASICODE-2 translation
program for your model of computer. When this is complete, type in the
command RUN whereupon a menu will appear on the screen. You now
have a choice of two functions:

1. Preparation of the Reading program to read a BASICODE-2 program
from tape.
2. Preparation of the Writing program to put a program in BASICODE-2
onto tape.

COMMODORE COMPUTERS 31

Once you have chosen a number, the selected program is prepared in the
top 512 bytes of the available computer memory. While this is happening,
you will see a counter displayed on the screen which follows the progress
of this preparation process. When the counter reaches 0, the job is
complete and the relevant translation program is ready. On the screen you
will see which SYS instructions you can call up. We suggest you write these
down on a piece of paper, since you can use these instructions at any time
until you switch the computer off.

The chosen translation program is in fact taken from the strange texts in
the DATA lines and converted into machine language. This is then placed in
the top 512 bytes of the memory, and the available space for BASIC
interpretation is therefore reduced by the same amount.

After noting the SYS instructions, if you then press the SPACE key, the
menu appears again. If you wish to load the other translation program at
this point, you may do so. However, if you are using either a VIC-20, or a
PET with limited memory capacity, then it is advisable to load the second
translation program only when it is needed.

If you have already listed the program as read from the cassette, you may
have been surprised by the first 50 lines. These are the fixed subroutines
described in Chapter Four. These are used in all BASICODE-2 programs,
so be careful that you do not erase them by accident witi 1 the use of NEW.
You will probably need these routines at a later stage.

Reading BASICODE-2 programs
With the first SYS instruction displayed on the screen after setting up the
Reading program, you can start up the BASICODE-2 Reading program.
The memory is then cleared from line 1000 onwards, where· the
BASICODE-2 program will be stored. If you are using either a VIC-20 or a
PET, then the statement 'READY' will appear on the screen, after which you
should type in the second SYS instruction. With the Commodore 64 and
CBM 3000 and higher the program automatically goes further without a
second instruction. The screen now displays an instruction to press the
PLAY button on the cassette tape-recorder. As soon as this is done, the
statement 'SEARCHING FOR BASICODE' or simply 'SEARCHING'
appears. The computer is now looking for the header tone on the tape.
Anything which does not resemble a header tone (such as speech before it)
is ignored.

When the header is located, the computer will indicate 'FOUND' and will try
to load the BASICODE program. If you are using a Commodore 64
computer, then at this point the screen will go blank. This is normal. On the
other computers you will see flashing characters at the top of the screen.
This is text being read from the tape, and although it goes very fast, you

32 COMMODORE COMPUTERS

may be able to follow some of it. As soon as everything has been read, the
recorder will stop and the computer gives the statement 'READY'. In the
case of the Commodore 64 computer, the screen will now return to normal.
You can now LIST the program if you wish, RUN it, or otherwise adjust it.

If something has gone wrong during the reading process, then after the
recorder has stopped, the statement 'LOAD ERROR' will appear. On the
PET this is simply displayed as 'ERROR'. Despite this though, everything
has been read from tape, so by listing you can check whether the program
can be corrected.

Errors such as 'PRUNT' instead of 'PRINT' should show up clearly. If for any
reason you wish to interrupt the loading process, press the STOP key
which will stop your tape recorder. On some computers you may need to
press the STOP and RESTORE key. The section which has been read from
tape, up to the interruption, has been stored. You can then type further lines
in the normal way.

If desired, the loading procedure can be started using the second SYS
instruction which appears on the screen. In this case, everything which is
already in the memory remains untouched: the computer simply puts what
it reads from the tape after what is already in the memory. So be careful
that line numbers are in the right sequence, if you are doing this
deliberately, otherwise you will have problems running the program!

The Reading program checks to see if there is sufficient memory during the
reading process. If this is not the case, the loading process stops and the
statement 'OUT OF MEMORY ERROR' appears. The program on the tape
is then too large for your computer memory.

The Reading program makes use of the (first) cassette buffer during
reading of a BASICODE tape.

Because Commodore computers work with upper and lower case letters in
a non-ASCII way, the Reading translation program offers two methods of
processing lower case letters from the tape. One possibility is that lower
case letters on the tape are converted to 'Commodore' capital letters. The
other alternative is that lower case letters will be converted to 'Commodore'
lower case letters, and capitals into 'Commodore' capitals. The latter is
performed only when letters are in strings, i.e. between inverted commas.

