
APPLE II HUMAN INTERFACE TOOLS

A good human interface is vital to your software product's success.
Top-selling applications packages are those that are simple to learn,
easy to remember, consistent, and efficient, as well as reliable and
accurate.

Apple Computer has developed guidelines and a number of human
interfac~ tools for applications software development, reflecting years
of collective human/computer research. We offer the Apple II human
interface tool kits summarized here for inclusion in your new or updated
Apple II software products. Potential benefits include "friendly" user
interaction, reduced development time/costs, improved product
reliability, and easier Apple II/Macintosh software portability.

Apple II Human Interface Models

Because no single style of interface is appropriate for every
application, we support two approaches to human interface design for the
Apple II. These are the "Filecard" and "Desktop" paradigms.

Filecard Interface

The Filecard interface was first used by Apple II's Appleworks (see
accompanying example). Overlaying filecards on the screen visually
represent the different menu levels with the paths available to the
user. Options or activities are arranged in a hierarchy. Functions are
performed in a specific order. We recommend the Filecard interface for
applications where. the program must exercise restraint and guidance over
the user's ac tivities. It is also a good choice for upgrading your
existing, menu-driven software: It offers the visibility of modern
software design without requiring.major restructuring.

Desktop Interface

The more flexible,
design principles and
represents a desktop,
different "documents" on
close box, grow box, and

relational Desktop interface follows Macintosh
calling conventions. The Apple II screen
with multiple screen windows .representing

the desktop. Graphic components--the drag bar,
scrollbar--control window operations.

Software using this human interface is driven by events from the
mouse, keyboard, and the application. Using the mouse or cursor keys
wi th pull-down menus from the desktop menu bar, the user has a broad
range of activities available at once. Graphic images can be used with
text output.

"''',Ii'!',
;-j .~,-l,

- 1 -

AErIe l! Human Interface Software

Three sets of human interface software tools are now available for
Apple II software developers: a Filecard Toolkit, a MouseText Toolkit,
and a MouseGraphics Toolki t. Mos t toolkit modules are available for
Pascal, Applesoft, and assembler, except as noted.

Text-Mode "Filecard"-Style Toolkit

Four software modules are provided in this set of tools: a User
Input Routine, a Console Driver, a Pascal "ConsoleStuff" Unit, and a
Pas cal Filecard Menu Support Unit. The modules may be used
independently, except that the Pascal units require the console driver.

User Input Routine. This software module implements the standard
Apple keyboard input, specified in the Apple II Human Interface
Gui~elines. Editing commands are supported, as are interrupt and
termination characters. An insert cursor, replace cursor, default
string, and fill characters can be customized to suit your application.
An "immediate" mode is available, should your application need special
control during the input process--e.g., for "live" syntax checking. The
User Input Routine can be used with assembler, Applesoft, and Pascal
programs. (The Pascal version requires ~he Console Driver.)

Console Driver. The 80-column Console Driver offers fast,
efficient text output and screen control. The utility processes a
buffer of combined text characters and screen control commands in one
call. Commands include viewport and cursor controls, initialization and
clears, and character normal/inverse and normal/alternate controls. The
driver also returns data describing the current screen environment. It
can be called from assembler and Applesoft, and is available as an
"Attach" driver for Pascal.

ConsoleStuff Unit. This Pascal unit offers text formatting aids,
as well as utilities for overlaying message boxes and Help Screens. It
provides a lK buffer for the Console Driver and console buffer setup
aids. (This unit is not required for' Applesoft or assembly-language
programs.)

Filecard Menu Support Unit. This Pascal unit provides utilities
for implement~the Filecard interface. There are utilities for
setting up the screen areas, displaying and removing "filecards",
getting the user's menu selection, and generating error boxes. Other
routines work with the Console Driver to display formatted text. The
uni t includes a facili ty for building your application's hierarchicJll
menu structure. This module is available for Pascal only; however, the
toolkit's documentation provides in-depth design details useful to
Applesoft and assembly-language developers.

- 2 -

The Desktop-Style MouseText Toolkit

With the MouseText Toolkit and the MouseText characters available
now for both the IIe and the IIc, you can implement the Desktop
interface -- all within text mode. The package offers complete support
for mouse- or keyboard- controlled multiple windows, pull-down menus,
and event handling ~ The utilities, designed to parallel Macintosh's
interface tools, provide for menu bars, 40- or 80-col window writing and
dragging, scroll bar control regions, and cursor selection and control.
Error-handling is included as well. The 12K MouseText Toolkit
machine-code package can be used with assembler, Applesoft, and
Pascal-based applications.

Graphics-Mode Desktop Tools

This new package contains two machine-code
independent set of Graphics Primitives and an
Toolkit", which uses the Graphics Primitives.

modules: an 8K
8K "MouseGraphics

Graphics Primitives. This software module supports 40/80-column
text and Double HiRes (560x192) MousePaint-like graphics on the Apple
lIe and lIe. Its utilities can be used to paint lines and polygons of
different widths. Drawings, defined relative to the application's
~oordinate system, can be directed to either the screen or a nonscreen
bitmap. Polygons can be filled with patterns or colors. The changeable
drawing environment includes current pattern, pen location, pen size,
pen mode (eight options), and font. The Graphics Primitives, callable
from assembly language, Applesoft, and Pascal, are based on Macintosh's
QuickDraw graphics package to facilitate applications software
portability.

MouseGraphics Toolkit. This toolkit is similar in function and
structure to the MouseText Toolkit described above. Procedures in this
package support pull-down menus, windows, cursors, and event-handling.
The difference is that it calls on the Graphics Primitives, allowing
your application to present its information in graphic form.

Matching Apple l! Human Interface Tools With Application

The Apple II human interface toolkit best suited for your software
product depends on factors such as application, user, Apple II system,
space, speed, and language. The MouseGraphics Toolki t , for example,
provides for a more flexible, icon-oriented desktop, but it uses more
memory and is slower than the MouseText Toolkit. If you are upgrading
an existing application, you might prefer the hierarchical
filecard-style toolkit over either of the event-driven desktop- style
toolkits. Data in the accompanying chart can help you with your human
interface tool selection.

- 3 -

Apple l! Human Interface Tools - Comparison Chart

Filecard: Desktop:
Input CDrvr CStff FilCd Text Primitive Graphic

lIc yes yes yes yes yes yes yes
128K enhncd lIe yes yes yes yes yes yes yes
128K lIe yes yes no no no yes yes
64K enhnced lIe yes yes yes yes yes no no
64K 80col lIe yes yes no no no no no
64K II+ yes yes no no no no no
Display Mode Text Text Text Text Text Graphic Graphic
I/O Buffer 1K 1K 2K 16K
Module Size 1.5K 3.5K 3K 3.5K 12K 8K 8K
Mouse Support no no no no yes n/a yes
Mouse Req'd no no no no no no no
Pascal Intfc yes yes yes yes yes yes yes
ProDOS/BASIC yes yes n/a no yes yes no
ProDOS/Assy yes yes n/a no yes yes yes

Apple II Human Interface Tools Availability

Apple lIe owners can obtain the Enhanced lIe Upgrade Kit from
dealers. The enhancement is now being integrated into Apple lIe's in
production. The kit is available to certified third-party Apple
developers via Apple's Developer Relations Group (408-996-1010).

Revised Apple II Human Interface Guidelines have been published,
replacing Apple product number A2F2116 11/82.

You can obtain preliminary versions of the Filecard Toolkit,
MouseText Toolkit, and MouseGraphics Toolkit from the Apple II Developer
Support Group. The final software should be available directly from
Apple's Licensing Group by the end of ApriL Licensing fees will be
nominal: $50-$100 per year.

4/17/85--rjr

- 4 -

Path: .profile/tezp

Main Menu

Apple 1l FileCard Sample Screen

DATA BASE Escape: Add Files

•__A_d_d-=-F_i_l_e-::s -.=----------------I-I__
Data Base

Make a new file:

1. From scratch

2. From a text (ASCII) file

3. From a Quick File (TM) file

4. From a DIF (TM) file

Type number, or use arrows, then press Return

- 5 -

157K Avail.

Apple l! MouseText Toolkit and MouseGraphics Toolkit Screens

Close box

Close box

} Title bar
~----.,.~

Scroll errow

Scroll box

Scroll belr

SCroll bar

tlouseGraghi cs

Title belr
Scroll arrow

Scroll box

Scroll bar

SCroll bar

MouseText

- 6 -

4000 .

Apple l! DeskToE Sample Screen

- 7 -

Fil" Edit Aids

fiQp I e .lL Human Int er face

Modification Histort:'

Gu i de lines

1st Draft
2nd Draft
3rd Draft
4th Draft
1st Draft, Macintosh
2nd Draft, Macintosh
1st Release, II
Addendum
1st Draft, II Mouse
3rd Draft, Macintosh
4th Draft, Macintosh
2nd Draft, II Mouse
2nd Release, II, Alpha

Abstflfct:

Bruce Tognazzini
Bruce Tognazzlnl
Bruce Tognazzini
Steve Smith
Joanna Hoffman
Chris Espinosa
Bruce Tognazzini
Bruce Tognazzini
Bruce Tognazzini
Andy Averill
Andy Averi 11
Bruce Tognazzlni
Bruce Tognazzini

9/15/78
3/12/79
6/18/80
2/15/81
3/17/82
10/11/82
1/19/83
8/5/83
11/10/83
7/31/84
11/30/84
1/15/85
3/21/85

This is a rough-cut of the Apple II Human Interface Guidelines that will be
officially released later this year. Because of the time importance of this
information and because the standards themselves are now quite stable,
we have made this pre-release available to you.

These guidelines describe the most basic common features of an Apple II
application. InclUded are two different metaphors: the Macintosh-inspired
desktop, conforming to the Macintosh guidelines and including support for
the user with no mouse, and the Filecard metaphor, popularized in the first
AppleWorks, offering an easy upgrade path for existing, menu-based
app I icat ions.

2 Human Interface Guidelines

TABLE OF CONTENTS

6 Introduction

7 Part I: Introduction to Human Interface Design
7 Goals
7 The Underlying Concepts
7 Familiarity
7 Intuition
9 Gathering Information
10 Incubation
11 Judgement
12 Intuition and the Programmer
12 Intuition and the User
13 Aiding Memorability
14 Increasing Receptivity
15 Putting the Concepts to Work
15 The Metaphor
17 The smooth, sleek model
18 Ease-of-learning and Ease-of-use
19" Leveraged Learning
19 Staged Learning
19 Novice/Expert modes
20 Simplicity
21 Consistency
22 Speed
24 A Planning and Testing Methodology
24 Planning and the User Profile
25 Professional Tax Planner User Profile Study
26 Personal Tax Planner User Profile Study
27 Specifying the Human Interface
27 Exploring the marketplace
27 Ferreting out standards and guidelines
27 Selecting or designing a metaphor
27 Writing the External Requirements Specification
29 Estimating the schedule
29 Testing
30 Apple Presents ••• Apple: a testing test case
32 High-budget testing

32a Part II: The Apple II Generic Human Interface
33 The Hardware
34 The Keyboard
34 Character Keys
35 Modifier Keys
36 Typeahead and Auto-Repeat
36 Versions of the Keyboard
37 Reserved Key Combinations
38 Keys to Ease Foreign Translation
39 The Mouse

TABLE OF CONTENTS 3

39 Generic Software Standards
39 Input
40 Standard Keys
40 The Overstrike (Alternate) Cursor
41 Using the Standard Input
42 Additional Input Specifications
44a Alerts (Error Messages)
44b Error-Trapping

44d Part III: The Filecard Menu Int~rface

44d Introduction
45 Menus
49 The Filecard Metaphor Without Filecards
50 Using the Menu Help Facility
51 Menus: Numbers vs. Letters
52 How to Write a Menu Entry
52 Choosing an Option
53 How to Ask Confirmation Questions Safely
54 Marking Groups of Selections
54 "Press Return to Continue"
55 Arrays and the Filecard Metaphor
56 Alerts
57 Help
58 Vocabulary

58 Part IV: The Desktop Interface
58 About These Guidelines
59 Introduction
60 Avoiding Modes
61 Types of Applications
63 Using Graphics
65 Icons
65 Palettes
65 Components of the Desktop System
66 The Keyboard Mouse
67 The Mouse
68 Mouse Actions
69 Multiple-Clicking
69 Changing Pointer Shapes
70 Selecting
71 Selection by Clicking
71 Range Selection
72 Extending a Selection
72 Making a Discontinuous Selection
74 Selecting With the Cursor Keys
74 Selecting Text
75 Insertion Point
75 Selecting Words
76 Selecting a Range of Text
77 Graphics Selections
77 Selections in Arrays
79 Windows
79 Multiple Windows
80 Opening and Closing Windows

4 Human Interface Guidelines

81 The Active Window
81 Moving a Window--Mouse and Cursor Keys
82 Changing the Size of a Window--Mouse and Cursor Keys
82 Scroll Bars
84 Cursor-Key Scrolling
84 Automatic Scrolling
85 Splitting a Window
86 Panels
88 Commands
88 The Menu Bar
88 Choosing Menu Commands
88 ••• With A Mouse
89 ••• With the Cursor Keys
91 Reserved Key Combinations
92 Appearance of Menu Commands
92 Command Groups
93 Toggles
93 Special Visual Features
94 Standard Menus
94 The ? or Apple Menu
95 The File Menu
95 New
95 Open
96 Close
96 Save
97 Save As
97 Revert to Saved
97 Page Setup
97 Print
97 Quit
97 Other Commands
98 The Edit Menu
98 The Clipboard
99 Undo
99 Cut
100 Copy
100 Paste
100 Clear
100 Show Clipboard
100 Select All
100 Font-Related Menus
101 Font Menu
101 FontSize Menu
102 Style Menu
102 MouseText
102 Text Editing
103 Inserting Text
103 Delete
103 Forward Delete
103 Replacing Text
104 Intelligent Cut and Paste
105 Editing Fields
106 Dialogs, Alerts, and View Boxes
106 Controls

TABLE OF CONTENTS 5

107 Buttons
107 Check Boxes and Radio Buttons
108 Dials
108 Dialogs
109 Modal Dialog Boxes
110 Modeless Dialog Boxes
III Alerts
112 View Boxes
113 Do's and Don'ts of a Friendly User Interface

Copyright (c) 1984 Apple Computer, Inc. All rights reserved. Distribution
of this draft in limited quantities does not constitute publication.

Part I:

Introduction To

Human Interface Design

6 Human Interface Guidelines

Introduction
Good Human Interfaces: So Often Elusive

The human interface of a program is as vital to its success in he
marketplace as is its accuracy in performing its task. An
well designed, powerful piece of software or hardware is
if it is poorly human engineered. As Dr. Frank Gilbreth, the
time and motion study said: "It is cheaper and more
design machines to fit men rather than to force men to fit

Human interface design should come into play from the very
A good design is no mean task: expect to expend a great
and programming effort toward a smooth interface. most
with a goodhuman .• interface.,.the. t?tal.human
more design time, is more prone to bugs, and
other part. By offering you this book, along with the
interface tools available from Apple Computer, Inc., we
reduce your share of the human interface effort, leaving
to devote to the power areas of your program.

There are two primary functions of a good human
the product easy to learn, and make it easy to
seriously compromising power and performance.
toward making the kind of hard decisions that
successful, marketable product.

When the Apple II computer first came on the
developers experimented with a wide variety of
were good; some were bad. All were somewhat hard
were unique. As time went on, though, the natural
keyboards, displays, and the computer itself led to
similarity of approach to certain basic problems of

These guidelines represent a careful blending
of the develoment community and the knowledge
research and development project that resulted
computer.

Our systems and peripherals now come with training
that prepare your customers to use programs
guidelines: Use this book and our tools, and your cus
comfortable the first time they see your program at their
they are still making their buying decision.

7

Elements of Style: Designing an Interface that Works!

Goals

There are five goals to a program design:

1. Ease-of-Learning. 2. Ease-of-Use. 3. Satisfaction of human needs
4. Saleability 5. Power and expandability

Most of the science of human interface deals with increasing
ease-of-Iearning and ease-of-use without seriously affecting power and
expandability. Most of the art aims toward satisfying humans' need to
feel warm, comfortable, and protected. All these, plus spark and
flair, add up to products that sell and can be sold. We. assume your
competence as a designer or programmer in creating power and
expandability in your program; the rest of this book will address how
to fulfill the first four goals.

The Underlying Concepts

It is one thing to have the above goals in mind; it is another to be
able to actively and effectively address them. The following basic
concepts form an structure on which you can base both large-scale and
day-to-day design decisions.

1. Familiarity

Familiarity is the single greatest factor in reducing the learning
burden without affecting power and expandability. People feel
comfortable with things they already know. You promote familiarity by
using guidelines such as this, by conforming the flow of your product
as closely as practical to the way your users did things before they
"computerized," and by choosing familiar metaphors, such as desktops
and file-folders, around which to build your programs.

2. Intuition

A few years ago, an engineer at Apple described the ideal interface as
being "familiar and intuitive". During the preparation of this book,
we asked the same engineer again, and he stated that while it was
important for an interface to be familiar, it was no longer necessary
for it to be intuitive. It turned out there was a good reason for
this: computer scientists don't know what "intuitive" means, so we
don't know how to deal with it.

Intuition is real, it has been researched, it has been defined. It is
a powerful mental capability of both the designer and the user, and as
such deserves practical understanding.

The Nature of Intuition

Stated perhaps over-simply, intuition is the ability to discern

8 Human Interface Guidelines

patterns among often seemingly unrelated information. Jung classified
intuition as a perception skill, alongside the taking in of external
sensory information. He classified logical thinking as a judgement
skill, alongside feeling. (He used feeling more in the sense of
ethical consideration than emotional response.)

PerceR1 ion

Sensing

JUdgment

Thinking

Intuition

Feeling

SimRlified Jungian Personality Classification

In the Jungian world, logic and intuition operate at right-angles to
each other. In practice (as described below), they operate
sequentially: intuition, then logic. Seemingly, there should be
little conflict between them, but there is evidence of unending
conflict. .

A prevelent theory states that logic resides primarily in the left lobe
of the brain, the unquestioned location of the speech center, and that
intuition resides primarily in the right lobe. It is also known that
the lobes of the brain are connected in a criss-cross fashion to the
body: the left lobe controls the right side, the right lobe controls
the left side. Therefore, the right-hand side of the body is connected
to the seat of logic, the left hand, to the seat of intuition.

Western society has a traditional culteral bias against the body's left
side, left hand, and therefore right lobe of the brain. French for
left is gauche, defined as lacking social grace, awkward. Latin for
left is sinister. Right is held as truth, justice, morality. For
centuries, left-handed people--who often test higher in intuition than
right-handed people--have been discriminated against.

People with life-threatening epilepsy sometimes undergo an operation to
cut the connecting links (called the corpus calloseum) between the
right and left lobes of the brain. After the first such operations,
scientists were puzzled by the apparent lack of side-effects. However,
further examination began to reveal fascinating new insights into the
relationship of the sides of the brain.

The first, simple test consisted in effect of blindfolding a subject.
They then placed a three-dimentional number 5 in his right hand and
asked that he hold up the number of fingers equal to it. He held ~p 5
fingers. When asked to verbalize the number, he spoke the word,
"five". But when the test was repeated with the number 3 in the left
hand, although he quickly held up three fingers, he was unable to speak
the word, 'Ithree ". This was due to the speach center being located on
the opposite side of the brain. With the connecting links severed,
that lobe had no way of knowing what the left hand held.

The psychologists next tried to find the seats of logic and intuition,
by offering puzzles to each hand, puzzles that were oriented toward
either logical or intuitive solutions. The right hand showed great
skill with logic puzzles, less with intuitive. But the most
interesting thing happened during the left hand's effort to assemble a
logic puzzle. The left hand, although taking several times as long as

9

the right hand, was nevertheless growing close to a solution when the
right hand unexpectedly came over and, rather than helping out,
scattered the pieces of the puzzle allover the table. This agressive
act was witnessed repeatedly with other split-brain patients.

There was a war for supremacy going on in these people's heads, a war
that seemed to reach a truce several months after the operation, with
the left, logic-oriented lobe achieving dominance. When one couples
this strange phenomenon with the empiricle evidence of Western
society's bias against left-handedness, one begins to understand why we
know so little about this profoundly powerful skill--our logical,
concious mind doesn't want to know.

So what is intuition, what is it good for, and how do we use it?
Intuition deals with patterns: pictures, chains of events, clustering
of seemingly irrelevant information. Intuition is a non-verbal skill,
and words cannot effectively describe it. We have to get to it through
metaphor, example, and shared experience.

Intuition operates in leaps: it churns away with no concious thought
and little concious control and then suddenly springs forth with what
is often described as an "Aha!" experience. An example of this takes
place when you learn a new board game: you keep hearing and attempting
to memorize the rules of the game and suggested strategies, but it is
all very compartmentalized and difficult to keep ahold of. Then, all
at once, you "get it": the.entire underlying strategy and purpose of
the game is instantly and permanently obvious.