To inform the Reading translation program how to proceed, you must set
your computer either in text mode or in graphics mode. The computer will
then adjust the incoming program to the mode you have selected. If you set
the computer to recognise both upper and lower case letters, incoming
programs will be presented with both types as appropriate. However, this

COMMODORE COMPUTERS 33

may not always be the most desirable form. If it is not, then you can try
again using the graphics mode.

Writing in BASICODE
Like the Reading program just described, the Writing translation program
is designed to resemble the ordinary SAVE as much as possible. You can
start the Writing program using the SYS instruction which appears on the
screen after you have loaded it. Before you can save in BASICODE of
course, you will need to load the program that is to be saved in the
BASICODE format. When this is done, you can then select the suitable SYS
instruction and the computer will ask you to press the record buttons on
your cassette recorder. Once you have done this, the computer will then
start to save the program on tape using the BASICODE standard. In the
case of the Commodore 64 computer, the screen will go blank during this
saving process. In the case of other computers, you will see flashing
characters in the top left hand corner of the screen, indicating what is being
saved on tape. After the last character, 5 seconds of trailer tone is
recorded. The recorder then stops and the statement 'READY' appears. On
the Commodore 64, the screen then becomes active again.

Po1nts to bear in mind!
In order for this system to work, you must follow these guidelines for
BASICODE:

1. A program line may not be longer than 60 characters in length. If you try
to make it longer, then the Writing translation program will stop the saving
process when you try to save your BASICODE program. It will give the
statement 'LONG LINE ERROR IN .. .' followed by the line number in
question. LIST this line number, make it shorter, or split it in two using two
line numbers. Then you can use the SYS instruction to re-save the
BASICODE program.

2. Those characters which you see in reverse-field on the screen, such as
clear-screen and all graphic characters are forbidden in BASICODE. If they
appear in your program, then as you try to save it in BASICODE, the
process will stop. The statement 'ILL.CHR.ERROR IN .. .' will appear,
together with the line number of the offending character. ILL,CHR. simply
stands for ILLEGAL CHARACTER.

If you decide to save in BASICODE using the graphics mode, then all letters
in your program will be saved as upper case. If you use the text mode, then
upper and lower case letters that appear in strings will be saved without
any change. PET owners can thus save a program using BASICODE
knowing that it will appear in the correct form on other Commodore com­
puters as well.

34 COMMODORE COMPUTERS

There is a possibility that the statement 'ILL.CHR.ERROR IN .. .' may appear
when there does not seem to be anything wrong. It may be that you have
made a space by pressing the SPACE bar while in the shift mode. Simply
re-type the spaces, making sure you use the SPACE bar in its normal
setting.

3. Remember that the trailer tone lasts five seconds, so make an allowance
for this on the tape. If the tape is too short, the computer may try to put this
onto the plastic leader at the end of your tape.

You should see now that the first SYS instruction means that only line
numbers 1000 and above are saved on tape, following the BASICODE-2
protocol. The second SYS instruction gives you the option to save every­
thing.

COMMODORE COMPUTERS 35

Chapter Eight

SHARP MZ80A

The BASICODE translation program for the Sharp MZBOA is clearly
identified on Side 1 of the cassette tape. It is called BASICODE-2 5510.

Do not use lines 1 to 1000; these are reserved for a subroutine handling
command, LOAD/2. This command ensures subroutines necessary for
BASICODE-2 are added to the program being loaded from cassette.

You should remember this when saving a program in BASICODE-2. The
command for this operation is SAVE/81000-.

Using the command SAVE/81000-, lines 1000 and above will be saved onto
cassette in the BASICODE format. But before the 'RECORD PLAY' instruc­
tion appears on the screen, the computer will check the program you wish
to save. If there are lines that are 60 characters, or longer, in length, then
that line will be printed on the screen. The translation into ttie BASICODE
format will stop. You should now make the line shorter (by splitting over two
line numbers), and then give the command SAVE/81000-.

You do have the option to save the entire program on tape, if desired. If you
use SAVE/8 you will achieve this. All the usual commands you are used to
remain unaffected by the BASICODE system. So it is also possible to use
the LOAD and SAVE functions if you wish.