Those of you who are programmers have undoubtedly experienced working
until 2: 00 in the morning em a seemingly insoluable bug problem,
finally giving up, and going home to sleep.' Then, at 6:30 AM, you wake
up knowing exactly what is wrong and kick yourself for not realizing it
earlier--after all, it is perfectly obvious. .

Reaching a useful conclusion through intuition is a three-stage
process:

1. Gathering information 2. Allowing time for "incubation" 3.
Judging the results

We recognize two kinds of intuition. The first is "women's intuition,"
a remarkable ability to understand human relationships and
interactions. Men also use intuition, but they call it "hunches".
While these two kinds of intuition are different, they arn't as
gender-specific as our culture has declared them; in Eastern culture
both men and women develop powerful abilities to "look through" people.

1. Gathering information. This data may be new sensory information,
coupled with old memories. Because intuition works on drawing together
what is often logically unrelatable data, you should make a concious
effort to be non-judgemental during this stage. Take in everything.

Intuition is an ancient skill, both in evolution and personal
development. Dogs are no intellectual giants when compared to man, but

10 Human Interface Guidelines

they are supremely adept at detecting and reflecting the mood of their
masters from very subtle hints, often more so than the many
psychiatrists and psychologists who have abandoned intuition in favor
of pure intellect. Children are also highly intuitive, often
reflecting the state of their parents' relationship that the parents
are unaware of. As we grow older, we develop logic and slowly push'
intuition away as an· inferior, "childish" skill.

Most of the great scientists and inventors either failed to grow up
"properly" and loose this childhood skill or re-Iearned how to be a kid
again. Intuition works best when you gather information with
child-like wonder and rapt attention. Archimedes had given up on his
logical pursuit of how to measure the purity of the gold in the king's
crown without melting it down. Then, one day, he stepped into his
over-filled bathtub, absorbed the fact that he was splashing.water out,
and realised he was displacing exactly as much water as his own volume.
Coupled with prior knowledge of the relationship between volume and
weight, he had his solution.

As soon as you begin to pre-judge the data streaming in, things begin
to get lost. Eric Berne, the noted psychiatrist, carried out an
experimentation in intuition on 40,000 soldiers being separated from
the Army. He attempted to guess their pre-army careers based on gazing
at them with rapt attention for approximately 10 seconds. His success
rate was quite high--in the.case of soldiers who had previously been
farmers, he was able to guess their prior occupation 74% of the time.
He then analyzed logically what he was doing to come up with these
conclusions, studying facial muscle configuration, body position, eye
movement. When he could analyze no more,heapplied these rules to
additional soldiers, while blocking the child-like attention that he
had used before. His success rate immediately fell by half.

The conclusion? For intuition to have the kind and quantity of
disparate information it needs to function properly, you must turn off
your concious, logical mind's attempt to filter and pre-judge
everything coming in. Relearn the art of being a child, of offering
childlike, rapt attention to people and to problems.

2. Incubation--t~at time between 2 and 6:30AM when you thought you
were just sleeping, but you were also casting about for a pattern that
would solve your bug problem. Incubation can take anywhere from
seconds to days. It stubbornly resists rushing, very much the way
memory will perversly hold back someone's name if you really need it.
Incubation time can be shortened through relaxation,practice, and
encouragement.

It is likely you could have worked on your bug until noon the next day
with no results. The intuitive leap came after you finally relaxed
your concious mind enough for intuition to be able to function. For
most of us, intuition is a rusty, repressed skill. As you begin to
listen to your intuition, the number of intuitive leaps will increase
and the time for incubation will decrease.

The discouraging thing about intuitive leaps is their resulting

11

obviousness. It is childishly obvious, for example, that what goes up
must come down (unless it happens to be exceeding 18,000 MPH at the
time). But when Newton intuited the law of gravity, it was a real
breakthrough. When you do finally find that software bug, the tendency
is to berate yourself for not seeing it earlier. Intuition will be
strengthened and incubation time reduced if you instead congratulate
yourself for being clever enough to find it at all.

3. Judgement

Intuition usually delivers its results to the concious mind in a
convoluted, metaphoric fashion. It is very easy to ignore or misread
the results. Several years ago, a data-base program was under
developement for a computer with large mass-storage. No effort was
spared in making every section of the program as "friendly" as
possible. When a particular task proved somewhat difficult to learn or
use, the task was reduced by picking up bits and pieces of it within
other tasks. The program slowly drifted toward being consistently
somewhat difficult to learn and use.

A consultant was brought in to "simplify the interface, 11 a task he
found difficult: the original designers had done a really good job in
making each section as simple as possible. It seemed simply to be a
super-powerful program that had to be difficult to use because of its
expanded capabilities and features. He struggled with the program for
several days to no avail.

During the last four of those days, he kept remembering an
administrative assistant he had once worked with. The administrative
assistant used to tell all who would listen that he, the. administrative
as sistant, had toclo' all the work around there, that he held the office.
together. The consultant kept pushing this memory away, but it kept
coming back. One evening, he decided to listen to it, and he began to
realize that he had seen such a person in almost every office he had
ever spent time in.

Then he remembered the tiny detail that had been trying to push its way
into his conciousness for days, the detail that led to the re-design
and ultimate success of the product: whenever the administrative
assistant complained about his. terrible.responsibility and crushing
work-load, he always wore a smile. In fact, this administrative
assistant, like so many others, are quite proud of the difficult job
they do; they tend to brag a.bout it in a negative way because they
receive so little appreciation from those around them, and, of course,
it is not polite to brag.

No one had never considered who their audience was beyond their being
"office workers," so the consultant sat down and did a user-profile
study (see: Planning) of what kinds of people would be users of the
system. He discovered three groups of people, the last one being that
administrative assistant his intuition was trying to remind him of:

1. The data-entry persons. These folk would be proficient typists who
initially would be expected to enter a great deal of pre-existing

12 Human Interface Guidelines

information. They might be temporary helpt or they might be people
who normally performed a different job. Their needs were for an
quick to learnt easy to use interface. .

2. The decision-makers. These people would be expected to draw
information from the system t both ~y calling up data on the display
and generating reports. They could be expected to be habitual
users of the system: they could handle a long but gentle
learning-curve that would give them progressively more power.

3. The Key Operator. These people are the ones who t in real life t
read the manuals. They can be expected to spend some time with the
system initially and can be expected to learn how to perform the
more technical operation and maintenance tasks of the system.

Once the users of the system were identified t once their individual needs
were identified t the designers were able to "unbalance" their equally
difficult interface t so that each user had a level of difficulty consistent
with their abilities and the amount of time they could spend learning the
system.

A smiling t complaining administrative assistant is a rather obscure hint
to a program design problem t but it is typical of the way the intuitive
mind communicates its results. Keep in mind that the poor t "primitive"
intuition is quite incapable of speech and logic. On the other hand t it
knew the answer to the problem four days before the logical mind. The
finest intuitive leaps are utterly useless if you fail to listen: learn
to relax when things look the darkest; you may already know the answer.

The Jungian judgement skills are Logic and. Feeling. Of the eight Jungian
classifiers (of which four have been presented here), only one has shown
any gender bias: approximately 60% of men depend primarily on logical
conclusions t while 60% of women depend primarily on ethical
considerations. (This explains a lot of insoluable domestic arguments.)
So-called "women's intuition" is intuition with Feeling judgement, while
traditional men's hunches are intuition with Logic judgement.

Intuition and the Programmer

Programmers and designers can make use of intuition on design and debugging
problems (linked with Logic) and during user-testing (linked with Feeling).
Programmers in a recent test were found to depend on Intuition as the
primary perception skill twice as much as the general population. By
following the above stepst you can increase the power and effectiveness of
your own skill.

In the section on Testing, we will discuss how intuition can be used to
detect problem areas of programs during user-testing, with a method far less
expensive and more effective than computer-analysis of elaborate
questionaires.

Intuition and the User

13

Now that we've laid the foundation for an understanding of intuition, we can
explore the "intuitive interface". 75% of your users depend primarily on
sensory perception. They are the ones who are most helped out by
familiarity and a what-you-see-is-what-you-get approach. The 25% of the
population that depends on intuition are looking for simple, distinct
patterns.

The intuitive interface is restrained, consistent, simple, and
predictable. Techniques that work in one place work in all places. The
intuitive user attemts to internalize a rational model of the program.
Once this is done, he or she will use that model to predict the behavior
of areas of the program not yet explored. Any inconsistencies discovered
require the user to either expand the model or abandon it altogether.
People who depend almost entirely on intuition (a small but significant
proportion of the population), when faced with an erratic program, either
must memorize each area or abandon the program. .

How do you write for these people? Spend time on your conceptual model (see
below) and stick to it: if you must redesign a section of your interface, go
back and reconsider the impact of that change on every other part of the
program. Build designs that will allow future expansion without turning the
original, simple model upside down. We have all been exposed to language
and operating systems that started out simple and have now ended up with
such a topsy-turvy mapping that they seem more like an Adventure game than a
serious environment.

Use conceptual .models that heighten intuitive grasp. Such a model is the
Macintosh windowing illusion, now available for the Apple II family.
Beyond the leverage of familiarity this interface offers you, it is highly
consistent and therefore intuitive. Modes (where necessary)a.re distinct, .
and the resulting behavior changes are predictab.le. It is also expandable
in such a way that the original fabric is not torn apart: an entirely new
power, such as a spelling-checker, can be added to a word-processor simply
by adding an item on a pull-down menu. While you, as a progratnmer,. ma), go
completely nuts attempting to integrate it into the old code (some things
haven't changed), your user will have no problem adding the new power.to his
or her old model.

Aiding Memorability

Our market research has consistently shown that people taper off their
software buying. One of the chief reasons for this is that people tire of
having to learn new software; often their last piece of software was so
difficult for them to learn and memorize that they lost interest.

Programmers often have a superior ability to remember abstractions, such as
numbers, and disconnected details, such as lists of keywords. If you have a
superior memory, you should be particularly sensitive to the needs of more
average people.

The greatest aid to memorization is familiarity: if the person already knows
how something functions, they don't have to memorize anything. By using a
standard human interface, you save your·userfrom having to remember

14 Human Interface Guidelines

anything about your interface--he or 'she learned
second greatest help is a good conceptual model.
easier it is to grasp and remember.

to use it already. The
The simpler the model, the

Current theory of memorization holds that people remember not the event but
a simplified set of r~les which allow the event to be reconstructed. One of
the aids to this process is tying elements to people or events that have
already been learned. This phenomenon can be seen with crime witnesses, all
of whom have different recollections of the same crime. One witness will
remember that the criminal had a bald head, "just like my Uncle Harry".
A teenager may not have remembered anything about the criminal, except he
was old, but will be prepared to discuss in detail the carburator on the
criminal's 1957 Ford.

While details of such reconstructions will be selective and sometimes
conflicting, the primary event will usually be uniform: the man came into
the bank, he robbed it, he left. By making building your program on one
simple conceptual model, generatable by a few powerful rules and
concepts, your user can form his or her own internal model and memorize
the few details necessary to reconstruct it.

Increasing Receptivity

The most easy-to-learn program in the world will not be learned if your user
resists it. You want your program to be sellable and useable, so your
program and documentation must be able to overcome fear and anxiety,
boredom, and frustration. It must be capable of creating trust and
confidence in the user.

You must remember that you are dealing with a human being and tailor your
interface to deal gently with the kind of fears and anxieties that the
very existence of your program may provoke. If you are designing a
data-base program for small businesses, for. example, you must consider and
plaI'ffor the fact that the employees may fear that the computer is there
toelimiriate their Job. With any program you ever expect to sell in a
retail store, you must be sensitive to the salesman's fear you will
embarrass him or her, and the customer's preconception that this program
is going to be far too difficult to learn. You overcome these kinds of
fears by making programs familiar, intuitive, and memorable, and by being
sensitive to the psychological needs of people.

In addition to fear and anxiety, people who use your program constantly can
begin to suffer from boredom, .. thereby lowering productivity. There are a
number of ways to reduce boredom, segmenting tasks, rewarding achievement
with positive feedback. We will not go into any exhaustive list here
(least you become bored); just keep boredom in mind when doing testing. If
you notice production drop with time instead of rise, you probably need to
explore ways to brighten people up.

Frustration means something has seriously failed in the human interface.
It usually occurs because of a lack of user-testing (see: Testing). When
you get alerts (error messages) that tell you what is wrong, but offer no
hint of what you should do to correct it, that's frustration. When you

15

get to a part of a tutorial that tells you to just press Open-Apple-P to
print out your document t but fails to mention that you should have already
spent two hours configuring the ports t that's frustration. It happens
because the designer t programmer t and documentor have become so familiar
with the programmer that they have forgotten their own learning problems.
It is always overcomable with user-testing.

Trust is a most fragile commodity. For a user to trust your program t you
must be consistent and absolutely honest. The program with the right answer
99 times out of 100 is useless. The program which uses Open-Apple-E for
Edit under all circumstances except that one undocumented one where it
stands for Eradicate All Files will never be trusted again. If you say a
document has been loaded, then the document should have been loaded. Your
user will find you less than honest if he or she then removes the disk t only
to be told that your program can't seem to find the document. You should
try to make your program as safe an environment as possible (without
frustrating the constant user)t and you should partition off and clearly
mark those operations that are of danger.

Next to a competent design t the most important attribute a program can
display is a caring t polite t respectful attitude. The Apple II computer
has a definite personalitYt as embodied in the tutorial disks and manuals
supplied with the computer. Use these materials until you have grasped
(intuitively) their flavor t and follow their lead. It is what your user
feels comfortable with.

If you t in your personal and professional life t do not have. to skills to
be caring t polite t and respectful with people around you--and many great
programmers do not""-youprQbably should not be designing human interfaces.
Team up with someone who is a good communicator and spend your time with
the nuts-and-bolts issues. on which you excel.

Putting the Concepts to Work

The last section covered theoretical aspects of some important underlying
concepts. This section applies those concepts to cover practical design
issues t such as selection of a metaphor (conceptual model), lowering the
learning curvet and increasing productivity and salability.

The Metaphor

The human interface is an illusion: the pattern of light and darkness that
your user perceives as "real" on the display is a careful contrivance of you t
its creator. The quality of the human interface can often be measured by
nothing more than the effectiveness of the chosen illusion.

Visicalc (TM) was the first serious microcomputer program that depended on
a metaphorical illusion. The user was operating on a giant t classical
business spreadsheet t seen through the limiting viewport of the monitor. The
user could move the viewport around to see parts of the spreadsheet that were
currently hidden. This illusion was particularly effective: it was familiar

16 Human Interface Guidelines

to business users who had learned the paper version, it was perceivable by
those who were sensory-oriented, and it was a simple model for the intuitive
to grasp.

These guidelines are presenting specifications for two metaphors: the
Macintosh windowing "desktop", and the AppleWorks hierchical "filecard"
system.

Windowing software makes use of a more powerful, business-oriented
metaphor: the desktop. The Apple II desktop metaphor offers the
familiarity and perceptability of Visicalc (TM), but goes one step
further in reducing the memory burden with pull-down menus instead of
keywords. As more and more developers begin to publish software based
on it, it will become the metaphor of choice for productivity tools.

The AppleWorks filecard system is a visually-perceptible version of a
standard heirarchical menu structure. Tree-structured programs have
historically depended on the user-'s forming an internal "map" of the
program. Because of programmers' disproportionate ability to intuit such
maps, we had no problem mapping things out, and considered those who
did to be just a little slow. The fact is that three-quarters of the
general population puts little faith in their intuitive abilities; they
require direct, visual evidence of their location in a program. The
visual presence of the filecards and the feeling of movement among them
provide the external sense of program structure these people need.

Adults feel more comfortable with metaphors that do not require the
user to travel around the program. The windowing metaphor, which
brings program elements to the user, provides a much more secure,
comfortable The windowing metaphor, which brings program elements to
the user, provides a much more secure, comfortable environment than the
filecard system. Our reason for supporting the filecard system is a
purely practical one: many developers have existing software either on
the Apple II or a competing system. It is an easy task to convert
existing hierarchical software to the filecard system. The windowing
metaphor generally requires an entirely fresh approach to problems and is
better reserved for new projects.

Software for entertainment,education, home control, and other
non-personal-productivity types of applications will often be more
effective with another type of metaphor. Your creative skill in
choosing appropriate metaphors will often dictate the success or
failure of the entire project. Look for metaphors with real-life
counterparts that are already familiar to your target audience. Once
selected, carryover not only its static form, but its dynamic
behavior.

Consider a home-control system. The obvious metaphor is the home. The
user locates various lights and appliances on a top-view diagram of a
home, then assigns on and off times to them, as desired. Now consider
the most successful selling feature of a home control system: security.
By turning lights on and off in some sort of sequence, you are supposed
to create a "lived-in" look when you are away.

17

Typically, people try to program such a lived-in look by having the
system turn lights on and off at random intervals. Anyone can spend
$50 to $100 on timers and duplicate random o~/off timing; the real
advantage to central control is the ability to simulate an awake,
active person traveling from room to room. To effectively program this
kind of static system, the user must first visualize a person moving
from room to room, turning lights on and off as they go. Then, to make
the computer actually simulate the result, they must painstakingly
program in each and every on and off time.

Consider a more dynamic metaphor which has a little person living in
the house, one who comes out when you leave home. You instruct the
computer not what lights and appliances to turn on, but which ones you
want left unaffected. You would also explain the general properties of
each device: radios you play for hours, but never when the TV is on,
and so forth. Then, when you leave home, the little person might
wander from the kitchen where he ran the blender for a few seconds,
turning out the lights as he went, into the living room, where he dims
the lights and watches TV for five or ten minutes. Tiring of that, he
might wander down the hall and into the master bedroom, dousing the
lights after a few minutes and listening to some quiet music on the
stereo. Every so often, of course, he would rise and go into the
bathroom. Suffering from compulsive eating, he would also retrace his
steps periodically and drop by the kitchen.

This dynamic home metaphor, then, provides a way that the average user
can easily simulate an actively lived-in look that cannot be achieved by
simple timers. The results will appear more "real" to the potential
intruder than any amount of programming done with the static metaphor,
because you will have far more dynamic randomness, and yet it will be
t~mpered by the laws of nature and rules of human behavior patterns.

Metaphors are a product of perception, not judgement. We cannot set
down a series of logic rules that will enable you to generate sound,
creative ones. A good metaphor is a product of awareness and
imagination. When you are beginning a project, spend time not only
with the particular hardware, but with the people who will use it, in
the environment where it will be located. Only then can you begin to
coalesce all you see around you into a intuited pattern that will form
an effective conceptual model.

The smooth, sleek model

Whatever metaphor you end up with, remember that it must be recognized,
understood, and remembered. Programs that are evolved rather than
designed with broad strokes at the beginning tend to end up with a myriad
of cul-de-sacs and alleys, all places where the user can get lost. Spend
the time in front in selecting or creating a model that can grow later
on. Again, we urge that you use one of out two models specified in these
guidelines unless there are compelling reasons not to: they have been
designed to allow free expansion without major overhauls.

Whatever model you adopt, should you need to add features along the

18 Human Interface Guidelines

way, you should step back and review the kind of impact it will have on
the rest of the program. Will the user suddenly .be confronted with an
entirely different way to do a similar thing? Will every part of the
program be menu-driven except this feature, where documentation wants
you to use an undocumented command word because then they don't have to
re-do the manual? Does someone else want to put a new feature in an
inappropriate part of the program because they don't have to do as much
re-coding that way?

It is a difficult but creative task to come up with a good, sleek,
effective metaphor; it is a difficult and thankless task to try to defend
it against creeping disarray. Spend the time in front making a structure
that can be added to. Educate your writers in the political art of
never giving a straight answer: a lead-in to a picture of the main menu
should read, "it will look something like this ••• ". Then, be prepared to
be honest about the difficulty of changing a design for one of
marketing's last-minute whims. And when something must be changed,
review itG effects on everything else.

Ease-Of-Learning and Ease-Of-Use

Often there is a trade-off between ease-of-Iearning and ease-of-use.
Carefully balance your decisions: if the program is too difficult to
learn, salesmen will not learn it and, thus, not sell it. If endless
instructions and voluminous menus make it slow and cumbersome to use,
people will get frustrated.and tell their friends not to buy it.

There are several techniques and attributes that help keep the learning
curve low and ease-of-usehigh, without seriously affecting power and
performance:

Leveraged Learning

Make use of that which is already familiar to the user: when you design
a program for an Apple computer, use the computer, tun through the supplied
tutorials, tryout the most popular software. Then build an interface that
is consistent with the personality of the machine. The single largest advantage
of using either our filecard or windowing metaphor is that our users are
already familiar with them: you can carry the user to a much higher level
of sophistication with the subject matter of your program .because your training
material does not have to assume that the user doesn't know what the
Open-Apple key does. Attempt to impose some foreign kind of implementation,
such as function keys (Escape 1-9 or some other aberrant scheme) and you will
spend most of your tutorial time trying to get people to learn everything they
ever knew about their friendly little computer.

Make the flow of the subject matter follow the flow of the same operation
when it was done manually. The spreadsheet was such an instantly
successful metaphor because it simulated a system familiar to its target
audience. It went beyond the manual system, in exhibiting continuously
updated results, and so forth, but it made no effort to clash with the old
knowledge of those who were expected to use it. In fact, it made every

19

effort to be as comfortable as possible. (Armed with hindsight, one can
argue that the target audience went far beyond the halls of the business
schools, and that spreadsheets are not familiar to the typical user of
these programs. But this unexpected success should not detract from the
fact that the program conformed to the old knowledge and expectations of
its original target audience.)

Staged Learning

People can and do master some remarkably complex computer programs, such as
AppleWorks (TM) and Apple Writer (TM). Other, far less powerful programs leave
people so bewildered they often abandon even trying to learn them. With
AppleWorks and Apple Writer, you learn a little bit and can then begin to do
useful work; with these other programs, you must first learn virtually
everything before you can do anything at all.

Design your programs and manuals so that a person can learn to do
something useful within 30 minutes or less. Stage your learning out so
that one can pick up tricks and shortcuts along the way, but needn't
stumble over them at the beginning. Remember that you want a salesperson
in a computer store to learn enough to be able to demo your program: with
the thousands of programs on the market, he or she doesn't have more than
half an hour to pick it up. And people won't demo something that is going
to make them look like a fool.

It is all right to be redundant: in a word-processor, have a menu
selection whtch turns on bold-facing, but also allow the experienced
touch-typist to press CONTROL-B and get the same effect. In our
blinking-bar input routine, the user quickly sees he can forward-delete by
moving forward and then pressing Delete, but we have Control-F there for
when he or she is ready to learn the "magic" forwa.rd-delete shortcut.

By sticking to your own and Apple's guidelines, by letting beginners do
the most important things in the simplest, if not most efficient, way at
the beginning,.by considering the plight of the salesman who will promote
this product for you, you are going to significantly increase the
learnability and sUCcess of your product.

Novice/Expert modes

The first time you use a program you have quite different needs from the
tenth time you use it: In the beginning, you need as much information
presented as possible so that you can use the program wi th a minimum of
learning. Later on, with a program you use habitually, you want speed and
simplicity. You want only information pertinent to the specific task you
are carrying out, not a lot of instructions on how to delete an incorrect
response.

Most large programs now have some sort of utility/configuration section.
The configuration sections often enable the user to select date and time
formats, color vs. B&W, and select whether or not to have sound. In that
section, you can also enable ,the user to select a skill level. The rest
of the program can then use the resulting flag, when set to expert, to
simplify verbiage and perhaps enable more flexible branching within the

20 Human Interface Guidelines

program -- branching that would serve to get the novice into trouble but
gives the expert the added flexibility she needs.

The skill level selection could be more sophisticated, perhaps with more
than two levels, perhaps based on the type of ~ser. For example, the same
tax planner program might better bridge the gap between accountant and
Apple owner if the accountant could select, "Expert at taxes, Novice at
Apple" and the Apple owner could select "Novice at taxes, Expert at
Apple". The possible combinations and permutations are truly boggling.

Simplicity

The contemporary microcomputer user still may have no previous experience
with a program. Therefore, you must dedicate a significant fraction of
the programming effort to the creation of an intuitively nat~ral human
interface. The program must, in the simplest way possible, anticipate the
user's questions and needs and be prepared to answer and fill them the
moment they arise. Once the user has become basically familiar with the
human interface, if she guesses at an unknown response, she should be
correct 95% of the time.

* Keep the external appearance of the program is as simple as possible.
The user should not get lost within a maze of branches. (You may safely
assume that the first-time user has not read the manual.)

* Keep the number of screens and menus to a m~n~mum. One of each is best,
a·s in the Apple II windowing software. The user cannot "get lost" because
there is only one place.

* If you choose to make the user move, make that movement easy and fluid.
Mairttairt a structure simple enough to allow the user to move from place to
place without becoming confused.

* Keep displays clean and simple. People need redundancy and
reinforcement, so don't creat.e d.isplays so starkly bare that people
question their own understanding of what is going on. But do strive to
make everything count: layout and graphic design should be tied into and
supportive of the task being accomplished. Pose questions that are clear
and free of ambiguity.

* Provide the user with the tools necessary to work with the program. For
example, irt a persortal finance program, an input requesting annual rent
should allow an answer such as 435.00 * 12 or 435.00 X 12, and not expect
the user to work out the answer in his or her head. (Alternatively, you can
provide a "desk accessory" calculator.) If a file name must be selected
from the disk, display the valid names.

* Match the program to the skill level of the user. If you are doing a
pricing program for a shopkeeper, do not ask her what her historic
elasticity of demand has been without letting her know what it is and
giving her the tools to estimate it. (Also, the question may be
unnecessary: the fact that you asked it in a similar program you wrote
for a Fortune 500 company is no reason to ask it of a shopkeeper.)

21

* Lower memorization: Programs that are not used literally every single
day will be forgotten: users will not rememqer command words, the names
of their files, nor the fact that you are accepting data not with RETURN,
but with CTRL-V (Violet was the name of your very first computer science
teacher.) Computers are notoriously good at remembering the above type of
information. Share it with your users: make sure the information needed
is available where and when needed.

The flaw in the original Visicalc design was its dependence on the user
recalling all the command mnemonics. Occasional users essentially had to
re-Iearn the program every time they used it. While they had achieved
high productivity and excellent ease-of-use, they were not careful to
maintain ease-of-Iearning. Be aware that the average programmer and
designer have above-average memories. Also, people engaged in the
developement of a program spend an inordinate amount of time with it.
You should continually find novice user for your program so you can track
any increase in memorization burden, and you should have "occasional" users,
so you can see if your structure and flow is visible enough that such
users need not relearn.

* Honesty: Do not lie to your users. Do not say, "File loaded" when the
file is not loaded, the name of the file has simply been selected.

Consistency

All programs written for a given computer should have as great a.
commonality as is practical. The purpose of these guidelines and
standards is to achieve a level of consistency across all products
designed to run on the Apple, a level that will make learning your product
easy, while not stifling your ability to create the specific human
interface best suited to your particular application.

All programs produced by a given software house should perform the same
function in the same way. The same key sequence must not do the opposite
thing in different products (Open-Apple-E = edit, Open-Apple-E
= eradicate). Many software houses have their own guidelines, guidelines
from which we drew in preparing this document. These individual
guidelines tend to outline in far greater detail the program. "personality"
that the software house wants to project. If you have not yet put
together such a document,. may we suggest you do so. It·is avery
effective way to eliminate those interface battles that tend to occur
about three days before release to production -- or threeday~ after.

All software should be self-consistent: menu formats should be identical.
If Control-F is enabled to forward-delete characters in one part of the
program, it should forward-delete characters in all parts of the program.
If you are working on a large project, be sure to spend enough time in
team meetings being sure that everyone is on the same track -- all too
often the three or four sections of a program end up with an entirely
different "feel". At the same time, avoid rigidity: human interfaces
must be tested on real people. The agreed-upon interface at the beginning
will undoubtedly need changing, once you try it out on real people.

22 Human Interface Guidelines

Speed

The user should be able to perform the desired task in as little
time as possible, with the minimum complexity. Even such an obvious maxim
as this becomes compliaated: there are two very different kinds of time.

Objective time is the actual time it takes to accomplish an activity.
Subjective time is the user's internal sense of that time. Basically, the
more intellectual involvement, the less bored the user and the faster time
seems to pass.

Several years ago, a skyscraper in Manhattan was built with too few
elevators for all the people who worked in it. People complained bitterly
about the long lines and long waits, but there seemed no solution.
Consuting engineers found that the elevators could not be sped up, there
was no way to push through a new shaft, there was no way to increase
capacity. Finally, a designer was brought in, who looked over the
problem, measured the wall spaces around the elevators, and showed up a
few days later with huge floor-to-ceiling mirrors. The problem was
solved! Instead of reducing objective time, the designer reduced
subjective time. People still had to wait around, but now they had
something to do--look at themselves and covertly look at each other.

Another example of this difference arose in tests with the mouse.
Subjects were given a test where they repeatedly moved the mouse pointer
to randomly chosen areas of the display. They consistently found that
they could move..the pointer faster with the cursor keys than with the
mouse. H0w'ever, when the videotape with its accompanying time-track was
played back,it showed that the mouse was actually significantly
faster. The difference lay in the far higher level of intellectual
involvement the user had with the cursor keys.

One could conclude that cursor keys are better than mice because the user
feels they are faster, even if they are not. But tests with a "real"
word-processor and a real writing task revealed a countervaling rule: the
higher the level of intellectual involvement the more the user is
distracted from his or her intellectual task. Finding the mouse and moving
it requires the use of only very primitive nervotIs centers. Making
decisions on which of four keys to press and carefully watching for
over-shoot ties down a much more sophisticated areadf the brain that is
thereby distracted from the task at hand. The flow of creativity becomes
punctuated, and this constant distraction can seriously affect the quality
and quantity of the task.

This degradation becomes even more serious as higher and higher levels of
concious thought are required. Editors that allow more rapid movement
through the user estimating the distances and typing in numerical
"repeat-factors" are encouraging users to completely halt their train of
thought while they carry out abstract computations. Systems that use voice,
which requires one of the highest level of intellectual involvement, can
distract people to the extent that they forget the task entirely.

So, in designing software, try to reduce subjectfve time to a minimum, but
be careful that you are not doing it to the detriment of the user's ability

23

to perform the task. To reduce subjective time:

*

*

*

*

*

*

*

*

*

Reduce objective time. Once a program is up and running, identify those
parts that are perceivably slow and then do a design and code review.
Before carrying out any of the following subjective time hints, look
at what you can actually speed up through recoding or simplification.

Speed up those parts of the program that are most obviou~ to the user.
In particular, screen displays should be fast. If you have one letter to
change, don't erase the whole display and write it over again. If you cannot
work out a way to avoid updating the whole display, don't erase the old
one: pad the new one out with blanks. At least the user won't be faced
with the constant flashing.

Break long operations into sections. During a long boot operation,
put up a title page as soon as possible, so the user has something to
do during the remainder of the boot.

React to users' input immediately. A user will interpret any delay of
more than a few tenths of a second after pressing Return or otherwise
accepting to mean that either the program or the user has made an error.
If you need to make a computation, first acknowledge that you have
accepted the input.

In training or educational software, it is doubly important to react
immediately to test. questions. The greatest. retention of knowledge
occurs when response occurs either within one second or not until the
end of the entire test. Apparently, waiting five to ten seconds for
a correct/not correct judgement is so frustrating that people lose
involvement with what is going on.

Carry out housekeeping functions during "dead" time, e.g., between
keystrokes

Tell the user how long you will be away if you are going for a while,
so he or she can spend the waiting time doing something else

Get all information needed before you go away, so the
user needn't sit around to enter information during the process.

Animate the display during long disk or printer operations. The simplest
way is to display a growing line of periods. A better way is to display
information that is more intellectually engaging, such as track and sector
counts. The user needn't understand it or even look at it, but if he or
she is bored, it provides something to do. A countdown clock is also a
nice touch.

Provide a beep when you come back, so the user needn't stare at the display
to avoid loosing time in returning to the task.

We work in an industry where .programmers often spend a significant portion
of their days reading commie books during interminable compilations.
Because we get so used to this kind of enforced bordom, we often visit it

24 Human Interface Guidelines

upon our users. Increase your sensitivity to this important factor.

A Planning and Testing Methodology

Planning and the User Profile

In order to properly address the needs of the users, you must first know who
they are and what their needs are. Software design should begin with a
user-profile study. This study should cover the following three phases:

1. Select the target audience. Begin your human interface design by
identifying your target audience. Are you writing for
businesspeople or children? Will your audience consist of
people relaxing at home· or accountants under severe
time-constraints? Are there several different types of people
who will use your program? If so, you need to identify each.

2. Ascertain the level and limitations of their pre-existing
knowledge. You should have an understanding of how much the
target users know about:

A. using the Apple II computer
B. the general subject matter your program deals with.

3. Identify their needs. Once you have an understanding of the
knowledge and limitations of the users, you can then figure out
what types of information and level of support the the program
will have to supply.

25

The following are mythical examples of two possible user-profiles for a
program which fills the exact same function: a tax planner. Even though the
task performed, the formulas used, the raw data required are identical, the
programs that would result from the two user-profiles might bear little
external resemblance:

Professional Tax Planner User Profile Study

User: CPA or Public Accountant

Anticipated knowledge of Apple computers: none. (The accountant may well
have purchased the system just because of your program.)

Assumed knowledge of subject matter: Expert

Needs:

1. Staged learning curve. Must feel comfortable in a minimum
time. Extended features can be picked up later.

2. Facility. Must be able to create and edit scenarios quickly.
The windowing system should be considered first, as it enables
the most freedom of movement (and looks the flashiest to the
client) •

3. Clear instructions and error messages. User may have never
touched a computer before. Help should be aimed toward
problems in the use of the system, rather than explanations of
the difference between Short- and Long-term capital gains.

4. Professional appearance. Accountants will be using this
package not only to help their clients, but to impress them.
The vocabulary used on the display and in printed reports
should be serious and professional. It may contain accounting
jargon in areas that will not cause confusion to clients. The
accountant must be protected against embarrassing errors (and
alert messages); he may have a client sitting beside him.

5. Supplementary Features: accountants surveyed currently add or
subtract amounts from the "accurate" figures produced by tax
planners. Such items as a rough guesstimate of state tax
liability may need to be figured into reports. Provide this
facility.

6. Accountants are habitual users of adding machines: they may
be expected to do all intermediate calculations on their own
adder. No calculator need be provided.

26 Human Interface Guidelines

Personal Tax Planner User Profile Study

User: John Q. Middle- to Upper-income Public

Anticipated knowledge of Apple computers: owner with some experience.
(Research indicates that tax planning programs do not stimulate
an initial computer purchase: people who already own the computer
are buying the packages.)

Assumed knowledge of subject matter: None

Needs:

1. The prompting and documentation needs to be tutorial: the user
-must be guided into finding the necessary information to enter
into the program, carrying out the kind of expiorations with
the program that will be most beneficial, and then suggest
where the user should go from here.

2. Clear content verification and alert messages. "Unlikely" data
should be confirmed by user. Help should be aimed toward
problems in understanding the subject of taxes.

3. Appearance and use of accounting jargon. Non-professionals
will be using this package. The vocabulary used on the display
and in printed reports should be non-intimidating and not
filled with accounting jargon.

4. User will probably only use the program a few times per year.
There must be a minimum learning curve, even at the expense of
reduced power and facility. A menu-driven format should
be considered.

5. The user has to be asked for a lot of pre-computed figures:
. uSe an expression-evaluator input to allow them to add,
subtract, multiply, and divide during input.

The "research" quoted in the above examples is ficticious -- do not
start writing a tax-planner based on it. (The rest of the examples in
this book are real.)

Carrying out an early investigation such as the ones above requires a
minimum of time and can save you man-months of work later on. The
reports need not be works of art; it is only important that every
member of the design team has a clear picture of who the audience for
this product will be. The user profile should be included in your
Market Requirments Document, along with more prosiac information on
market-shares, product penetration, competitive analysis.

If you have a marketing department, these reports should be their
responsibility. They should carry out surveys, conduct focus groups,
and otherwise collect good, solid information to answer the above
questions. Then and only then will you be in a position to create a
design responsive to the needs of the market.

27

Once the abstract report is done, you can develop a good mental image
of the target audience by creating characters with names, occupations,
family-lives, and dreams who collectively embody the breadth and depth
of the audience. You may "make up" people who don't exist, or you can
build composites out of people you know. This exercise gives people
who have trouble holding on to abstract mental images a concrete,
"living" representation of the users. It ensures that everyone on the
design team is clear about who the users are, what they need, and what
their expectations will be. In short, it gives everyone a stable,
consistent focus. Even if you are a sole designer/programmer, you will
find this to be a useful dicipline in forcing you to think all the way
through the abilities and needs of the user. As the project goes
along, you will replace your imaginary users with real ones, the
subjects of your testing program.

Specifying the Human Interface

Once the target market is defined, you should design an appropriate
human interface. The kind and sequence of steps to be followed are:

1. Identify and explore companion packages and competing packages. If
80% of the target audience owns and uses a given piece of software, one
your proposed package is complementary to, it only makes sense to
conform your package to the user interface of the other,
already-familiar package. Competing packages give you a good grasp of
what users already expect: unless your strength lies in marketing, your
package should go beyond those already out. After all, they are
probably preparing their own next generation.

2. Ferret out standards and guidelines. Get to know the computer on
which you are developing. Read books like this. Look at the most
popular packages. Make your design follow the philosophy you discover.

3. Select or design a metaphor. Make it familiar and make it
intuitive. If you are doing personal-productivity softwa.re, we urge
you to use the windowing interface. Not only have we spent millions of
dollars researching, building, and testing it, but your users are
familiar with it. If you are doing a different type of program, such
as educational, select a metaphor these users will feel comfortable
with and that is supportive of the task at hand.

Always keep in mind that this "illusion" need not be connected fn any
way with the hardware or operating-system requirements of the computer:
the fact that loading and saving are companion calls to ProDOS does not
mean they should appear together within a program. In terms of
work-flow, they are usually at opposite ends. Avoid copying the
interface of your favorite language or utility: there are a great many
primitive interfaces that we become so used to we think they are good.
They are not.

4. Writing the External Requirements Specification

This specification should represent everything the user will see. The

28 Human Interface Guidelines

programmer's job will then be to translate this static report into the
final, dynamic program. Cover every display, eve~y help message, every
alert. Eliminate, consolidate: when you find that two displays are
almost identical, make them identical. At the beginning, ignore the
difficulty of implementing wild new features. If you try to save
coding time and space at first, you will lose sight of the illusion you
are trying to create and get bogged down in the illusion your operating
system is presenting. Later on, you can go back and be practical.

Even though you are writing a static document, you are designing
something dynamic: maintain a mental model of the whole, and "run" the
program, exploring the dynamic pathways. Essentially, a lot of this
stage of design is done with intuition (see: Intuition). It explains
why programmers depend on intuition so much more than the general
population. What you are seeing in your mind's eye will only come to
fruition perhaps months from now.

Once specified, build effective prototypes of new design features and
test them for efficiency and acceptance. Do not wait until you have
invested several man-years of development to discover that what seemed
like such a hot idea just doesn't work in real life.

Do not overprotect: developers are, in some cases, making their
software too friendly. Apple II users have to learn to work with some
less-than-friendly concepts and constructs, such as ProDOS file names,
Control keys, and technical words such as disk and memory. While you
can, within your single program, shield your users from our
less-friendly constructs and concepts, they are. going to have to deal
with them eventually. Such attempts merely result in their having even
more learning to do: now they not only have to learn our methodology
and jargon, but yours, too. We are committed to raising the general
friendliness of our system, and the Apple II will become progressively
easier to use, but we have to do everything in concert. If you are
finding some part of our underlying interface to be particularly
troublesome to your users, please let us know. Then we can work
together to do something about it. .

Have only one area of the screen active at a time: avoid prompting the
user at the top of the display, echoing input characters in the middle,
and displayingal~rt and help messages at the. bottom, all at the same
time. The user is going to be confused. An exception to this rule is
in a point-and-choose scheme where options are being pointed to--for
example, a cell in a spreadsheet--and actual entry occurs at separate,
standard point on the display, such as line 24. 6.76.7 Keep Them
Informed When You Are Away

When the computer will be either carrying out computations or accessing
the disk for an extended period of time , a message should be left on
the screen, instructing the user that the computer will return shortly
(this is not the suggested message). Some periodic change in the
screen, as a lengthening line of periods (hence periodic) should occur
so the user knows the computer has not simply gone into an endless loop
somewhere. When the computation period is over, clearly signal it:
simply showing up with a blinking cursor over in the corner won't do

29

after a brief, 20-minute pause.

Part of the specification process is to estimate document requirements.
Not only does this enable you to plan early for writing needs, but it
keeps you conciously aware of the documentation costs of new features.
If you figure it will take twenty pages to document some neat little
shortcut, you are more likely to drop it early.

A final part is estimating scheduling. It is not within the scope of
this book to cover scheduling, except to comment that invariably
marketing, sales, and management want the project completed yesterday.
A good rule of thumb for the real time that a project will take is to
figure out how long it should take, double it, and go to the next
higher time unit. In other words, if you can program this thing in
three weeks (by programming 18 hours a day), then figure six months.
This covers the five weeks your mother-in-law will visit, the total
redesign after the coding is done, the publisher loosing the
manuscript, and sales arguing they can't possibly sell it in that silly
green package.

Always keep in mind that the last 10% of the program will require 50%
of the time. Then walk the tightrope between the true time (above) and
the time that everyone else will let you get away with. And best of
luck.