We wish you success with the BASICODE-2 system and look forward to
your contributions to the broadcasts. Details of how to participate are given
in Chapter One.

36 SHARP MZBOA

Chapter Nine

SINCLAIR ZX81

Introduction
The Translation program on the cassette is the latest addition to the
BASICODE system although the ZX81 has been available for some years.
There have been two major problems to overcome:

1. Memory capacity: Early models did not have enough space for the
translation program. This problem has now been largely overcome with the
availability of more memory.

2. The Sinclair BASIC: The type of BASIC used in the ZX81 is not
immediately comparable with the form used in BASICODE-2. The Sinclair
ZX81 is not able to cope with more than one statement per line whereas we
allowed this in BASICODE to avoid long programs.

How to use the Translation program
Load the program on Side 1 of the cassette for the ZX81. Use LOAD ''to do
this. The program consists of two routines, the Reading routine designed to
make the ZX81 read the BASICODE program off the radio, and the Transla­
tion program to convert what has been read into a form that can be dealt
with by the ZX81.

After loading the program, the routine should present itself and the ZX81
will give an error message '7/9090'. This is normal. Your ZX81 is now
operating the FAST mode which is essential for the Reading routine.

You are now ready to load a program recorded off the radio. Remember to
keep the recording levels as high as possible, without distortion. Having got
a recording, wind it back to the start and cue up the cassette so that you
can hear the start tone. This is the steady tone that starts all BASICODE
programs.

Now type in RAND USR 16618
Start your tape recorder in the playback mode and press (NEWLINE). The
BASICODE program should now start loading. This process will stop if:

SINCLAIR ZX81 37

a) You press BREAK
b) The memory is full
c) An ETX CHR is loaded.

Now type in LIST 999 and on that line you should see a REM statement.
What comes after the REM has been loaded by the computer.

If the BASICODE program hasn't loaded correctly, it may be due to the
volume control on your tape recorder being set too low. This will result in
meaningless information after the REM on some or all lines. If the whole
program is nonsense, start again from the beginning and try a different
volume setting. If only the last part has gone wrong, there is no reason why
you shouldn't start loading half-way through the BASICODE program
rather than winding it back to the start. It may take some experimenting at
first, but you should find a point where the process goes smoothly.

Now that we're in the position of having loaded the BASICODE program, it
has to be translated into a form that the ZX81 recognises as an ordinary
ZX81 program. You start this process by typing in RAND USR 17165 (NEW
LINE)

The Translation program now starts looking at the BASICODE material, line
by line. A statement is replaced by a token and when it comes across a
second statement on one line, it generates a new line for this second state­
ment. LET and GOTO statements are inserted where necessary, and when
this is complete, the REM statement is erased. You can therefore expect
the following result.

Original After Loading From Radio
121 0 REM A=400 : B=2

1220 REM LET A$="ABC" : B$="FGH"

1225 REM IF A> B THEN A=B:
PRINT "A WAS<> B": 1300

1230 REM PRINT A : PRINT B

1300 REM PRINT "END VB", A$

New Version
121 0 LET A=400
1211 LET B=2
1220 LET A$="ABC"
1221 LET B$="FGH"
1225 IF NOT (A> B)

THEN GOTO 1230
1226 LET A=B
1227 PRINT "A WAS<> B"
1228 GOTO 1300
1230 PRINT A
1231 PRINT B
1300 PRINT "END VB", A$

You can test this system out by using RAND USR 16618 (NEWLINE).

You don't need a cassette, but you will need to press BREAK. You can now

38 SINCLAIR ZX 81

type in a few test lines and have them translated by entering RAND USR
17165. If you press BREAK during the translation process, the computer will
stop translating and you will once again see the screen. You can go back to
translating by using RAND USR 17165 again and the computer will pick up
where it left off.

Adjustments
Once you have loaded and translated a BASICODE program you can now
try to RUN it. Some programs broadcast in The Chip Shop will run
immediately. But there will also be a few that need some changes to be
made. These changes will become clear during a test run. Type in RUN
(NEWLINE) and note any error messages that come up. Check the line the
computer refers to. Remember that unlike other computers in the
BASICODE system, the ZX81 does not like string variables and FOR-NEXT
variables which consist of more than one character, e.g. 'IN$' and 'FOR
IN=O TO 10'. You will have to change these to variables of a single character
instead.

Suppose you choose Z$ to replace IN$ in the program. That is fine, as long
as Z$ doesn't appear elsewhere in the BASICODE program with, of course,
another meaning. So it's a good idea, once you have chosen your single
character variable to check that it doesn't exist in the BASICODE program.
To do this type in:

RUN 400,-"1" (for search),-"Z$" (for word)

This simple routine now scans through the entire program and gives the
message 'FOUND' if it does find, in this case, Z$. If you don't get this
message, then it is safe to replace IN$ in the original by Z$. You do this by
typing in:

RUN 400,-"2" (for replace), -"IN$" (for word),-" Z$" (replaced by).

Note: The space before the Z$ is deliberate. Both the variables must be the
same length, so when you put the single character in, you must leave that
space.

DATA-RESTORE-READ process:
In most cases you can replace DATA by DIM D$ (....)LET D=1. You must
work out the dimensions of D$. The number of DATA elements is the first
number, and the length of the longest element is the second. In addition,
D$ must be filled with a number of LET statements. RESTORE thus
becomes LET D=1, and READ A$ becomes LET A$=D$(D) LET D=D+ 1.

In most BASICODE programs, programmers tend to put DATA into table
form, and use statements elsewhere in the program to manipulate it.

SINCLAIR ZX81 39

Before
2000 FOR N=1 TO ...
2010 LET READ M$(N)
2020 NEXTN

After
2000 GOSUB 3000

3000 LET DATA "MO", "TU", "WE" 3000 REM M$(1)="MO":
M$(2)="TU":M$(3)="WE"
RETURN

We don't need lines 2000-2020 in the above example. Instead, the data is
rewritten in another form in line 3000. If we now start up the Translation
routine using RAND USR 17165, a number of neat lines will be made from
line 3000, each with its own LET statement.

Note: Remember that some other computers allow the table index to be 0,
i.e. LET A$(0)="VB".

All we have to check now are LEFT$, MID$, and RIGHT$.

LET A$="ABCDEFG"
LET B$=LEFT$(A$,3)

8$ is now="ABC"
LET B$=MID$(A$,3, 1)

8$ is now="C"
LET B$=RIGHT$(A$,4)

8$ is now="DEFG"

But we could also write B$=LEFT$("ABCDEFG",3), and so on, and get the
same result. So for the ZX81 this would become:

LET B$=A$(TO 3) LET B$=A$(3 TO 4) LET B$=A$(LEN A$-4) TO)

Line number 998 is a very special line. REM COPY COPY. This is the ter­
minator line and everything after the terminator line with a higher line
number (i.e. larger than 998) is erased. You can change this line number if
you wish.

Note too that the Reading routine will scrap any lines above 9990, and line
numbers will move in steps of 10.

40 SINCLAIR ZX81

Chapter Ten

TANDY TRS-80 MODELS I & Ill
VIDEOGENIE

The BASICODE translation program has been designed for TRS-80
Models I and Ill and the Videogenie. However, you will need to construct a
s~all interface .. This is not all that difficult and should not deter you from
gomg further With the BASICODE idea. You can also use BASICODE with
or without a disk drive.

TRS--80 Fig- 1

1 LH 324 I 4 • +5 Volt
11 • ••s••

2 74LS04 1 14 • + 5 Volt
7 • ••ss•

1 74LS30 1 14 • + 5 Volt
7 - •••••

1 74LS3b5 I 16 • + 5 Volt
8 - •••••

TANDY TRS-80 & VIDEOGENIE 41

r

TRS--fJO Fig_ 2

•
CD
0

-z
~
m
::0 .,. ,.
0
m

TRS--fJO Fig_ 3

• • • •

fo pl'{l(i.~ <:t>NNEt:'TD~

Ill R~ At 1~ tr J.

• • • • .,1f •• 11. L.lJ •
'If t? II IS 'l

• • • • • • • • • • So It " t1 t•
• • • ! f • T T t f

42 TANDY TRS-80 & VIDEOGENIE

TRS--fJO Fig_ 4

;

A2

TRS--fJO Fig_ 5

~ I I I I I ;

A6 A7 A3 D- iN AfS AI A4 A5 .l.