The final function of a good External Reference Specification is to
sell the design. Do not be afraid to explain why you have designed
something the way you have. Remember that everyone everywhere is a
self-proclaimed user-interface expert. The best way to keep from
having to defend yourself and your design is to have dazzled everyone
with your brilliant insights within the ERS.

Testing

Once the users have been profiled and a prototype built, it is time to
begin testing.

Human interfaces are not made; they are evolved. Software designers
are simply too close to their product, their computer, and have put up
with the most abysmal interfaces themselves to be able to outguess the
naive user. Products must be repeatedly tested on "real people".
("Real people" means the target audience: as soon as you find yourself
sitting in a meeting with other computerists, all announcing what users
will or will not feel/think/do, you are in trouble -- build the
prototype and find out.)

The job of the designer is to do his or her best to predict the
response of the user; the job of the user is to do just the opposite.

Human interface testing is quite different from the kind of exhaustive
"boundary condition" testing used to uncover bugs. You should begin
testing as early as possible '. using drafted friends, relatives, and new
employees, to uncover the really big holes in your design. As you get
closer to a finished product, try it out on larger groups drawn from

30 Human Interface Guidelines

the target population.

It is imperitive that the designers actually watch people use the
program. Do not just send off copies of the program and expect written
responses. Get the users and the designers in a quiet room together.

Our testing method is as follows: We set up a room with five to six
computer systems. We invite groups of five to six users at a time to
tryout the systems (often without their knowing that it is the
software rather than the system tha~ we are testing). We have two of
the designers in the room. Any less, and they miss a lot of what is
going on. Any more and the users feel as though there is always
someone breathing down their necks.

The initial ground rules are that no questions will be answered, as by
the time the formal testing begins, we can supply a draft of the
manual. (Usually by the second group, some glaring defects in the
interface have shown up, and we have to give them help getting past the
stumbling blocks.)

95% of the stumbling blocks found are found by watching the body
language of the users. Watch for squinting eyes, hunched shoulders,
shaking heads, and deep, heart-felt sighs. When a user hits a snag, he
will assume it is his fault: he will not report it; he will hide it.
Make notes of each problem and where it occured. Question the users at
t~e end of the secession to explore why the problems occured. (You
will often be surprised at what the user thought the program was dOing
at the time he got lost.)

We have found that prepared questionaireshanded out at the end of a
secession are of little value: you will seldom predict the problem
areas before testing, and users will lie to spare everyone's feelings.
(If you had figured out the problem areas, you wouid have already fixed
them.)

Generally, two or three groups on one occasion is more than sufficient:
patterns will emerge almost immediately. You should have at least one
more bank of testing after any major revision; as the next example
shows, one often jumps out of the. frying pan, into the fire.

Herein follows a true anecdote which illustrates how difficult the most
simple human interface issue can be, and why thorough testing on real
people is so important.

As we tune in, the authors of the software, both of whom pride
themselves on clever interface design, have anguished for hours over
difficult passages in their program. It was to turn out their guesses
were quite accurate in said difficult passages. It was the simplest
question of all that caused all the problems •••

Problem: in Apple Presents ••• The Apple~ , the training program for
teaching fundamentals of using the new Apple lIe computer, find out if
the user is working with a color monitor.

31

User profile: new owner, customer in a computer store, or member of a
class learning to use Apple computers.

Test user profile: customers in a computer store, non-computerists in a
classroom environment, friends, and relatives.

First design: A color graphic would be displayed.
Prompt: "Are you using a color TV on the Apple?"
Anticipated problem: Those who were using a monochrome monitor in a
classroom or computer store situation wouldn't know whether the monitor
was black-and-white or was color with the color turned off.

First attempt:
Prompt:
Failure rate:

A color graphic was displayed.
"Is the picture above in color?"
25%

Reason: As anticipated, but incorrectly overcome, those seeing black
and white thought their color might be turned down. They didn't answer the
question wrong; they turned around and asked one of the authors whether the
monitor in question was color or not. A decision was made that the authors
could not be suppied with the disk:

Second attempt:

Prompt:
Failure rate:

A smaller graphic with large-letter words in their own vivid
colors was substituted: GREEN BLUE ORANGE MAGENTA
"Are the words above in color?"
color TV users: none
black and white monitor users: none
green-screen monitor users: 100%

Third attempt:
Prompt:
Failure rate:

the graphic remained the same.
"Are the words above in more than one color?"
color TV users: none
black and white monitor users: 16%
green-scree.n moni tor users: 50%

Reasons: the black and white monitor users who answered incorrectly
admitted that they did so on purpose. (Our methods for wringing their
confessions shall remain proprietary.) 50% of the green-screen folk
considered that they were looking at both black and green -- two colors
-- and answered the question accordingly.

Fourth attempt:
Prompt:
Failure rate:

32 Human Interface Guidelines

Same display of graphic and colored text
"Are the words above in several different colors?"
color TV users: none
black and white monitor users: 20%
green-screen monitor users: 23%

Reasons: By this time, the authors were prepared to supply everyone
who bought an Apple with a free color monitor, just so we would not
have to ask the question. It turns out that around 20% of the people
were not really reading the question. They were responding to:

"Are the words above, several different colors?"

Fifth attempt:
Prompt:
Failure rate:

Same display of graphic and colored text
"Do the words above appear in several different colors?"
none.

In case it appears the authors were simply dull fellows, be it known
that this was a fully-interactive training program in excess of 100K,
and this was the only interface issue that required more than one
correction. It clearly exemplifies how even the most careful designers
can totally miss when guessing at how users are going to respond.

Had the designers not tested the program, it is probable that dealers
. would not have used the program in their showrooms, as they would have
wearied of telling potential customers that they were/were not using a
color TV and that the Apple Presents ••• Apple program was being very
stupid to ask the question like that. (Potential customers, of course,
wouldn't fall for such an explanation: they know it was the computer
that asked the question and that one should always buy the computer
that asks good questions.)

It is vital that programs be tested early and often with users from the
target audience; this testing should be an integral part of any testing
plan. This testing seems like a lot of extra effort. In practice, it
really isn't, beyond the mechanical difficulties of getting your
equipment and test group together. (Computer stores, colleges, and
shoppping centers are often good random-testing locations.) The above
testing cycles took only four days: the first two days were on-site,
using new Apple employees. Only two days of testing required any
set-up work at all, and the over-all improvement to the product was
clearly worth the effort.

Even if the interface had not changed at all, it would have been worth
it just to be able to ward off all the self-proclaimed experts with
their (day-after-going-to-production) comments of "Boy, I sure wouldn't
have done that this way. A lot of people out there are gonna have
trouble." What joy to turn to such people and announce with a clear
conscience, "Well, we tried it out on 109 people, and they all sailed
through with flying colors."

High-budget Testing

You can hire market research firms to gather test subjects and conduct

33

focus groups for your program. Such efforts are usually beneficial.
always fun. and invariably expensive. If you are going to use outside
services. pick the most beneficial times: at the beginning and end of
a project. At the beginning. focus groups can help you'plan for the
needs of the user. At the end. you can judge the results and
"fine-tune" a design appropriately. Where you should not use expensive
research techniques is in the middle of the project:

The first time you test a program on real people. it is almost certain
to be an immediate disaster. Trying to gather feedback on how a user
feels about the fine points of your design is a little difficult when
he or she has just accidentally destroyed the contents of the disk. It
is like asking test subjects driving your new car at freeway speeds to
comment on ambient noise conditions when they have already noticed that
you forgot to build in a braking system: somehow they always seem
distracted. You can test a program for basic "survivability" with
almost anyone; save expensive in-depth research for the point when
people can use your product effectively.

Part II:

The Apple II

Generic Human Interface

Apple II Human Interface Guigelines

There are two primary hardware environments on the Apple II: the
original Apple II and Apple II +. and the newer Apple lIe. IIc. and so
forth. The new computers have user interface support in the form of a
more complete keyboard and a special character set referred to as
MouseText. (This character set was introduced after the first Apple
lIe's; at the time of this writing. it was expected that the vast
majority of lIe owners would avail themselves of the enhancement kit
that includes it.)

We offer two primary software environments: the windowing
(Macintosh-like) and the filecard heirarchical menu system. Unlike the
Macintosh system. Apple II windowing software need not require a mouse.

These guidelines are based on the minimum configuration available on
all Apple II computers beginning with the Apple IIe. Descriptions of
keyboards. standard key definitions. and special display characters
refer to these later computers. If you are working in a specialised
market segment that needs to cater to the older machines. you will have
to pick and choose those guidelines that are appropriate to the older
equipment. In general. you can adapt the overall philosophy of these
guidelines. and then directly use such standards as the standard input
routine.

The hardware

The following sections introduce the Apple II keyboard. mouse. and
display.

34 Human Interface Guidelines

THE KEYBOARD

The Apple II keyboard t unlike the Macintosh keyboard t is used for
entering both text and commands.

The keys on the keyboard are arranged in familiar typewriter fashion.
The U.S. keyboard is shown in Figure 3.

Figure 3. The Apple.II U.S. Keyboard

There are two kinds of keys: character keys and modifier keys. A
character key sends characters to the computer; a modifier key alters
the meaning of a character key if it's held down while the character
key is pressed.

Character Keys

Character keys include keys for letters t numbers t and symbols t as well
as the Space bar. If the user presses one of these keys while entering
text t the corresponding character is added to the text. Other keyst
such as the Tab t Return t Delete t and Escape keyst are also considered
character keys. However t the result of pressing one of these keys
depends on the application and the context.

The Tab key is a signal to proceed: It signals movement to the next
item in a sequence. Tab often implies an Enter operation before the
Tab motion is performed.

The Return key tells the application that the user is through entering
information in a particular area of the document t such as a field in an
array. Most applications add information to a document as soon as the
user types or draws it. However t the application may need to wait
until a whole collection of information is available before processing
it. In this case t the user presses the Return key to signal that the
information is complete. Return must do the job of both Enter and
Return in the Apple II world. On the Macintosh t Enter accepts the
information but'causes no movement t whereas Return accepts the
information t then moves down and to the left. On the Apple lIt you

THE KEYBOARD 35

must consider what your users will expect. In two-dimentional arrays,
have Return enter the information and move directly down one row. This
gives the user the Tab key to enter and move right and the Return key
to enter and move down. In text processing, have Return accept the
information and move down and to the left in the traditional way.

Return and Space dismiss dialog and alert boxes (see "Dialogs and
Alerts").

Delete is used to delete text or graphics. The exact use of Delete in
text is described in the section on text editing.

Modifier Keys: Shift, Caps Lock, Control, Open-Apple, and Solid-Apple

There are five keys on the keyboard that change the interpretation of
keystrokes: two labeled Shift, one labeled Control, one labeled
Caps Lock, one labeled with the "Open-Apple" symbol, and one labeled
with the "Solid-Apple" symbol. These keys change the interpretation of
keystrokes and sometimes mouse actions. When one of these keys is held
down, the effect of the other keys (or the mouse button) may change.

The Shift key chooses among the characters on each character key.
Shift gives the upper character on two-character keys, or the uppercase
letter on alphabetic keys.

Caps Lock latches in the down position when pressed, and releases when
pressed again. When down it gives the uppercase letter on alphabetic
keys. The operation of Caps Lock on alphabetic keys is parallel to
that of the Shift key, but the Caps Lock key has no effect whatsoever
on any of the other keys.

Pressing a character key while holding down the Control or either Apple
key usually tells the application to interpret the key as a command,
not as a character (see "Commands"). .

Control keys are reserved for functions that the user must do
repeatedly with little or no concious thought. You will find standard
definitions for most of them in the "Commands" section. Because these
definitions remain standard throughout applications, the user has only
an initial learning burden, and, since all these definitions are either
short-cuts or very advanced features, the user can pick them up at
their leasure.

The Open-Apple key has only a few reserved functions (see "commands").
As a general rule, it is available for your special mnemonic commands
for your specific application. It is also used in conjunction with the
mouse for extending a selection (as the Shift key is on a Macintosh);
see "Selecting".

The Solid-Apple key generally m1m1CS the action of the Open-Apple key.
Users have been found able to learn one mnemonic per letter, for
example, E for Edit. Defining Open-Apple-E to mean Edit and

36 Human Interface Guidelines

Solid-Apple-E to mean something else, such as E for "Eradicate This
Document" invariably leads to problems. The user must have some
powerful rule which logically separates all Open-Apple combinations
from all Solid-Apple combinations, if you are to use them separately.

If you'want to enable your user to define keyboard macros, tie them to
the Solid-Apple key: the powerful rule here is that the program owns
the Open-Apple key and the user owns the Solid-Apple key.

Typeahead and Auto-Repeat

If the user types when a windowing application is unable to process the
keystrokes immediately, or types more quickly than a toolkit can
handle, the extra keystrokes are queued, to be processed later. This
queuing is called typeahead. There's a limit in each toolkit to the
number of keystrokes that can be queued, but the limit is usually not a
problem unless the user types while the application is performing a
lengthy operation.

Tqe toolkits can be operated in two modes: with interupts or passive.
When interrupts are on, queuing is done "automatically"; in
passive-mode, queuing is done periodically, as described in the toolkit
manuals. Remember in testing that the toolkits will shift to
passive-mode automatically on an Apple lIe with no mouse card installed
(as the interrupts are generated by the mouse card). So be sure to
test your software for mouseless operation on a lIe without a card
plugged in!

When the user holds down a character key for a certain amount of time,
it starts repeating automatically. An application cannot tell whether
a series of n keystrokes was generated by auto-repeat or by pressing
the same key n times. Therefore, be sensitive to the discovery of a
vast number of identical keystrokes--your user may have erred in
holding the key down too long.

Holding down a modifier key has the same effect as pressing it once.
However, if the user holds down a modifier key and a character key at
the same time, the effect is the same as if the user held down the
modifier key while pressing the character key repeatedly•.

Versions of the Keyboard

There is only one current physical versions of the Apple lIe and Apple
IIc keyboard. The standard layout on the European version is designed
to conform to the ISO (Internation Standards Organization) standard;
the U.S. key layout mimics that of common American office typewriters.
European keyboards have different labels on the keys in different
countries, but the overall layout is the same.

THE KEYBOARD 37

Reserved Key Combinations

Some characters are reserved for special purposes.

One Open-Apple keyboard command is reserved:

Character

?

Command

Help

Other Open-Apple keyboard equivalents are conditionally reserved. If
an application enables these commands, it shouldn't use these
characters for any other purpose, but if it doesn't, it can use them
however it likes:

Open-Apple combinations:

Character

P
Q
S

Command

Print
Quit
Save

Windowing applications reserve these additional commands (see:
Commands)
Character Command

z
X
C
V

Undo
Cut
Copy
Paste

(Note that these keys are the first four on the bottom row on the
standard U.S. keyboard. If you translate a program to a keyboard
with a different layout, you should change the actual characters typed
so that they remain the first four keys on the bottom row.)

D
G
M

Drag or move the currently active window
Grow or shrink (size) the currently active window
Mark a selection

38 Human Interface Guidelines

Control combinations--all environments:

Character Command

B Bold
C Copy
D Delete
E Edit (toggle insert/overstrike)
F Forward Delete

* H Left Arrow
* I Tab
* J Down Arrow
* K Up Arrow

L Begin or End Underline
* M Carriage Return

P Print the contents of the screen

S Save

* U Right Arrow
V Paste

X Cut

Z Undo

* [Escape

* These are the control equivalents of the various Apple special keys.
Current unmodified Apple II keyboards cannot differentiate between a
Control-character sequence and its equivalent special key, for example,
Control~M and Return.

Keys ~ Ease Foreign Translation

If you are designing your software for ease of translation into
foreign language, please keep in mind that the following key
characters are different iri the "local" text character sets and
keyboard layouts of international versions of Apples:

Different now: # @ [,] '{ }

(Could change in the future: $ A)

To allow foreign-language entries, you need to provide a number of
"dead-keys" so users can properly punctuate. We have defined a
standard set of keys:

OPEN-APPLE-'"'
OPEN-APPLE- ,
OPEN-APPLE-'
OPEN-APPLE-

Typing any of these combinations will
backspace character, in your file, so
will be accented. Display the accent
solid-dash MouseText character ("S").
dash, there is no ambiguity.

THE KEYBOARD 39

place the accent, followed by a
that the next character typed
and the character linked by the
As the user cannot type a solid

Your program should accept only valid accented characters, throwing
away the dead-key character if, for example, a person types
OPEN-APPLE-A followed by an X.

THE MOUSE

The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There's a button
on the top of the mouse. The user holds the mouse and rolls it on a
flat, smooth surface. A pointer on the screen follows the motion of
the mouse.

The mouse is reserved for windowing and entertainment applications
only.
It should not be installed into a menu program for purposes of

advertising "mouseability".

A complete description of the actions and activities of the mouse may
be found the description of the mouse within the Mouse Guidelines
section.
Software Standards

Input

The standard Apple II input routine is common across all Apple II series
.computers. There are added capabilities with the mouse within the windowing
metaphor, but keyboard consistency is still maintained. All professional
programs should be using this input. It is available as a tool to all
registered developers, with a BASIC, Pascal, and Assembly Language front end.

The user should be able to tell the rules of the input from the kind of cursor
being displayed. Users are confused when the computer speaks to them in a
different way in each program, but they are confounded when the computer
"understands" them differently in each program.

Of all the standards and guidelines presented in this book, this is the most
important: use the standard input in exactly the standard way. If you need
.to use an entirely different kind of input scheme, select a different cursor
character, and train your users to recognize it as yet another entity. If you
wish to add to its capabilities, do so, but never twist the pre-existing
definition. We have trained all new users with the tutorial material shipped
with each computer. They know what the input looks like and expect it to
always work the same.

40 Human Interface Guidelines

Input Routine Standard Keys:

Keystroke

Necessary:
Left-Arrow
Right-Arrow
Control-D
Delete
Control-E
Control-F
Return
Control-X

Control-Y
Control-Z

Notes:

Editing Operation

moves cursor left within input
moves cursor right within input line.
deletes character to the left of the cursor position
deletes character to the left of the cursor position
toggle between insert and replace (discussed below)
deletes character forward (to the right) of the cursor position
accepts entire response, regardless of current cursor position.
deletes all characters on the input line (or all characters
marked with mouse).
deletes all chars from present cursor position to end-of-line.
recalls display of default response. If no default, then
it acts the same as Control-X.

Typing any printing character will automatically insert that
character into the input line at the current cursor position.

Pressing Return with the cursor anywhere within the input line will accept
the entire input.

Default responses are displayed with the cursor at the beginning or end of the
response. Pressing Delete (or Control-D) as the first character will delete
the entire response. Once any other key has been pressed, Delete and
Control-D revert to their standard definitions.

The blinking-bar cursor is, theoretically, a vertical bar that lies between
two characters, representing an insertion-point. Because of hardware
limitations in the text mode of the Apple II, text-based applications use a
blinking underscore that alternates with the character that is to the right of
the theoretical position. Thus, what in graphics environments looks like
this:

A turnbuckle
A turnbuckle

in text-mode looks like this:

A t rnbuckle
A turnbuckle

The Overstrike Cursor

You may also provide an overstrike capability, through Control-E. When
pressed, it changes the appearance of the cursor from a blinking bar to an
inverse-color square over the character to the right of the insertion point.
As characters are entered, the inverse box moves to the right, replacing the
original character with the new character, neither shrinking nor expanding the

THE HOUSE 41

size of the line. With this single exception t all keys and features work the
same.

Using the standard input:

More specific guidelines for the windowing interface will be found in that
section. While the windowing guidelines do not clash with the following
information t they do go beyond it in power and performance. If you are working
with the windowing software t refer to the appropriate sections for more
specific information.

The program input statement asks the user for information by displaying a
verbal prompt. Prompts should terminate in a colon (:) or greater-than sign
(» if a statement t a question-mark (?) if a question. The prompt is
followed by 2 spaces on an 80-column displaYt 1 space on a 40-column display.

A default answer may be displayed t with the cursor following t in which no
field length is denoted. If there is no default response offered t or the
default is rejected by the user t the program can display a finite input field
with a series of "ghost" underlines (MouseText character "I"). This character
is a shortened underline with every other dot turned off. Since the user
cannot type itt there can be no abiguity.

Leading and trailing spaces should be routinely stripped from input lines t
unless they are specifically needed.

Keystroke errors are best trapped immediately: if you are accepting a
number t do not accept a letter such as "A" or "B".

An example of the input:

What is a "drift"?

> A whole lot of cattle

(Consider the underline to be blinking -- the printer was not able to quite
capture the effect.) The user wants to change the answer to read:

> A herd of cattle

To edit the response t the user first moves back to the end of the word "lott"
using the Left-Arrow. It looks like this:

> A whole lot of cattle

The user now moves the cursor to the left by pressing the Left-Arrow.

> A whole lot of cattle
> A whole lot of cattl

Because the cursor alternates with the character to the right of the
theoretical insertion point t that character is invisible half the time. In
the rest of the sequence t we shall assume that we are looking during the
time that the character is invisible and the cursor is visible.