.... ...
t,..r. '/I, .. ,.. -
t;d

·~II

TANDY TRS-80 VIDEOGENIE 43

r.

The extension circuit board
The circuit description is given in Figures 1 to 4, and in the circuit diagram
(TRS--80 Fig 1) and you should note the following:

-LED off:

-LED on:

There is no input signal

The input signal is greater than 200 mV and the frequency
is greater than 300 Hz. Without any input signal, DO
remains high (i.e. logic 1 or hi-state). The current con­
sumption of the printed circuit board is about 30 mA.

Details of a suitable power supply are given in TRS--80 Figure 5. But this will
not be necessary if you decide to mount the printed circuit board inside the
computer keyboard or expansion interface. The power supply from the
computer can easily cope with the extra power drain from this interface.
The printed circuit board layout is shown in TRS--80 Figure 2 and the com­
ponent details are noted in TRS--80 Figure 4.

The printed circuit board for this interface is available ready-made. It may
be ordered from the following address:

TRS--80 Users Group,
P.O. Box 551,
2070 AN Santpoort,
The Netherlands.

The printed circuit board costs £2.00 including postage. Only the printed
circuit board is supplied not the components. You should be able to find
the latter in electronic component shops or by mail order.

The BASI CODE Translation program
Load the Translation program for the TRS--80/Videogenie which you will
find on Side 1 of the cassette. This is done in the normal BASIC mode,
using CLOAD.

After you have typed in RUN, a menu will appear asking you which
computer model you are using. If you follow the instructions on the screen,
you should end up with the Translation program ready for use. Once you
have done this, STORE the adjusted Translation program either on disk or
cassette. Use this modified program as your BASICODE-2 translator from
now on.

Using the Translation program
When you wish to use BASICODE again, load the modified program back
into the memory using CLOAD or LOAD, as appropriate. After you have

44 TANDY TRS-80 & VIDEOGENIE

RUN it, you will see the statement 'READY' appear on the screen. The
Translation program is now ready for use, and you have 1019 bytes of
memory space less than normal.

The following commands are now available:

-GET: You use this for loading a BASICODE format program
from tape into the computer.

The normal BASIC is unaffected by the BASICODE translation program in
the memory. You can still load TRS--80 tapes using CLOAD, save using
CSAVE in TRS--80 format, etc. But note: If you have a program in the
memory, and then load the BASICODE Translation program, you will lose
your original program. So save it first using CSAVE or SAVE.

The extension circuit board interface should be connected to Port 16, bit 0.
A 40 way connector is then used to make a connection to the bus located at
the back of the computer (Port 255 bit 0 & 1).

Loading programs in BASICODE
In order to be able to load a BASICODE program from cassette tape, you
will need one of the interfaces described above. Note that the loading
routine does not give a NEW command, so if you are just starting to load a
BASICODE program, first type in NEW. If you do not, then the BASICODE
program will be merged, in the same way as when you use the disk-BASIC
merge commands. Remember this, especially if you want to put programs
together and eventually re-number the result.

You start the loading process by using the command GET. The cassette
recorder will now start and the program lines will appear at the top of the
screen. If the memory capacity is insufficient, the statement 'MEMORY
FULL' will appear and the tape will stop. Similarly, if you press BREAK
during the loading sequence, the statement 'BREAK IN PROGRAM' will
appear and the tape will stop. If there is a reading error, then you will see
'CHECKSUM ERROR' appear. But, usually, no statement will appear, and
the recorder will shut off when it reaches the trailer tone on the tape.

You now have the following options:

BREAK­
KEY

ENTER­
KEY

The input of programming will stop and the ~ prompting
cursor will re-appear. You use this if there is a problem
with the program you have just loaded.

This line will be accepted into the memory.

TANDY TRS-80 VIDEOGENIE 45

SSP ACE­
KEY

SPACE­
BAR

This line will not be accepted into the memory, for example
if there is a fault in the line-number.

If you press this (or the ENTER key) repeatedly, the
program is read in at full speed. This is useful when the
program contains no faults.

The pressing of ENTER or BSPACE automatically brings up the next line of
the program for inspection.