42 Human Interface Guidelines

> A whole lot of catt e

> A whole lot of cat Ie

> A whole lot of ca tIe

> A whole lot of c ttle

> A whole lot of attle

> A whole lot of cattle

> A whole lot 0 cattle

> A whole lot f cattle

> A whole lot of cattle

The user then presses the Delete key several times, until the
words "whole lot" have been deleted:

> A of cattle

Next, the user types the word "herd":

> A h of cattle

> A he of cattle

> A her of cattle

> A herd of cattle

Finally, the user presses Return to accept the entire response:

> A herd of cattle

Additional detailed specs for the blinking-bar cursor:

Blink-rate: 80 cycles per minute
During 1 blink:

Time showing bar: 1/3
Time showing normal character: 2/3

For the overstrike cursor:

Blink-rate: 80 cycles per minute
During 1 blink:

Time showing normal character: 1/3
Time showing inverse character: 2/3

Whenever the cursor is moved, start the blink cycle over again, first showing
the bar.

43

The input buffer: You should maintain an input buffer larger than the field
length of the input, with a pointer showing how much of it you should allow
to be visible. Let's say you have a field length of 25 and the user
has typed in:

What do you use if you want to turn left? A right-hand turn signal_
A right-hand turn signal.

(In order to show the two phases of the blinking cursor, each example
shows the user-response, both while the bar is 'showing and the character
"under it" is showing.)

The user suddenly realizes the error of his answer and backtracks:

What do you use if you want to turn left? A ight-hand turn signal.
A right-hand turn signal.

So far, the contents of the input buffer have not been changed. Now the user
types in the correct answer:

What do you use if you want to turn left? A left_ight-hand turn sig
A leftright-hand turn sig

Instead of either not allowing the user to enter any more characters, or
shoving the "nal" part of "signal" bff into oblivion, move all the characters
ahead in your 250+ character input buffer. So, internally, you are now
carrying the answer:

A leftright-hand turn signal

with a pointer that tells you only to display to the "g" in "signal". Now, when
the user uses the right-delete key (CONTROL-F) to delete the word, "right", you
can again show the characters that had been hidden:

What do you use if you want to turn left? A eft-hand turn signal ••
A left-hand turn signal ••

When the user presses RETURN, accept only those characters that are
visible: this buffer is just there to make changes easier. You need not
maintain a full 250+ character buffer if you only have short input fields. Try
to have an input buffer at least twice as long as the longest field, and dump
characters off the right end if the user keeps backing up and inserting: don't
ever have the input simply lock up. A CONTROL-Y or CONTROL-X should clear to
the end of the actual input buffer, not just the visible portion.

44 Human Interface Guidelines

Cursor Movement with no action taken

Sometimes programs such as word processors require pure cursor movement with
no action taken. The standard keys in such cases are as follows:

K~ys for up, right, down, and left motion:,
Apple lIe and newer computers: the four arrow keys

Apple II and Apple 11+:

I-up
J=left K=right

M=down

These keys are often prefixed with an ESCape.

Keys for vertical, horizointal, and diagonal motion:

All Apple II computers:

U=up,left I=up O=up,right
J=left K=right

N=down,left M=down ,=down,right

These keys"are often prefixed with an ESCape.

'-i'\,-~ ~

yy~

Alerts

Every user of every application is liable to do something that the
application won't understand. From simple typographical errors to
slips of the mouse to trying to write on a protected disk, users will
do things an application can't cope with in a normal manner. Alerts
give applications a way to respond to errors not only in a consistent
manner, but in stages according to the severity of the error, the
user's level of expertise, and the particular history of the error.
The two kinds of alerts are beeps and alert boxes.

Beeps are used for errors that are both minor and immediately obvious.
For example, if the user tries to DELETE past the left boundary of a
text field, the application could choose to beep instead of putting up
an alert box. The beep should not be a standard, Apple II bell, but a
more gentle tone, as found in ProDOS and AppleWorks--the whole room
doesn't need to know the user has yet again made a fool of him or
herself. A beep can also be part of a staged alert, as described
below.

An alert box looks like a modal dialog box, except that it's somewhat
narrower and appears lower on the screen. An alert box is primarily a
one-way communication from the system to the user; the only way the
user can respond is by clicking buttons. Therefore alert boxes might
contain dials and buttons, but usually not text fields, radio buttons,
or check boxes. Figure 27 shows a typical alert box.

escl(Ccncel

(OKCAUTION

Are you sure
you want to erase all
changes to your document?

Figure 27. An Alert Box

There are three types of alert boxes:

- Note: A minor mistake that wouldn't have any disastrous
consequences if left as is.

- Caution: An operation that mayor may not have undesirable
results if it is allowed to continue. The user is given the
choice whether or not to continue.

- Stop: A situation that·requires remedial action by the user. The
situation could be either a serious problem, or something as
simple as a request by the application to the user to change
diskettes.

An applicatidn can define several stages for an alert, so that if the
user persists in the same mistake, the application can issue
increasingly more helpful (or sterner) messages. A typical sequence is
for the first two occurrences of the mistake to result in a beep, and
for subsequent occurrences to result in an alert box. This type of
sequence is especially appropriate when the mistake ·is one that has a
high probability of being accidental. An example is when the user
chooses Cut when the selection is an insertion point.

Under no circumstances should an alert message refer the user to
external documentation for further clarification. It should provide an
adequate description of the information needed by the user to take
appropriate action. Avoid at all costs such messages as:

Application error #1463

Error messages should not only provide information (in the user's
native tongue -- not computerese) as to what the error was, but should
offer solutions as to what the user can do to correct the situation. A
better message might be:

The program here requires the name of the file you
want to work from. You have not yet selected a file.
Please type the name of one of the above files first.

So, generally, it's better to be polite than abrupt, even if it means
lengthening the message. The role of the alert box is to be helpful,
make constructive suggestions, and to help the user solve the problem,
not to give an interesting but academic description of the problem
itself.

Error-trapping

In most situations, user inputs must be checked for validity. Account
numbers, employee numbers, and dates are just a few examples of items
that should be checked to see if the data requested is on file or
plausible. Numeric inputs should be screened for values too small or
too large, if extreme values are invalid or potentially damaging to the
program.

Many types of errors can be circumvented through software design: If,
in testing, you find users repeatedly· making the same kind of errors,
change the software.

Be careful of the details, both during design and boundary-testing:
for example, make your program insensitive to upper/lower case when no
distinction is necessary, and test your program to make sure it is
making no such distinction anywhere. This is a good example of design

"smoothing": if the user finds any input anywhere that is
case-sensitive and you have not taken pains to make sure they know that
this is an exception, they must assume that any input may fail at any
time if they are not careful about case. If you have two or three
"tail-ends" like this going on at once, the user will become very
frustrated.

Enable only those keys you have informed the user you are enabling. Do
not prompt: "Press Escape for Main Menu, Return to continue:" and
fail to announce that Space bar will eliminate this afternoon's files.
The classic counter-example of this was in an early Apple text editor
with a verified-replace option. According to the manual (no
instructions were displayed), R meant replace this occurrence, Space
bar signified do not replace this occurrence. The actual code was such
that any character with an ASCII value of 82 (R) or above caused a
replacement, and any character with an ASCII value less than 82 caused
a skip. Therefore, "[" would replace, "8" would not, " " would
replace, "," would not.

The best way to make an alert message understandable is to think
carefully through the error condition itself. Can the application
handle this without an error?

When you find errors occurring during user-testing, think through the
problem: is there some way you can either lower the incidence of the
error or eliminate it altogether? Many programs seem to suffer from
the it's-easier-to-flag-an-error-than-correct-it error:

Syntax error: no comma after Aardvark

Is the error so specific that the program can handle it transparently?
If not, is the error specific enough so that the user can fix the
situation? What are the recommended solutions? Can the exact item
causing the error be displayed in the alert message?

Many error problems can be eliminated quite readily by fairly simple
design-changes, and you will usually end up saving memory by
eliminating all the text necessary for the alert message. If you can't
eliminate an error, then think through what can be done to lower the
incidence: every new user should not be experiencing the same error.
If they are doing so, you need to reconsider the design.

Specific graphic designs of filecard alert boxes and Windowing alert
boxes can be found within those two sections.

Part III:

The Filecard Menu Interface

The Filecard Menu Interface

Introduction

The pritl\Bry interface for future software development on the Apple.II
series is the windowing (mouse) interface, as adapted from Macintosh.
Because not all software lends itself to this metaphor, we also support
a hierachica1 menu structure, using a fi1ecard metaphor. Adapt menu
interface if:

1. you are transporting an existing menu-based application onto the
Apple II.

2. you have an application in an area such as educat:lpn that does not
lend

itself to the desktop metaphor.

d

Do not reject the windowing system because you
people to buy a mouse: the Apple II windowing
mouse. Our design goal was a windowing system
would be as functional as the fi1ecard system.
in the Spring of 1985 with the introduction of
the toolkits to support it.

do
system
that, without
This goal

this

45

[Illustration of filecard metaphor]

People have often become lost in menu systems because of the lack of
visual feedback. The filecard system enables the user to see very
clearly exactly where she or he is at any point. It allows a depth of
four menu levels, a depth consistent with Apple II owners' navigational
abilities, and discourages disconnected series of sub-menus, a practice
that thoroughly confuses users.

The actual filecards are most easily created on Apple lIe and later
computers. If you are writing for the Apple II/II Plus market, use the
structure and program flow, but not the visual design. If you are
writing for 40-column, you may find you are lacking width for your menu
items because of the space taken up by the filecards themselves. If
so, either shorten the item names or abandon the filecards, again
maintaining all but this visual element.

Menus

The filecard menu scheme uses the general Macintosh paradigm of
point-and-choose, rather than typing. It still allows the standard
method of responding to a menu, by having the user type in the number
(or letter) of choice. But it also allows the user to use the arrow
keys to move from choice to choice. Selecting an up or down arrow key
and leaning on it until the right selection appears requires a lower
level of intellectual involvement on the part of the user. The result
is that the user need not disengage as much from the task at hand to
use the menu tree.

The following illustration shows a typical menu tree with the user at
the second level. Note the use of MouseText icons: the file card
indicates that selecting this option will take the user to another
filecard one level deeper. The running man indicates an immediate
activity.

46 Human Interface .Guidelines

Retail Store Manager

Main Menu

Escape: Main Menu

/

--I-n-v-e-n-t-o-r-y-c-o-n-t-r-o-l----- \

I

1. "'- Enter new product category

I 2. D <UPDATE INVENTORY FOR AN EXISTING PRODUCT)
I

3.~ Work up explanation of last month's shrinkage

4.~ Calculate current value

Type number or use arrows, then press Return

[end of display]

Upon the user's moving to a lower level, the display would look as follows.
Note that item or document names are indicated by a lack of icons. Ddisabled
menu items are bracketed with the delete checkerboard character (#127) so the
user knows what is currently valid. Jump over such items when the user moves
up and down with the arrow keys.

Retail Store Manager

Main Menu

Escape: Inventory Control

I_n_v-:-e_n-:t:-o_r_y_C_o_n_t_r_o__l-----~--------------I-1 __
Update Inventory [_

1.
2.

I HE 3.

I 4.
1-- 5.

6.
7.

Leisure Suits
Nehru Jackets
Daggers and Automatic Weapons •
Quail Eggs
The little paper poofs you put on chicken feet

(MISCELLANEOUS OIL TANKERS>
Cocktail Glass Parasols

Type number or use arrows, then press Return

[end of display]

This scheme allows a menu structure four levels deep, with no ambiguity as to
where one is, how one got there, and how one gets· back.

The current selection (starting with a default) is highlighted, but its number
appears in the input field only if typed by the user. When highlighting such
a menu, highlight only the option itself, not the number, letter, or any icons
preceding it.

In 3D-column mode, where a properly-working monitor is expected, the
highlighting is done by displaying the selection in inverse-mode. Print the

48 Human Interface Guidelines

Print the actual selection (not the associated number or letter) with a
leading and trailing inverse space. These spaces make for easier
readability of the first and last characters.

In the case of a 40-column display, if you as~ume a TV may be in use,
surround the current selection with < > and convert all lowercase
characters to uppercase. (We did considerable experimentation with
various schemes to highlight without inversing, including
double-brackets, a slow, software flash, changing the indentation of
the current selection, pointing arrows, etc. This scheme, in testing,
proved to be the most readable and intuitive of the lot, so we have
chosen it as a standard for all this type of 40-column
point-and-choosing.)

Either typing a new number or pressing the Up- or Down-Arrow changes
the highlighted selection immediately. Moving by arrow causes the
input field to be cleared of any number that may currently appear. If
a number is currently in the input prompt and the user wants to type in
a new number, she need not press the Delete key (or Control-D) before
typing a different response. The new number will replace the old.
Delete will, however, delete the number in the input field in the
normal fashion, leaving the current selection still highlighted, and it
can still be selected. (We foundyou<mustleave it highlighted so that
the user knows what the "anchor" selection is when pressing the Up- or
Down-Arrow key, and since it is highlighted, it must be selectable.)

All sub-menus enable the user to move to the next higher menu by
pressing the Escape key. The main menu has no Escape-key option, so
that the user can feel confident about leaning on the Escape key to get
all the way back to the top level, without worrying about then being
bounced completely out of the program. The Main Menu's last option
enables the user to "quit": end the program.

Programs should always have an definite, clearly-labeled way out.
Those of you who have dealt with new users of micro-computers who are
running endless programs have probably seen their extreme discomfort at
not being able to find their way out. Survivors of time-share days
will often panic as they search in vain for a way to "log off" while
their mental clocks tick away the dollars.

Even if your program is on a copy-protected disk and there really is no
way out, give the user an End option and then tell him that he may now
insert another disk and press RETURN, or whatever. Users feel
positively trapped by programs with seemingly no end; they forget that
the power switch solves all.

The Filecard Metaphor Hithout Filecards

49

The following example was taken from the original Apple lIe Utilities
program. It was designed to work in either 40- or 80-column mode and
is shown here in 40-column operation.

[Substitute with actual screen-shot for final]

System Utilities

Work on Individual Files:

1. Copy Files
2. Delete Files
3. <RENAME FILES)
4. Lock/unlock Files

Work on an Entire Disk:

Main Menu

5. Duplicate a Disk
6•. Format a Disk
7. Identify and Catalog a Disk
8. Advanced operations

9. Quit: Exit System Utilities

Type a number or press I or I to select an option. Then press Return.
Help: Press Open-Apple-?---------------------

[end of display]

50 Human Guidelines

Using the help facility

In the following example, the user points to item 6 on the above menu
and then presses Open-Apple-? Sihe is then presented with the
following help:

[Screen-shot of IIc utilities with item 6, Format a Disk help
displayed.]

When you put the help in a dialog box, make sure that you show only one
set of prompts: the current one. Do not have some random, "Press
Return to Format all your disks" left over in one part of the display,
while exhorting the user to press Return to go back to the menu in your
inset box. You will end up with a frightened user.

If you want to mark menu items previously selected by the user, do so
with an asterisk. We use this system in our in-box tutorial materials,
so your users will have been exposed to it before.

For more information about help dialog boxes, see: Help below.

51

Menus: numbers vs. letters

We have shown the menu items sequentially numbered. Numbering has the
advantage of not requiring the user to be typewriter-literate, an
important consideration when writing for young children. You may want
to work out a mnemonic lettering scheme, but if you do so, use first
letters only and do not repeat any letter more than once anywhere in
the program. You should also consider future growth: most of the
truly horrifying mnemonic systems started out small, but as the
software evolved, they got out of hand.

Sequentially numbered menus should display the number followed by a
period and two spaces. If you are using icons, follow the icon by two
spaces:

1. Eat
2. Drink
3. <BE MERRY>

The highlighting scheme does not work well on numbered menus with more
than 9 items: as it turns out, neither do people. If you have this
many -items, you should separate them into two or more categories and
create more menus.

Sequentially lettered menus are usually quite difficult for
non-touch-typists to handle, but should -you use them, use the same
format as for numbered menus:

A. Do this
B. <DO THAT>
C. Do the other

Mnemonically lettered menus display hyphens instead of periods and look
like this:

C - Create layout
P - <PRINT-OUT LAYOUT>
B - Bill the customer

Note that there is an extra space before the hyphen, but there are
still two spaces after it, to allow room for the < or inverse space.
Again, only the option itself is highlighted.

Menu entries should be written so a novice can understand them, but an
expert need read only a few keywords at the beginning. The examples
below are a bit wordy, but illustrate the point: (the underlining
shows the keywords an expert will use--it would not actually appear on
the screen.)

1. Load a file from disk into memory.
2. Edit the file currently in memory.

52 Human Interface Guidelines

3.
4.

document.
5.

Print the current document on the current printer.
Change printers: select a different printer to print your

Save the current file on disk.

The most fundamental design element for the filecard metaphor is the
three regions defined by the two solid-horizontal lines. These three
regions should appear on every display in the program, on any Apple II
computer in any mode. As simple as such an element is, it gives the
user a visual anchor-point.

The exact number of lines devoted to the three regions is not cast in
stone: the real standard being striven for is that there be three
regions with solid lines separating them, that these be devoted to
titles, choices presented, and instructions. (The Apple II and Apple
11+ can not produce a solid line in text mode; use either their hyphens
or their short-underline characters.

The title region can have up to three titles (usually two in
forty-column mode). The middle title (or left title, if only 2) should
be the name of the display, and if it is a menu, it should contain the
word, "menu". The other displays you will use, such as data-entry and
information, will have a similar format, so make sure your user is
clearly aware of what he is being asked to do: use a properly
descriptive title and do not use the word menu. Similarly, on such
information screens, do not number itemized lists; bullet them:
otherwise, about 25% of your users will try to type in a "selection".
All displays except the main menu should have the words:

Escape: [name of display]

in the top, left-hand corner, so the user knows where she or he will go
by pressing it.

You may use or not use other titles as you see fit, but they should
have a consistent meaning throughout a given application.

Choosing ~ Option

Use for confirmation questions and choosing among three alternatives or
fewer. This is the horizontal version of the scheme used on menus.

Is the above information correct? <YES> no
Do you want to delete the old file? <NO> yes
Select fill-pattern for printed graph: Cross-hatch <DOTS>

Solid

In forty column mode (shown), the standard (default) selection is
bracketed and uppercased. In 80-column mode, it is displayed in
inverse.

53

Pressing either Y or N on a confirmation question moves the pointer
(highlighting) to that word, Yes or No. Pressing Return then accepts
the selection. In any selection set where each word starts with a
unique letter, allow the user to type that letter. Do not allow
wrapping: if the user is on the left-most answer, require her to use
the Right-Arrow key to get to the right-most answer. The reason for
this seemingly unfriendly rule will be made clear below.

How ~ Ask Confirmation Questions Safely

One of the problems with confirmation questions is that the user's
response eventually becomes entirely automatic. The danger in this is
that when you really need confirmation of a dangerous situation, the
user idly selects Y Return, just as always. The following guidelines
will help overcome that problem:

.1. Do not ask for confirmation when it is not needed--most important.
2. If destruction is involved, default to the least-destrutive option.
3. Do not ring the bell for confirmation questions asked every time:

save the bell for unusual cirmstances. 4. Place the default
answer first in the list, unless an error in the

user's choice can result in catastrophic damage.

The user's pattern of use will thus be that accepting the default means
a simple Return, and rejecting the default means Right-Arrow Return.
This automatic pattern will always make the computer work, except in
one case:

This disk has active files. Reformatting will destroy them.
Do you want to re-format and destroy all files? Destroy <CANCEL>

In this case, the user must break normal pattern and can only destroy
what may be one month's work by pressing Left-Arrow Return, or typing a
letter other than Y or N. (This is the reason for not allowing
wrap-around, which would let the user press the Right-Arrow key--the
"habit key".

There is one cardinal rule that must be followed to make this sheme
work: Do not harrass the user. If there is an activity which must be
habitually handled, you must allow the user to fail. Excessive
prompting leads people to totally ignore the meaning of every prompt in
their efforts to escape from your clutches. Then, when something
really important arises, they will bang their way through it without
even looking at the words, destroying exactly what you were trying to
keep them from destroying.

These kinds of difficulties arise out of the most altruistic of
motives; they will show up when you begin to do long-term testing with
people from your target audience. Get you~ program into test sites as
early as possible, and listen to user-feedback on just these sorts of
issues.

54 Human Interface Guidelines

Marking Groups of Selections:

Quite often, particularly in file-related functions and options, such
as printer option screens, you have a group of names or options which
the user needs to select or deselect, turn on or turn off.

. ,
[show w~th MouseText check-marks in place of -->'s]

Fred's Utilities
Main Menu

Copy a File Escape: Exit to

•d2/ FRED Name: TYPE: SIZE: DATE
MODIFIED:

ZILLA. TEXT TEXT 1 BLOCK 3-AUG-85
SHAWN. TEXT TEXT 2 BLOCKS 4-AUG-85
HOUSE. FOTO BINARY 5 BLOCKS 29-JUL-82
LAZARUS SYS 1 BLOCK 17-APR-85
SHERI. FORMS TEXT 2 BLOCKS 6-AUG-85

--> RUPERTS. LIST TEXT 4 BLOCKS 3-JUL-85
RODS. NOTES TEXT 1 BLOCK 12-JUN-85
JDS.MISC. TEXT 14 BLOCKS 6-AUG-85
AMY.MEMO TEXT 4 BLOCKS 14-JUL-86
THAD. MEMO TEXT 23 BLOCKS 18-JUL-85

-> PETER. MEMO TEXT 2 BLOCKS 3-AUG-85
LEE.MEMO.3 TEXT 2 BLOCKS 3-AUG-85
LEE. MEMO. 4 TEXT 1 BLOCK 4-AUG-85

To Move: Press arrow keys To Mark/Unmark Documents: Press Solid-Apple
To Accept Marked Documents: Press RETURN.

Help: OPEN-APPLE-?

[end of display]

If there is not enough room on the display for all names, scroll the
display when the pointer (highlighting) reaches the bottom. When there
are hidden file names, display a note at the bottom (or top, when files
are hidden above) that says:

(Additional file names)

Because of the lack of special keys on the Apple II and Apple II Plus,
there has never been a standard way of doing selections such as these.
Use your imagination, and make the design you come up with conform to
the rest of your program.

"Press Return to continue"---
The user controls the movement from one display to the next by pressing

55

the Return key (or, optionally but consistently, Space bar). He is
informed by a message such as, "Press the Return key to go on to the
menu." on the bottom line of the screen. (Delay loops are difficult to
judge as to the proper duration, and become somewhat insulting to the
intelligence of the user.) The actual prompt message should give some
indication as to what will happen next, rather than simply saying
"Press Return to continue."

The educational software community has pretty much selected Space bar
instead of Return to control movement: children were found to
occasionally press Reset by accident on the older Apple II's and. Apple
II+'s. Please be consistent in your choice of Return key or Space bar,
not only within a given program, but across your complete product line.

Do not tell the user to, "Press any key". On the Apple II series
computers, you cannot currently read every key by itself: Reset,
Shift, Control. We have also found in testing that new users panic
when asked to press any key. Over 80% of them will. turn around and
say, "but what key should I press?" In questioning them about· this
response, we discovered that they are quite convinced that even though
the prompt implied all keys were O.K. to press, some could be
dangerous. Of course, they were usually quite right.

While you should not tell them to press any key, yoll·may, in this
specific case, accept more than the key. specified. Both Return and
Space bar can be accepted, even though only one is prompted for: users
grow used to using one or the other. The exception to this.lies in
alert messages: use Space bar for dangerous, unusual.alerts rather
than Return. The habitual user will attempt to clear most alerts with
scarcely a glance, but when Return fails to clear it, she or he will be
forced to look further.

Never accept Escape instead of Return or Space bar, unless the latter
two keys will result in the same thing the user would expect of Escape:
moving up one level.

Arrays and the Filecard Metaphor

Displays with several input statements:

* Movement from input to input is sequential: the user may move back
and forth but not randomly skip around. (The exception is the
spreadsheet sort of array, where the user can use the four arrow keys.)

* Pressing the Tab key automatically positions the user at the next
input statement.

* Pressing Open-Apple-Tab
previous input statement.
will be displayed as that

automatically positions the user at the
The prior response to the previous input

input's default.

* The last input on the display will normally ask if the user has
completed all responses to her or his satisfaction.

56 Human Interface Guidelines

* No input will be accepted without the user explicitly terminating it,
usually with Return, Tab or Open-Apple-Tab. The fact that the user has
used up all the spaces available in the field should not automatically
move the user to the next question.

Alerts

An alert box is a narrow rectangle that appears low on the screen. An
alert box is primarily a one-way communication from the system to the
user; the only way the user can respond is with Return,Space, Escape,
or perhaps Y or N. Figure 27 shows a typical alert box.

~ I
esclICancel

10KCAUTION

Are you sure
you want to erase all
changes to your document?

Figure 27. An Alert Box

The prompt in an alert box depends on the nature of the box. If the
box presents the user with a situation in which no alternative actions
are available, the box has a single prompt that says either "Press
Return" or "Press Space bar". In this context, pressing the proper key
means "I have read the alert."

Space bar is more apt to cause the user to read the contents of the
alert; users press Return so automatically, they sometimes forget to
look at what they are acknowledging. If your program has numerous
displays that use Return to continue, you may want to use Space for
each and every alert. Otherwise, reserve Space only for those "Stop"
occasions (see: Alert Messages in the Generic Interface section) when
the user is in danger of doing something large, permanent, and probably
unexpected. If the user is given alternatives, then typically the
alert is phrased as a question that can be answered "yes" or "no",
although some variation such as Save and Don't Save is also acceptable.

For further information on beeps, the types of alert messages, how and
when to write one, read Alert Messages in the Generic Interface
section.

57

Help

The user should not be faced with page after page of instructions:
experience has proven that people simply will not read them. Rather,
supply help as it is needed. One way of doing that is described above
in the section on menus.

When you try your program out on new users, be sensitive to the times
they need fundamental help in using the features of the programs. For
example, while you may have a program portion with detailed
explanations on why ellipsoid analysis is so effective in figuring hog
belly futures, your user may never get there: you may not have
provided necessary help in how to enter preliminary data.

The standard help key on the Apple lIe and later model Apple II
computers is OPEN-APPLE-? and, optionally, SOLID-APPLE-? (The SHIFT
should not be required: therefore, also accept OPEN-APPLE-/ and
SOLID-APPLE-/.)

The standard help key on the Apple II and Apple 11+ is a question mark
or slash, with no modifier key.

A help dialog box. is a rectangle that appears higher on the screen than
an alert box. A help box is also primarily a one-way communication
from the system to the user; the only way the user can respond is with
Return or Escape. Figure 27 shows a typical help box~

Figure 27. A Help Box

The prompt in a help box will normally either say "Press Return for
more information" or "Press Return to continue," depending on whether
there are more pages of information. You m~y also enable
Open-Apple-Return to back up through the pages, and you should enable
Escape in all cases to cancel the help function. In an education
program in which you are consistently using Space bar instead of Return
for "page-turning," you can use "Press Space bar".

58 Human Interface Guidelines

Vocabulary

Jargon

Avoid computer jargon. A great deal of it has an unrelated emotional
charge. (Abort. for example.) The appendix to How!£ Write a Manual
has a comprehensive list of standard terms.

Abbreviations

Use abbreviations only where absolutely necessary or where an
abbreviation is better understood than what it stands for. e.g •• 8 PM.

Defaults

Please do not ever use the word default in a program designed for
humans. Default is something the morgage went into right before the
evil banker stole the Widow Parson's house. There is an exhaustive
list of substitutes (previous. automatic. standard. etc.) in the
Appendix to How ~ Write a Manual.

Defaults should be declared. not assumed. Undeclared (not displayed)
defaults such as pressing RETURN for Yes (or for No?) will cause
confusion and anger. You need not declare ESCAPE every time you enable
it: ESCAPE always gets you out of where you are, to where you came
from, without causing damage or confusion. As long as that benign
definition is adhered to. you may feel free to slip in ESCAPE anywhere.--

.........................
'- ... \, .
'- \. .., ..:;.~\ ..

Interfaoe

The Desktop

..:..:<..:..:..:..: ":":":":":<..:..:..:..:..:..:..: ..:..: -':'" ":":":":\...:..: ',,":":":":":":":": ..: ..: ..:..:..: •.. ..:..:..:..:..: ..:..:..:..:..:..:.~..: ..:..: ..:..:..:..: ..:..:.~. \ '- \ ..:-->>> :-. >'.. :-.> :-.:-.:--:--:-- :-. :-. :-. :-.:-. :-.:-.>:-.>:-. ':-.:-. :-.>:-.:--:-.:-. :-.:-.> :-- :-.:-.:-.
... \ ..

>:-.......... »»>:-.:-.:-.>

ABOUT THIS MANUAL

This section describes the Apple II windowing user interface.

The windowing user interface consists of those features that are
generally applicable to a variety of applications. Not all of the
features are found in every application. In fact, some features are
hypothetical and may not be found in any current applications.

The best time to familiarize yourself with the windowing user interface
is before beginning to design an application. Good application design
happens when 'a developer has absorbed the spirit as well as the details
of the user interface.

Before launching into your own design, you should have read this manual
and have some experience using one or more applications, preferably one
each--or-a word processor, spreadsheet or database, and graphics
application. If you are beginning early eIlbugh·thatsuch applications
are not redily available on the Apple II, then use such applications on
the MacIntosh.

1/15/85 Tognazzini

INTRODUCTION 59

INTRODUCTION

Apple II windowing software is designed to appeal to an audience of
nonprogrammers, including people who have previously feared and
distrusted computers. To achieve this goal, Apple II windowing
applications should be easy to learn and to use. To help people feel
more comfortable with the applications, the applications should build
on skills that people already have, not force them to learn new ones.
The user should feel in control of the computer, not the other way
around. This is achieved in applications that embody three qualities:
responsiveness, permissiveness, and consistency, leading to the user's
having a sense of autonomy.

Responsiveness means that the user's actions tend to have direct
results. The user should be able to accomplish what needs to be done
spontaneously and intuitively, rather than having to think: "Let's
see; to do C, first I have to do A and B and then••• ". For example,
with pull-down menus, the user can choose the desired command directly
and instantaneously. This is a typical operation: The user moves the
pointer to a location on the screen and presses the mouse button.

Permissiveness means that the application tends to allow the user to do
anything reasonable. The user, not the system, decides what to do
next. Also, error messages tend to come up infrequently. If the user
is constantly subjected to a barrage of error messages, something is
wrong somewhere.

The most important way in which an application is permissive is in
avoiding modes. This idea is so important that it's dealt with in a
separate section, "Avoiding Modes", below.

The third and most important principle is consistency. Since users
usually divide their time among several applications, they have
historically felt confusion and irritation as they faced learning a
completely new interface. for each application. The main purpose of
this manual is to describe the shared interface ideas of windowing
applications, so that developers of new applications can gain leverage
from the time spent developing.and testing existing applications bbth
for Macintosh/Lisa and the Apple II.

With the MouseText and MouseGraphics windowing toolkits available from
Apple, consistency has become an achievable goal. However, you should
be aware that implementing the user interface guidelines in their full
glory often requires writing additional code that isn't supplied.

Of course, you shouldn't feel that you're restricted to using existing
features. The Macintosh/Apple II world is a growing system, and new
ideas are essential. But the bread-and-butter features, the kind that
every application has, should certainly work the same way so that the
user can move easily back and forth between applications. The best
rule to follow is that if your application has a feature that's
described in these guidelines, you should implement the feature exactly
as the guidelines describe it. It's better to do something completely

1/15/85 Tognazzini IINTF/INTRO

60 Human Interface Guidelines

different than to half~agree with the guidelines.

Illustrations of most of the features described in this manual can be
found in various already-released Macintosh and Apple II applications.
However, there is probably no one application that illustrates these
guidelines in every particular. Although it's useful and important for
you to get the feeling of the user interface by looking at existing
Macintosh and Apple II applications, the guidelines in this manual are
the ultimate authority. Wherever an existing application disagrees
with the guidelines, follow the guidelines.

Avoiding Modes

"But, gentlemen, you overdo the mode."
-- John Dryden, The
Assignation, or Love in i
Nunnery, 1672

A mode is a part of an application that the user has to formally enter
and leave, and that restricts the operations that can be performed
while it's in effect. Since people don't usually operate modally in
real life, having to deal with modes in computer software reinforces
the idea that computers are unnatural and unfriendly.

Modes are most confusing when you're in the wrong one. Unfortunately,
this is the most common case. Being in a mode is confusing because it
makes future actions contingent upon past ones; it changes the behavior
of familiar objects and commands; and it makes habitual actions cause
unexpected results.

It's tempting to use modes in a windowing
existing software leans on them heavily.
temptation too frequently, however, users
with your application a chore rather than

application, since most
If·· you· yield to the
will consider spending time
a satisfying experience.

This is not to say that modes are never used in windowing applications.
Sometimes a mode is the best way out of a particular problem. Most of
these modes fall into one of the following categories:

- Long-term modes with a procedural basis, such as doing word
processing as opposed to graphics editing. Each application
program is a mode in this sense.

- Short-term "spring-loaded" modes, in which the user is constantly
doing something to perpetuate the mode. Holding down the mouse
button or a key is the most common example of this kind of mode.

- Alert modes, where the user must rectify an unusual situation
before proceeding. These modes should be kept to a minimum.

Other modes are acceptable if they meet one of the following
requirements:

1/15/85 Tognazzini /INTF/INTRO

INTRODUCTION 61

- They emulate a familiar real-life model that is itself modal, like
picking up different-sized paintbrushes in a graphics editor.
MousePaint and other palette-based applications are examples of
this use of modes.

- They change only the attributes of something, ;md not its
behavior, like the boldface and underline modes of text entry.

- They block most other normal operations of the system to emphasize
the modality, as in error conditions incurable through software
("There's no disk in the disk drive", for example).

If an application uses modes, there must be a clear visual indication
of the current mode, and the indication should be near the object being
most affected by the mode. It should also be very easy to get into or
out of the mode (such as by clicking on a palette symbol).

Several features of the keyboard (mouseless) interface.are modaL For
example, the cursor keys are usually redefined, along with Escape and
Return being used as mode-terminators. However, every effort has been
made to limit both the extent of this modality to only these keys, and
to be consistent in the kind of behavior changes that the user can
expect.

TYPES OF APPLICATIONS

It's useful to make a distinction among three types of objects that an
application deals with: text, graphics, and arrays. Examples of each
of these are shown in Figure 1.

1/15/85 Tognazzini /INTF /APPS

62 Human Interface Guidelines

The rest to ,ome f8i nt meeni"9 rrnske pretenco
But SMd'Well never deviates into S8Me.
Some beam, of 'Wit on other sou), fMt,J fell,
Strike throU9h and make 0 lucid intervel;
But Shoo'Wel1'3 l}enul ne night edmits no rOil,
Hi5 rising fogs prevail upon the day.

Text

Graphics

Advertisirl9 132.9

MenUfectur109 121.3

R&D 18.7

Interest 12.2

Totsl 285.1

Array

Figure 1. Ways of Structuring Information

Text can be arranged in a variety of ways on the screen. Some
applications, such as word processors, might consist of nothing but
text, while others, such as graphics-oriented applications, use text
almost incidentally. It's useful to consider all the text appearing
together in a particular context as a block of text. The size of the
block can range from a single field, as in a dialog box, to the whole
document, as in a word processor. Regardless of its size or
arrangement, the application sees each block as a one-dimensional
string of characters. Text is edited the same way regardless of where

1/15/85 Tognazzini /INTF/APPS

TYPES OF APPLICATIONS 63

it appears.

Graphics are pictures, drawn either by the user or by the application.
Graphics in a document tend to consist of discrete objects, which can
be selected individually. Graphics are discussed further below, under
"Using Graphics".

Arrays are one- or two-dimensional arrangements of fields. If the
array is one-dimensional, it's called a form; if it's two-dimensional
it's called a table. Each field, in turn, contains a collection of
information, usually text, but conceivably graphics. A table can be
readily identified on the screen, since it consists of rows and columns
of fields (often called cells), separated in. graphics environments by
horizontal and vertical lines. A form is something you fill out, like
a credit-card application.' A form may not be as obvious to the user as
a table, since the fields can be arranged in any appropriate way.
Nevertheless, the application regards the fields as in a definite
linear order.

Each of these three ways of presenting information retains its
integrity, regardless .of the context in which it appears. For example,
a field in an array can contain text. When the user is manipulating
the field as a whole, the field is treated as part of the array. When
the user wants to change the contents of the field, the contents are
edited in the same way as any other text.

Another case is text that appears. in a graphics application. Depending
on the circumstances, the text can be> treated as text or as graphics.
In MousePaint, for example, .the. way text is treated depends on which
palette symbol is in effect. If the text symbol is in effect, text can
be edited in the usual way, but cannot be moved around on the screen.
If the selecting arrow is in effect, a block of text can be moved
around, but it cannot be edited.

USING GRAPHICS

The MouseGraphics toolkit gives full access to the Apple II
high-resolution graphics scre.en. To use this screen to its best
advantage, MouseGraphics applications use graphics copiously, even in
places where other applications use text. As much as possible, all
commands, features, arid parameters of an application, and all the
user's>data, appear a.s gra.phic objects on the screen. Figure 2 shows
some of the ways in which applications can use graphics to communicate
with the user.

1/15/85 Tognazzini /INTF/GRAPHICS

64 Human Interface Guidelines

P
,.-.,
I IL_"

Palettel with
~~-paintbru$l

~ymbol selected,g
Dial
o.
00
c:?tA?
alZ.Icons

CJ ~ D
[Q[d~mm

Figure 2. Objects on the Screen

Objects, whenever applicable, resemble the familiar material objects of
which they are symbolic.

Objects are designed to look good on the screen. Predefined graphics
patterns can give objects a. shape and texture beyond simple line
graphics. Placing a drop-shadow slightly below and to the right of an
object can give it a three-dimensional appearance.

Generally, when the user clicks on an obj ect, it's highlighted to
distinguish it from its peers. The most common way to show this
highlighting is by inverting the object: reversing its black and white
pixels. In some situations, other forms of highlighting, such as the
knobs used in MacDraw, may be more appropriate. The important thing is
that there should always be some sort of feedback, so that the user
knows that the click had an effect •

.One special aspect of the appearance of a document on the screen is
visual fidelity. This principle is also known as "what you see is what
you get". It primarily refers to printing: The version of a document
shown on the screen should be as close as possible to its printed
version, taking into account inevitable differences due to .different
media. The ability to achieve visual fidelity in the Apple II world is
not as great as that in the Macintosh world: we have more varied
printer technologies to support, we cannot depend on as much available
memory, and we have a slower processor. Still, the primary reason for
choosing to use the MouseGraphics toolkit over the Mousetext toolkit is
increased visual fidelity. We should therefor be as thorough and
clever as possible in maximizing that fidelity.

1/15/85 Tognazzini /INTF/GRAPHICS

USING GRAPHICS 65

Icons

A fundamental object in windowing software is the icon, a small graphic
object that is usually symbolic of an operation or of a larger entity
suc9 as a document.

Icons should be sprinkled liberally over the screen. Wherever an
explanation or label is needed, first consider using an icon instead of
using text as the label or explanation. Icons not only contribute to
the clarity and attractiveness of the system, they don't need to be
translated into foreign languages.

Palettes

Some applications use palettes as a quick way for the user to change
from one operation to another. A palette is a collection of small
squares, each containing a symbol. A symbol can be an icon, a pattern,
a character, or just a drawing, that stands for an operation. When the
user clicks on one of the symbols, it's distinguished from the other
symbols, such as by highlighting, and the previous symbol goes back to
its normal state.

Typically, the symbol that's selected determines what operations the
user can perform. Selecting a palette symbol puts the user into a
mode. This use of modes can be justified because changing from one
mode to another is almost instantaneous , and the us~ can always see at
a glance which mode is in effect. Like all modal features, palettes
should be used only when they're the most natural way to structure an
application.

A palette can either be part of a window (as in MacDraw), or a separate
window (as in MousePaint). Each system has its disadvantages. If the
palette is part of the window, then parts of the palette might be
concealed if the user makes the window smaller. On the other hand, if
it's not part of the window, then it takes up extra space on the
desktop. If an application supports multiple documents open at the
same time, it might be better to put a separate palette in each window,
so that a different palette symbol can be in effect in each document.

COMPONENTS OF THE WINDOWING SYSTEMS

This section explains the relationship among the principal large-scale
components of the windowing systems (from an external point of view).

The main vehicle for the interaction of the user and the system is the
application. Only one application is active at a time. When an
application is active, it's in control of all communications between
the user and the system. The application's menus are in the menu bar,
and the application is in charge of all windows as well as the desktop.

1/15/85 Tognazzini /INTF/STRUC

66 Human Interface Guidelines

To the user, the main unit of information is the document. Each
document is a unified collection of information--a single business
letter or spreadsheet or chart. A complex application, such as a data
base, might require several related documents. Some documents can be
processed by more than one application, but each document has a
principal application, which is usually the one that created it. The
other applications that process the document are called secondary
applications.

The only way the user can actually see the document (except by printing
it) is through a window. The application puts one or more windows on
the screen; each window shows a view of a document or of auxiliary
information used in processing the document. The part of the screen
underlying all the windows is called the desktop.

At the time of this writing, we have not created tools for making a
Macintosh-like Finder to change applications. With such a Finder
active, if the user double-clicks on either the application's icon or
the icon of a document belonging to that application (or opens the
document or application by choosing Open from the File menu), the
application becomes active and displays the document window. If you
are using the MouseGraphics environment for a integrated software
package, you still might want to emulate the Macintosh Finder. If you
are writing a text-based integrated application or hard-disk filing
system, please contact Apple II technical support to find out what kind
of metaphor we are using/recommending.