If there are control characters in the program (other than CR or ETX), or
there is a reading error (stopbit not a "1" or bit 7 not a "1"), then the
character in question will be underlined using a'-'. You can use this facility if
you are trying to rescue a program from a very poor quality tape, in con­
junction with the edit facility.

You can also load from a tape more than once, adjusting the playback level
to different settings until a complete program is obtained. If the 'MEMORY
FULL' statement appears, some of the program will have been lost, but
what has already been put into the memory remains there, and can be
used.

The saving routine for BASIC ODE
You do not need the special interface to save a program in the BASICODE
format. You can begin the saving process by using the command PUT. The
program is then saved onto cassette in the BASICODE format and the tape
will start automatically. If the statement 'MEMORY FULL' appears, then the
program was not completely stored in the memory, due to lack of space.
What was stored will be put onto tape. You can only interrupt the saving
process by pressing the reset button at the back of the computer. Note that
control characters in the text, such as '/' will not be destroyed, so make
sure that they do not appear in your BASICODE programs, or you may put
other brands of computers into tilt. Read Chapters Two or Three for details of
the guidelines to follow with the BASICODE. Notethatthecommand GET will
not affect other brands.

46 TANDY TRS-80 & VIDEOGENIE

Chapter Eleven

THE FUTURE

Since details of BASICODE spread outside The Netherlands, the Dutch
have received many thousands of letters. It became clear that the most
popular computers in one country may not even exist in another. The idea
of putting the entire BASICODE-2 protocol into Chapter Four is not only to
explain it to users of computer makes already In the group, but it is hoped
that experienced users of other makes will study the protocol and create
translation programs for their computer. If you succeed, please do not
keep it to yourself!

We will publish updates to this handbook with details of translation
programs for other brands. Authors are always credited, and details of how
to take part are given in the first chapter of this book.

BASICODE has grown from a simple idea for exchanging software, back in
1979, to a standard in regular use in many parts of the world. We hope you
will contribute to make it even better known.

THE FUTURE 47

l

"""'"

@n;1()~ BASICODE2 is just like Esperanto for microcomputers.
z~~~ It enables micros of different makes to 'talk' to each other.
ao..,~ It is simple to use and has established itself as an ffi Q.. (1)
Vl -- (1) Q.. international standard which can be used on some of the :J O'Q V>
(1) :J -- Ill most popular home micros including: Q.. (1) O'Q :J
(l)Q..~Q..
::l..CTQ..O..

Apple II and lie Ill'< Vi"
:J)>CT.-+
Q.. '< ::::l. BBC Models A and B
V>O..OJCT

Commodore 64, Pet and Vic 20 ronOJc
oonnr SharpMZBOA 3 ~o..

a :J Sinclair ZX81 0'~ (1)
' OJ Tandy TRS-80 ""0
3 '

l V>
~0 Video Genie rl-

()" -- Ill
:::r 0 Q..
d". :J ()

BASICODE 2 will allow you to use programs broadcast :J 0~

! (!Q -- d". in the BBC's radio series The Chip Shop and also to
I

< :J
Vi"O'Q

exchange programs with owners of these micros. a·(/) ,,
< :J c I
(1) __,_-o j
' V> -.o"D How does it work? The BASICODE 2 kit comprises a c coO I
3 ~;::+ handbook and a cassette. On one side of the cassette are I z (/) the translation programs for the micros listed. The (1) .il (1) ~ translation&roram when loaded will 'teach' bour micro

ji
rl-

l :::r ()"
BASICO E . Once it 'knows' BASICO E 2, your (1) (1)

' V>

Jj
Ill 0' micro can translate and use programs written for these :J
Q.. ' other micros. You can also record and use the programs

"I

:t ,.i

'
broadcast on Radio4. On the second sideofthecassetteis I rn a selection of games and scientific and educational

;:i n
l1i :r: programs to start you off with BASICODE 2.

\
I!~ =o ''I'
!~I Vl
:lj :r: 1 ~ :'I 0
iii ~-o I
:! J

OJ ' [,;i OJ

I ()

I ~
I

Q..
a·

II
~

lj

'r I.
I ~
·.I

ISBN 0-906965-14-4 BASICODEl kit£3.95

Broadcasting Support Services