Internally, applications and documents are both kept in files.
However, the user never sees files as such, so they don't really enter
into the windowing user interface.

THE KEYBOARD MOUSE

At the time of this writing, the majority of Apple II owners did not
have a mOuse. While this situation was expected to change with the
arrival of more. and more. mouseware, developers feltarieed for an
interface for text applications that would be fully functional without
a mouse. The Apple II windowing interface has been developed to be a
powerful, practical tool with or without a mouse.

Figure 3A. The Twin Speres

Conceptually, the Keyboard and Mouse interfaces exist as overlapping
spheres, with many operations, such as typing text, in common. They
differ in how the non-mouse user performs the various
pointing-and-choosing operations:

- Choosing from a menu: pressing Escape takes the user to the menu,
the cursor keys moves around the menu, Return accepts the current
item, and Escape cancels. See: "The menu bar".

1/15/85 Tognazzini /INTF/STRUC

THE KEYBOARD MOUSE 67

- Moving and sizing a window: Open-Apple-n for drag redefines the
cursor keys to move the window; Open-Apple-G for grow redefines
the cursor keys to grow or shrink the window. See: "Moving a
Window" and "Changing the size of a Window".

- Selecting text: Open-Apple-M for mark begins a text-selection
mode. Moving the cursor keys marks the text, Return accepts,
Escape cancels. See: "Selecting Text".

- Clicking on controls: Solid-Apple, by itself, acts as a mouse
button to click on buttons, check boxes, and radio buttons. See:
"Controls"

- Moving the insertion point: Pressing the cursor keys moves the
insertion point. See: "Selecting".

As much keyboard support as is practical has been installed within the
various mouse toolkits; where you must provide your own, follow the
direction and philosophy of these guidelines and the toolkits
themselves. When using a toolkit-based application, the keyboard user
can directly emulate a mouse by holding down the Open-Apple key and
pressing, then releasing Solid-Apple. The cursor keys then affect the
mouse cursor so the user can move around the display, using Solid-Apple
as the mouse button to click, press, or drag. When the Open-Apple key
is released, mouse emulation is terminated.

The mouseless mouse is intluded as asafety net. should a developer fail
to discover in testing that there is a necessary feature that the
keyboar-d user cannot get to without a mouse •. ltls also allows for
rather. flashy live demonstrations of your software' sindependence of
the mouse. It is not intended as a substitute for the proper design of
a keyboard-only interface: it was designed for ease of learning rather
than ease of use, and to lower memory and documentation requirements.

THE MOUSE

The mouse is a small device the size of a deck of playing cards,
connected to the computer by a long, flexible cable. There's a button
on the top of the mouse. The user holds the mouse and rolls it on a
flat, smooth surface. A pointer on the screen follows the motion of
the mouse.

Simply moving the mouse results only in a corresponding movement of the
pointer and no other action. Most actions take place when the user
positions the "hot spot" of the pointer over an object on the screen
and presses and releases the mouse button. The hot spot should be
intuitive, like the point of an arrow or the center of a crossbar.

1/15/85 Tognazzini /INTF/MOUSE

68 Human Interface Guidelines

Mouse Actions

The three basic mouse actions are:

- clicking: positioning the pointer with the mouse, then briefly
pressing and releasing the mouse button without moving the mouse

- pressing: positioning the pointer with the mouse, then holding
down the mouse button without moving the mouse

- dragging: positioning the pointer with the mouse, holding down
the mouse button, moving the mouse to a new position, and
releasing the button

The Mouse Toolkits can provide "mouse-ahead"; that is, any mouse
actions the user performs when the application isn't ready to process
them are saved in a buffer and can be processed at the application's
convenience. The application can then choose to ignore saved-up mouse
actions, but should do so only to protect the user from possibly
damaging consequences.

Clicking something with the mouse performs an instantaneous action,
such as selecting a location within the user's document or activating
an obj ect.

For certain kinds of objects, pressing on the object has the same
effect as clicking it repeatedly. For example, clicking a scroll arrow
causes a document to scroll one line; pressing on a scroll arrow causes
the document to scroll repeatedly until the mouse. button is released or
the end of the document is reached.

Dragging can have different effects, depending on what's under the
pointer when the mouse button is pressed. The uses of dragging include
choosing a menu item, selecting a range of objects, moving an object
from one place to another, and shrinking or expanding an object.

Some objects, especially graphic objects, can be moved by dragging. In
. this case, the application attaches a dotted outline of the object to
the pointer and redraws the outline continually as the user moves the
pointer. When the user releases th~ mouse. button, the application
redraws the complete object at the new location.

An object being moved can be restricted to certain boundaries, such as
the edges of a window frame. If the user moves the pointer outside of
the boundaries, the application stops drawing the dotted outline of the
object. If the user releases the mouse button while the pointer is
outside of the boundaries, the object isn't moved. If, on the other
hand, the user moves the pointer back within the boundaries again
before releasing the mouse button, the outline is drawn again.

In general, moving the mouse changes nothing except the location, and
possibly the shape, of the pointer. Pressing the mouse button
indicates the intention to do something, and releasing the button

1/15/85 Tognazzini /INTF/MOUSE

THE MOUSE 69

completes the action. Pressing by itself should have no effect except
in well-defined areas, such as scroll arrows, where it has the same
effect as repeated clicking.

Multiple-Clicking

A variant of clicking involves performing a second click shortly after
the end of an initial click. If the downstroke of the second click
follows the upstroke of the first by a short amount of time, and if the
locations of the two clicks are reasonably close together, the two
clicks constitute a double-click.

Because of the difficulty of detecting time-between-clicks on the Apple
II, it is permissible to define double-clicking simply as two clicks
geographically close together and with no intervening events. Its most
common use is as a faster or easier way to perform an action that can
also be performed in another way. F6rexample, clicking twice on an
icon is a faster way to open it than choosing Open; clicking twice on a
word to select it is faster than dragging through it.

An operation invoked by double-clicking an object must be an
enhancement, superset, or extension of the feature invoked by
single-clicking that object.

Triple-clicking is also possible; it should similarly represent an
extension of a double-click.

Changing Pointer Shapes

The pointer may change shape to give feedback on the range of
activities that make sense in a particular area of the screen, in a
current mode,or both.

- The result of any mouse action depends on the item under the
pointer when the mouse button is pressed. To emphasize the
differences among mouse actions, the pointer may assume different
appearances in different areas to indicate the actions possible in
each area.

- Where an application uses modes for different functions, the
pointer can be a different shape in each mode. For example, in
MousePaint, the pointer shape always reflects the active palette
symbol.

Figure 5 shows some examples of pointers and their effect. An
application can design additional pointers for other contexts.

1/15/85 Tognazzini /INTF/MOUSE

70 Human Interface Guidelines

bcr, desktop, 8I'ld so on

Mo vxGrep..h1£l t1meTex1
f2.ll1W: f2inkr ~

~ ~
SCroll ber end other control:!, alze box
flUe ber, menu baf, de3ktop, end ~ on

I L Selecting text

+ HIll Dr8'Nlng, shrinking, 01' atretchlng
grephlc object'

c8:a .IL. Selecting field, In en llfTay,,.

J: :x Showing that a lengthy operatlon I,
In Pl'0VC"

Figure 5. Pointers

SELECTING

The user selects an object to distinguish it from other objects just
before performing an operation on it. Selecting the object of an
operation before identifying the operation is a fundarnental
characteristic of windowing software.

Selecting an object has no effect on the contents of a document.
Making a selection shouldn't commit the user to anything; the user is
never penalized for making an incorrect selection. The user fixes an
incorrect selection by making the correct selection.

Although there is a variety of ways to select objects, they fall into
easily recognizable groups. Users get used to doing specific things to
select objects, and applications that use these methods are therefore
easier to learn. Some of these methods apply to every type of
application, and some only to particular types of applications.

This section discusses first the genera.l lIiE!thods, and then the specific
methods that apply to text applications, graphics applications, and
arrays. Figure 6 shows a comparison of some of the general methods.

1/15/84 Tognazzini /INTF/SELECT

Clicking on B
selech B

B c

~

SELECTING' 71

r;----········-·-···--··....·........·····..·....-l

i I~I I ':'';'
I I -.-
I f
L _.._._ _ J

Figure 6. Selection Methods

Selection by Clicking

The most straightforward method of selecting an object is by clicking
on it once. Most things that can be selected in windowing applications
can be selected this way.

Some applications support selection by double-clicking and triple
clicking. As always with multiple clicks, the second click extends the
effect of the first click) and the third click extends the effect of
the second click. In the case of selection, this means that the second
click selects the same sort of thing as the first click, only more of
them. The same holds true for the third click.

For example) in text) the first click selects an insertion point)
whereas the second click selects a whole word. The third click might
select a whole block or paragraph of text. In graphics, the first
click selects a single object, and double- and triple-clicks might
select increasingly larger groups of objects.

Range Selection

The user selects a range of objects by dragging through them. Although
the exact meaning of the selection depends on the type of application)
the procedure is always the same:

1. The user positions the pointer at one corner of the range and
presses the mouse button. This position is called the anchor
point of the range.

2. The user moves the pointer in any direction. As the pointer is
moved) visual feedback keeps the user informed of the objects that

1/15/84 Tognazzini /INTF/SELECT

72 Human Interface Guidelines

would be selected if the mouse button were released. For text and
arrays, the selected area is continually highlighted. For
graphics, a dotted rectangle expands or contracts to show the
range that will be selected.

3. When the feedback shows the desired range, the user releases the
mouse button. The point at which the button is released is called
the endpoint of the range.

Extending a Selection

A user can change the extent ofanexisttl1g selection by holding down
the Open-Apple key and c1ickingt~e mouse. button•• (This is an
unfortunate but unayoidable difference with MacIntosh, where
Shift-click is used instead. Should Apple II hardware ever permit
reading the shift key by itself, windowing software should accept
either a Shift-click or an Open-Apple-click.) Exactly what happens
next depends on the context.

In text or an array, the result of an Open-Apple-click is always a
range. The position where the button is clicked becomes the new
endpoint or anchor point. of the range; the selection can be extended in
any direction. If the user clicks within the current range, the new
range will be smaller than the old range.

In graphics, a selection is extended by adding objects to it; the added
objects do not have to be adjacent to the objects already selected.
The user can add either an individual object or a range of objects to
the selection by holding down the Open-Apple key before making the
additional selection. If the user holds down the Open-Apple key and
selects one or more objects that are already highlighted, the objects
are deselected.

Extended selections can be made across the panes of a split window.
(See "Splitting Windows".)

Making a Discontinuous Selection

In graphics applications, objects aren't usually considered to be in
any particular sequence. Therefore, the user can use Open-Apple-click
to extend a selection by a single object, even if that object is
nowhere near the current selection. When this happens, the objects
between the current selection and the new object are not automatically
included in the selection. This kind of selection is called a
discontinuous selection. In the case of graphics, all selections are
discontinuous selections.

This is not the case with arrays and text, however. In these two kinds
of applications, an extended selection made by an Open-Apple-click
always includes everything between the old selection and the new
endpoint. To provide the possibility of a discontinuous selection in

1/15/84 Tognazzini /INTF/SELECT

SELECTING' 73

these applications, the user interface includes Solid-Apple-click.

To make a discontinuous selection in a text or array application, the
user selects the first piece in the normal way, then holds down the
Solid-Apple key before selecting the remaining pieces. (It is useful
but not absolutely necessary that the user have two right hands.) Each
piece is selected in the same way as if it were the whole selection,
but because the Solid-Apple key is held down, the new pieces are added
to the existing selection instead of supplanting it.

If one of the pieces selected is already within an existing part of the
selection, then instead of being added to the selection it's removed
from the selection. Figure 7 shows a sequence in which several pieces
are selected and deselected.

A 8 c o
CeIIs 82/ 83/ C2/ and C3
ere selected

1
2
1-----

3
~~---

5

A 8 c o
The U3er holds down the 1
Solid-Apple ~ev.end clicks in 2~
D5 3

1~---

5 "- -'- ---1"- _

oc8A,
23 ...--_.....

'1
5 t==t==t==:l-.",.~~,...dif&t·,';"

The U3er holds down the
Solid-Apple ~ey end clicks in
C3

Figure 7. Discontinuous Selection

Not all applications support discontinuous selections, and those that
do might restrict the operations that a user can perform on them. For
example, a word processor might allow the user to choose a font after
making a discontinuous selection, but not to choose Cut or Paste.

1/15/84 Tognazzini /INTF/SELECT

74 Human Interface Guidelines

Selecting with the Cursor Keys

The user can alternatively mark a selection using the cursor keys. To
signal the system that a selection is about to be marked t the user
presses Open-App1e-M. The current insertion-point then becomes the
anchor of the se1ection t and the selection can be extended in any
direction using the four cursor keys.

Pressing Open-App1e-M twice before using the cursor keys is equivalent
to a mouse double-click; pressing Open-App1e-M three times is
equivalent to a mouse triple-click. In the case of text t the
anchor-point is always at the top-left point of the expanded
insertion-point and the current cursor position is always at the
bottom-right.

a se1ection t the user presses Solid-App1e-M as an equivalent of
Open-App1e-c1ick. There is no equivalent of Solid~App1e-c1ick. Only
provide Solid..Apple-M.if .itts really needed: One of the primary
reasons for being able to extend a text selection in the mouse world is
that the usernEH~ds togo to the scroll-bar to move any significant
distance. The cursor-key user does not need to use the scroll bar.
Reaching a window end will scroll the window's contents; pressing
Open-Apple at the same time as a cursor key will move the cursor by an
appropriately large chunk t such as one word horizontally or one page
vertically.

Other than the.meth0d.«)tfig:n.a.lling the beginning and end ofa
selection t selecti.n~iu~ill~/tliecursor keys follows the same general
guidelines as selecting with a mouse. (Differences are noted.)

Selecting Text

Text is used in most applications; it's selected and edited in a
consistent waYt regardless of where it appears.

A block of text :I.sastringofi>characters. A text selection is a
substring of this string''0:l1fshcan have any length from zero
characters to the whole block. Each of the text selection methods
selects a different kind of substring. Figure 8 shows different kinds
of te*tselections.

1/15/84 Tognazzini /INTF/SELECT

SELECTING· 75

Intertlon point - MeIlNGnll'hlct Andl sprlngth the wude nu

IMeTtion point - HunText AntLspri ngth the wude nu

blinking ----1

neoge of chefetC lura

Word

Range of words

Discontinuoull
Selection

Ancisprlngth the ",,:ude nu

AIDm:lEngth the wUde nu.

EI!mJ sprlngth the wude nu

cucrltsMMtrriW the wude nu.

~ngth the~ nu.

Figure 8. Text Selections

Insertion Point

The insertion point is a zero-length text selection. The user
establishes the location of the insertion point by clicking between two
characters. The insertion point then appears at the nearest character
boundary. If the user clicks to the right of the last character on a
line, the insertion point appears immediately after the last character.
The converse is true if the user clicks to the left of the first
character in the line.

The insertion point shows where text will be inserted when the user
begins typing, or where the contents of the Clipboard will be pasted.
After each character is typed, the insertion point is relocated to the
right of the insertion.

If, between the mouse-down and the mouse-up, the user moves the pointer
more than about half the width of a character, the selection is a range
selection rather than an insertion point. The cursor-key user begins
the same process with Open-Apple-M.

Selecting Words

The user selects a whole word by double-clicking somewhere within that
word. If the user begins a double-click sequence, but then drags the
mouse between the mouse-down and the mouse-up of the second click, the
selection becomes a range of words rather than a single word. As the
pointer moves, the application highlights or unhighlights a whole word
at a time. The cursor-key user cannot select a range of words,
although she can select the whole first word or paragraph by pressing
Open-Apple-M repeatedly.

A word, or range of words, can also be selected in the same way as any
other range; whether this type of selection is treated as a range of

1/15/84 Tognazzini /INTF/SELECT

76 Human Interface Guidelines

\
characters or as a range of words depends on the operation. For
example, in MacWrite, a range of individual characters that happens to
coincide with a range of words is treated like characters for purposes
of extending a selection, but is treated like words for purposes of
intelligent cut and paste.

A word is defined as any continuous substring that contains only the
following characters:

- a letter (including letters with diacritical marks)

- a digit

- a nonbreaking space (Open-Apple-Space)

- a dollar sign, cent sign, English pound symbol, or yen symbol

- a percent sign

- a comma between digits

- a period before a digit

- an apostrophe between letters or digits

- a hyphen, but not a minus sign (Open-Apple-hyphen)

This is the definition in the United States and Canada; in other
countries, it would have to be changed to reflect local formats for
numbers, dates, and currency.

If the user double-clicks over any character not on the list above,
only that character is selected.

Examples of words:

$123,456.78
shouldn't
3 1/2 [with a nonbreaking space]
.5%

Examples of nonwords:

7/1(/)/6
blue cheese [with a breaking space]
"Yoicks!" [the quotation

marks and exclamation point aren't part of the word]

Selecting a Range of Text

The user selects a range of text by dragging through the range. A
range is either a range of words or a range of indivi~ual characters,
as described under "Selecting Words", above.

1/15/84 Tognazzini /INTF/SELECT

SELECTING. 77

If the user extends the range, the way the range is extended depends on
what kind of range it is. If it's a range of individual characters, it
can be extended one character at a time. If it's a range of words
(including a single word), it's extended only by whole words.

Graphics Selections

There are several different ways to select graphic objects and to show
selection feedback in existing Macintosh and Apple II applications.
MacDraw, MousePaint, and the Macintosh Finder all illustrate different
possibilities. This section describes the MacDraw paradigm, which is
the most extensible to other kinds of applications.

A MacDraw document is a collection of individual graphic objects. To
select one of these objects, the user clicks once on the object, which
is then shown with knobs. (The knobs are used to stretch or shrink the
object, and won't be discussed in this manual.) Figure 9 shows some
examples of selection in MacDraw.

• •
• •

Figure 9. Graphics Selections in MacDraw

To select more than orie object, the user S~n select either a
multiple selection. A range selection includes every object
contained within. the .• dotted rectangl~.Sh~pel1Cf~9sestherange,
extended selection includes only thoseobjects~xp].icitly be.Lel;LeU

Selections in Arrays

As described above, under "Types of Applications", an array is a one
or two-dimensional arrangement of fields. If the array is
one-dimensional, it's called a form; if it's two-dimensional, it's
called a table. The user can select one or more fields, or part of the
contents of a field.

To select a single field, the user clicks in the field. The user can
also implicitly select a field by moving into it with the Tab or Return
key.

1/15/84 Tognazzini /INTF/SELECT

78 Human Interface Guidelines

The Tab key cycles through the fields in an order determined by the
application. From each field, the Tab key selects the "next" field.
Typically, the sequence of fields is first from left to right, and then
from top to bottom. When the last field in a form is selected,
pressing the Tab key selects the first field in the form. In a form,
an application might prefer to select the fields in logical, rather
than physical, order.

The Return key selects the first field in the next row. If the idea of
rows doesn't make sense in a particular context, then the Return.key
should have the same effect as the Tab key.

Tables are more likely than forms to support range selections and
extended selections. A table can also support selection of rows and
columns. The most convenient way for the mouse user to select a column
is to click in the column header. To select more than one column, the
user drags through several column headers. The same applies to rows.
The keyboard user will need an Open-Apple "short-cut".

To select part of the contents of a field, the user must first select
the field. The user then clicks again to select the desired part of
the field. Since the contents of a field are either text or graphics,
this type of selection follows the rules outlined above. Figure 10
shows some selections in an array.

Column Field

~.~'-"- -+_ 01 scon1 inuou$
Selection

====t===lJt~~_·~~ Ifl~~~~part of a
field

Figure 10. Array Selections

1/15/84 Tognazzini /INTF/SELECT

WINDOWS 79

WINDOWS

Windows are the rectangles on the desktop that display information.
The most commmon types of windows are document windows, desk
accessories, dialog boxes, and alert boxes. (Dialog and alert boxes
are discussed under "Dialogs and Alerts".) Some of the features
described in this section are applicable only to document windows.
Figure 11 shows a typical active window and some of its components.

Clo~ box Title bflf

Scroll errow

Scroll box

Clooc box g==J!ml~==::J1 TItle ber
Scroll 1lfTO'V

Scroll box

Scroll bar

- Size box

Scroll bel'

MQuseGra~

Figure 11. An

Multiple Windows

Scroll bar

Scroll bet

MQuseText

Window

Some applications may be able to keep several windows on the desktop at
the same time. Each window is in a different plane. Windows can be
moved around on the desktop much like pieces of paper can be moved
around on a real desktop. Each window can overlap those behind it, and
can be overlapped by those in front of it. Even when windows don't
overlap, they retain their front-to-back ordering.

Different windows can represent:

- different parts of the same document, such as the beginning and
end of a long report

- different interpretations of the same document, such as the
tabular and chart forms of a set of numerical data

- related parts of a logical whole, like the listing, execution, and
debugging of a program

- separate documents being viewed or edited simultaneously

1/15/85 Tognazzini /INTF/WINDOW

80 Human Interface Guidelines

Each application may deal with the meaning and creation of multiple
windows in its own way.

The advantage of multiple windows is that the user can isolate
unrelated chunks of information from each other. The disadvantage. is
that the desktop can become cluttered, especially if some of the
windows can't be moved. Figure 12 shows multiple windows.

-
o

ttnlFJIt.

#.

i

Inactive
windows

The
active
window

Figure 12. Multipl~ Windows

Opening and Closing Windows

Windows come up onto the screen in different ways as appropriate"to the
purpose of the window. The application controls at least the initial
size and placement of its windows.

Most windows have a close box that, when clicked, makes the window go
away. The application in control of the window determines what's done
with the window visually and logically when the close box is clicked.
Visually, the window can either shrink to a smaller object such as an
icon, or leave no trace behind when it closes. Logically, the
information in the window is either retained and then restored when the
window is reopened (which is the usual case), or else the window is
reinitialized each time it's opened. When a document is closed, the
user is given the choice whether to save any changes made to the
document since the last time it was saved.

If an application doesn't support closing a window with a close box, it
should not include a close box on the window.

1/15/85 Tognazzini / INTF!WINDOW

WINDOWS 81

The Active Window

Of all the windows that are open on the desktop, the user can work in
only one window at a time. This window is called the active window.
All other open windows are inactive. To make a window active, the user
clicks in it (or uses an Open-Apple short-cut). Making a window active
has two immediate consequences:

- The window changes appearance: Its title bar is highlighted, the
scrolling apparatus is shown in the scroll bars, and a size or
grow box is shown. If the window is being reactivated, the
selection that was in effect when it was deactivated is
rehighlighted.

- The window is moved to the frontmost plane, so that it's shown in
front of any windows that it overlaps.

Clicking in a window does nothing except activate it. To make a
selection in the window, the user must click again. When the user
clicks in a window that has been deactivated, the window should be
reinstated just the way it was when it was deactivated, with the same
position of the scroll box, and the same selection highlighted.

When a window becomes inactive, all the visual changes that took place
when it was activated are reversed. The title bar becomes
unhighlighted, the scrolling apparatus isn't shown in the scroll bars,
the size box isn't shoWn, and no selection is. shown in the window.

Moving (Dragging)_.-=a~..;;W-=i:;;;n:..=d:.:o:..:.w:....... -,- _

Each application initially places windows on the screen wherever it
wants them. The user can move a window--to make more room on the
desktop or to uncover a window it's overlapping~-by dragging it by its
title bar. As soon as the user presses in the title bar, that window
becomes the active window. A dotted outline of the window follows the
pointer until the user releases the mouse button. At the release of
the button the full window is drawn in its new location. Moving a
window doesn't affect the app~arance of the document within the window.

If the user holds down the Open-Apple key while dragging the window
outline, the window isn't made active; it moves in the same plane. (At
the time of this writing, this feature had not been implemented in the
Apple II mouse toolkits.)

The standard keyboard shortcut for dragging a window is Open-Apple-D •
The user can then use the cursor keys to drag the window outline. The
user exits by pressing ESC to cancel, RETURN to accept the new
location, or any other valid Open-Apple combination to accept and begin
the next operation.

The application should ensure that a window can never be moved
completely off the screen.

1/15/85 Tognazzini /INTF/WINDOW

82 Human Interface Guidelines

Changing the Size of a Window

If a window has a size or grow box in its bottom right corner, where
the scroll bars come together, the user can change (grow) the size of
the window--enlarging or reducing it to the desired size.

Dragging the size box attaches a dotted outline of the window to the
pointer. The outline's top left corner stays fixed, while the bottom
right corner follows the pointer. When the mouse button is released,
the entire window is redrawn in the shape of the dotted outline. The
standard keyboard shortcut for growing a window is Open-Apple-G. The
user can then use the cursor keys for growing or shrinking the window.
The user exits by pressing ESC to cancel, RETURN to accept the new
size, or any other valid Open-Apple combination to accept and move on.

Moving windows and growing them go hand in hand. If a window can be
moved, but not shrunk or grown, then the user ends up constantly
dragging windows on and off the screen. The reason for this is that if
the user drags the window off the right or bottom edge of the screen,
the scroll bars are the first thing to disappear. To scroll the
window, the user must move the window back onto the screen again. If,
on the other hand, the window can be resized, then the user can change
its size instead of dragging it off the screen, and will still be able
to scroll.

Growing a window doesn't change the position of the top left corner of
the window over the document or· the appearance of the part of the view
that's still showing; it changes only how much of the view is visible
inside the window. One exception to this rule is a command such as
Reduce to Fit in.MacDraw, which changes the scaling of the view to fit
the size of the window. If, after choosing this command, the user
resizes the window, the application changes the scaling of the view.

The application can define a minimum window size. Any attempt to
shrink the window below this size is ignored.

Scroll Bars

Scroll bars are used to change which part of a document view is shown
in a window. Only the active window can be scrolled.

A scroll bar (see Figure 11 above) is a light gray-shaft, capped on
each end with square boxes labeled with arrows; inside the shaft is a
white rectangle. The shaft represents one dimension of the entire
document; the white rectangle (called the scroll box) represents the
location of the portion of the document currently visible inside the
window. As the user moves the document under the window, the position
of the rectangle in the scroll bar moves correspondingly. If the
document is no larger than the window, the scroll bars are inactive;
they appear the same as they would in an inactive document.

1/15/85 Tognazzini /INTF/WINDOW

WINDOWS 83

There are three ways to use the mouse to move the document under the
window: by sequential scrolling, by II paging ll windowful by windowful
through the document, and by directly positioning the scroll box.

Clicking a scroll arrow moves the document in the opposite direction
from the scroll arrow. For example, when the user clicks the top
scroll arrow, the document moves down, bringing the view closer to the
top of the document. The scroll box moves towards the arrow being
clicked.

Each click in a scroll arrow causes movement a distance of one unit in
the chosen direction, with the unit of distance being appropriate to
the application: one line for a word processor, one row or column for
a spreadsheet, and so on. Within a document, units should always be
the same size, for smooth scrolling. Pressing the scroll arrow causes
continuous movement in its direction.

Clicking the mouse anywhere in the gray area of the scroll bar advances
the document by windowfuls. The scroll box, and the document view,
move toward the place where the user clicked. Clicking below the
scroll box, for example, brings the user the next windowful towards the
bottom of the document. Pressing in the gray area keeps windowfuls
flipping by until the user releases the button, or until the location
of the scroll box catches up to the location of the pointer. Each
windowful is the height or width of the window, minus one unit overlap
(where a unit is the distance the view scrolls when the scroll arrow is
clicked once).

In both the above schemes the user moves the document incrementally
until it's in the proper position under the window; as the document
moves, the scroll box moves accordingly. The user can also move the
document directly to any position simply by moving the scroll box to
the corresponding position in the scroll bar. To move the scroll box,
the user drags it along the scroll bar; an outline of the scroll box
follows the pointer. When the mouse. button is released, the scroll box
jumps to the position last held by the outline, and the document jumps
to the position corresponding to the new position of the scroll box.

If the user starts dragging the scroll box, then moves the pointer a
certain distance outside the scroll bar, the scroll box detaches itself
from the pointer and stops following it; if the user releases the mouse
button, the scroll box returns to its original position and the
document remains unmoved. But if the user still holds the mouse button
and drags the pointer back into the scroll bar, the scroll box
reattaches itself to the pointer and can be dragged as usual.

In graphics-based applications, if a document has a fixed size, and the
user scrolls to the right or bottom edge of the document, the
application displays a small amount of gray background (the same
pattern as the desktop) between the edge of the document and the window
frame.

1/15/85 Tognazzini /INTF/WINDOW

84 Human Interface Guidelines

Cursor-Key Scrolling

The Apple II interface also includes the ability to move and scroll
using the cursor keys. Each press of a cursor key moves the insertion
point one unit in the chosen direction, with the unit of distance being
appropriate to the application. When the insertion point has been
moved to a window edge, the insertion point locks, and the contents of
the window begin to be shifted one unit in the opposite direction. At
that point, that cursor key acts like the equivalent scroll arrow.

The user can increase the extent of the movement by holding down
Open-Apple while pressing the cursor key. The insertion point will
then move by the next larger contextual unit. For example, in a
word-processor, Open-Apple-Left-Arrow moves one word at a time,
Open-Apple-Up-Arrow moves one windowful at a time.

You may also provide a method to substitute for the large leaps the
mouse user can make by dragging the scroll box. Text programs, for
example, have historically used Open-Apple with the numbers 1 through 9
to move to an absolute position, with 1 being the first character in a
file and 9 being.the last. Array windows, such as spreadsheets, will
probably want to allow the user to enter a column or row designation to
move directly there.

Automatic Scrolling

There are several instances when the application, rather than the user,
scrolls the document. These instances involve some potentially sticky
problems about how to position the documenfwithin the window after
scrolling.

The first case is when the user moves the pointer out of the window
while selecting by dragging. The window keeps up with the selection by
scrolling automatically in the direction the pointer has been moved.
The rate of scrolling is the same as if the user were pressing on the
corresponding scroll arrow or arrows.

The second case is when the selection isn't currently showing in the
window, and the user performs an operation on it. When this happens,
it's usually because the user has scrolled the document after making a
selection. In this case, the application scrolls the window so that
the selection is showing before performing the operation.

The third case is when the application performs an operation whose
side-effect is to make a new selection. An example is a search
operation, after which the object of the search is selected. If this
object isn't showing in the window, the application must scroll the
window so as to show it.

The second and third cases present the same problem: Where should the
selection be positioned within the window after scrolling? The primary
rule is that the application should avoid unnecessary scrolling; users

1/15/85 Tognazzini /INTF/WINDOW

WINDOWS - 85

prefer to retain control over the positioning of a document. The
following guidelines should be helpful:

- If part of the new selection is already showing in the window,
don't scroll at all. An exception to this rule is when the part
of the selection that isn't showing is more important than the
part that's showing.

- If scrolling in one orientation (horizontal or vertical) is
sufficient to reveal the selection, don't scroll in both
orientations.

If the selection is smaller than the window, position the
selection so that some of its context is showing on each side.
It's better to put the selection somewhere near the middle of the
window than right up against the corner.

,- Even if the selection is too large to show in the window, it might
be preferable to show some context rather th~n to try to fit as
much as possible of the selection in the window.

Splitting a Window

Sometimes it's deslrabl~to be aqlE!< to see disjoint parts cfa document
simultaneously. Applications that a. c.c0rnmodate such a.capability allow
the window to be split into independently scrollable panes.

Applications that support splitting a window into panes place
split bars at the top of the vertical scroll bar and to the left of the
horizontal one. Pressing a split bar attaches it to the pointer.
Dragging the split bar positions it anywhere along the scroll bar;
releasing the mouse button moves the split bar to a new position,
splits the window at that location, and divides the appropriate scroll
bar (horizontal or vertical) into separate scroll bars for each pa.ne.
Figure 13 shows the ways a window can be split.

Horizontal Spl it Vertical Spilt Both Splits

Figure 13. Types of Split Windows

1/15/85 Tognazzini /INTF/WINDOW

86 Human Interface Guidelines

After a split, the document appears the same, except for the split line
lying across it. But there are now separate scroll bars for each pane.
The panes are still scrolled together in the orientation of the split,
but can be scrolled independently in the other orientation. For
example, if the split is horizontal, then horizontal scrolling (using
the scroll bar along the bottom of the window), is still synchronous.
Vertical scrolling is controlled separately for each pane, using the
two scroll bars along the right of the window. This is shown in Figure
14.

The pef)e3 3croll
together In
the vertlcesl
orientation

:\1111
I:":

,11111

C-Nf-)
-~-

C-N2-)---
C-N3-)---
C-N4-)---

C-M'-:>---
C-Mi)---
(-Mf)---
C-M4-)---

(-81-:>---
C-02-)---
C-03-)----
C-04-:>---

The p~ne3 ~crollindepe~ntly
in the horizontal orientation

(-Af-)

(-R2-)

(-A3-)

(-A4-)

o

Figure 14.
...

Scrolling a Split Window

To remove a split, the user drags the split bar to the bottom or the
right of the window.

The number of views in a document doesn't alter the number of
selections per document: that is, one. The active selection appears
highlighted in all views that show it. If the application has to
scroll automatically to show the selection, the pane that should be
scrolled is the last one that the user· clicked in. If the selection is
already showing·in one of the panes, no automatic scrolling takes
place.

Panels

If a document window is more or less permanently divided into different
regions, each of which has different content, these regions are called
panels. Unlike panes, which show different parts of the same document
but are functionally identical, panels are functionally different from
each other but might show different interpretations of the same part of
the document. For example, one panel might show a graphic version of
the document while another panel shows a textual version.

1/15/85 Tognazzini /INTF/WINDOW

WINDOWS 87

Panels can behave much like subwindows; they can have scroll bars, and
can even be split into more than one pane. An example of a panel with
scroll bars is the list of files in the Open dialog box.

Whether to use panels instead of separate windows is up to the
application. Multiple panels in the same window are more compact than
separate windows, but they have to be moved, opened, and closed as a
unit.

1/15/85 Tognazzini /INTF/WINDOW

COMMANDS

Once the information to be operated on has been selected, a command to
operate on that information can be chosen from lists of commands called
menus.

The Apple II's pull-down menus have the advantage that they're not
visible until the user wants to see them; at the same time they're easy
for the user to see and choose items from.

Most commands either do something, in which case they're verbs or verb
phrases, or else they specify an attribute of an object, in which case
they're adjectives. They usually apply to the current selection,
although some commands apply to the whole document or window.

When you're designing your application, don't assume that everything
has to be done through menu commands. Sometimes it's more appropriate
for an operation to take place as a result of direct user manipulation
of a graphic object on the screen, such as a control or icon.
Alternatively, a single command can execute complicated instructions if
it brings up a dialog box for the user to fill in.

The Menu Bar

The menu bar is displayed at the top of the screen. It contains a
number of words and phrases: These are the titles of the menus
associated with the current application. Each application has its own
menu bar. The names of the menus do not change, except when the user
calls for a desk accessory that uses different menus.

Only menu titles appear in the menu bar. If all of the commands in a
menu are currently disabled (that is, the user can't choose them), the
menu title should be dimmed (in gray type or flanked by the ASCII 127
checkerboard). The user can pull down the menu to see the commands,
but can't choose any of them.

Choosing Menu Commands

••• With A Mouse

To choose a command, the user positions the pointer over the menu title
and presses the mouse button. The application highlights the title and
displays the menu, as shown in Figure 15.

1/15/85 Tognazzini /INTF/COMMANDS

COMMANDS 89

Show Rulers
Custom Aulers... --+- Ellips/a

* -"Dj mmed" commend

----+- Checked commend
6R Keyboard equivalent

v' Normal Size
Reduce To Fit
Reduce

3$: Enlarge

COIT1l1l8nd crOup {
Turn Grid Off
Hide Grid Lines

Show Size
Hide Page Breaks
Drawln Size...

Figure 15. Menu

While holding down the mouse button, the. user moves the pointerd6wn
the menu. As the pointer moves to each command, the command is
highlighted. The command that's highlighted when the user releases the
mouse button is chosen. As soon as the mouse button is released, the
command blinks briefly, the menu disappears, and the command is
executed. The menu title in the menu bar remains highlighted until the
command has completed execution.

Nothing actually happens until the user chooses the command; the user
can look at any of the menus.without making a connnitment to do
anything.

The most frequently used commands should be at the top of a menu;
research shows that the easiest item for the mouse user to choose is
the second item from the top. The most dangerous commands should be at
the bottom of the menu, preferably isolated from the frequently used
commands •

••• With the Cursor Keys

Pressing Escape within the application moves the user to the last item
chosen on the menu. When the application begins, the initial cursor
location should be the title of the first menu. Once at the menu, the
user can move up and down the current menu with the Up and Down cursor
keys, and move to the top of the adjacent menus using the Left or Right
cursor keys. Once the user has reached the desired item, it is

1/15/85 Tognazzini /INTF/COHHANDS

qo

selected by pressing Return. If the user is on the title of a menu or
on a disabled item when Return is pressed, no. action will be taken.

The user may also select an item when in the menu pressing it's
keyboard equivalent key (see: Keyboard Equivalents, below). The
keyboard equivalent command will be carried out and the menu operation
will be cancelled. The user can choose simply to cancel the menu
operation by pressing Escape to return .to the application.

Escape is normally defined on the Apple II as, "move me one level up in
the program". This definition is retained in windowing software, as
Escape will cancel dialog boxes, current inputs, and so forth. The
only addition is that when the user is already at the top level (the
application), it will toggle between application and menu.

If a command can be chosen directly from the keyboard, it's followed by
the Open-Apple, Solid-Apple, or Control key (diamond) symbol and the
character used to choose it. To choose a command this way, the user
holds down the appropriate modifier key and then presses the character
key.

Whenever practical, make all keyboard equivalents be Open-Apple
combinations. If you want to provide a keyboard macro capability, let
the user program macros to the Solid-Apple key. Otherwise, accept
Solid-Apple keystrokes for Open-Apple commands. Avoid assigning two
different commands to the same. key, with only the use of Open- or
Solid-Apple to differentiate. Generally, users do not recognize the
difference between the two modifier keys.

While the toolkits enable you to use control characters for keyboard
equivalents, we generally recommend against it for the following
reasons:

- Most control keys are either tied to the hardware of the computer
or are otherwise reserved. (See: Control combinations.)

- The diamond symbol for control is not generally recognized by
users.

- Control keys are generally reserved for basic, simple, repetitive
functions, such as moving by or deleting individual characters.

The advantage to control keys is their typeability: the current
location of the Open- and Solid-Apple keys is such that they are
difficult to touch-type with any speed or accuracy. We therefore
recommend that you reserve control keys for only those things that must
be done repetitively and unconciously. We suggest that even in these
cases, you also enable the same key used with Open-Apple, as we have
done with cut, copy, and paste. This tends to make documenting and
learning easier, with the experienced user picking up the control
shortcut at an appropriate time.

1/15/85 Tognazzini /INTF/COMMANDS

COMMANDS' 91

Reserved Key Combinations

Some characters are reserved for special purposes, but there are
different degrees of stringency. Since almost every application has a
File menu and an Edit menu, the keyboard equivalents in those menus are
strongly reserved, and should never be used for any other purpose. All
these equivalents may be selected while pressing the Open-Apple key.
(All but Quit are also selectable while pressing the Control key, to
enable touch-typists to manipulate the mouse while using these editing
keys simultaneously):

Character

z
X
C
V

Q

Command

Undo (Edit menu)
Cut (Edit menu)
Copy (Edit menu)
Paste (Edit menu)

Quit (File menu)

The following Open-Apple combinations are reserved for the keyboard
equivalents of mouse operations:

Character

D
G
M

Command

Drag or move the currently active window
Grow or shrink (size) the currently active window
Mark a selection

One Open-Apple keyboard command doesn't have a menu equivalent:

Character Command

Stop current operation

Other Open-Apple keyboard equivalents are conditionally reserved. If
an application enables these commands, it shouldn't use these
characters for any other purpose, but if it doesn't, it can use them
however it likes:

Open-Apple combinations:

Character Command

P Print
S Save

1/15/85 Tognazzini /INTF/COMMANDS

Control combinations:

Character

R
C
D
E
F

* H
* I
* J
* K

L

* M

P

S

* U
V

x

z

* [

Command

Bold
Copy
Delete
Edit
Forward Delete

Left Arrow
Tab
Down Arrow
Up Arrow
Begin or End Underline
Carriage Return

Print the contents of the screen

Save

Right Arrow
Paste

Cut

Undo

Escape

* These are the control equivalents of the various Apple special keys.
Current unmodified Apple II keyboards cannot differentiate between a
Control-character sequence and its equivalent special key, for example,
Control-M and Return.

Appearance of Menu Commands

The commands in a particular menu should be logically related to the
title of the menu. In addition to command names, three features of
menus help the user understand what each command does: command groups,
toggles, and special visual features.

Command Groups

As mentioned above, menu commands can be divided into two kinds: verbs
for actions and adjectives for attributes. An important difference
between the two kinds of commands is that an attribute stays in effect
until it's cancelled, while an action ceases to be relevant after it
has been performed. Each of these two kinds can be grouped within a
menu. Groups are separated by lines, which are implemented as disabled
commands.

1/15/85 Tognazzini /INTF/COMMANDS

COMMANDS 93

The most basic reason to group commands is to break up a menu so it's
easier to read. Commands grouped for this reason are logically
related, but independent. Commands that are actions are usually
grouped this way, such as Cut, Copy, Paste, and Clear in the Edit menu.

Attribute commands that are interdependent are grouped to show this
interdependence. Two kinds of attribute command groups are mutually
exclusive groups and accumulating groups.

In a mutually exclusive attribute group, only one command in the group
is in effect at the same time. The command that's in effect is
preceded by a check mark. If the user chooses a different command in
the group, the check mark is moved to the new command. An example is
the Font menu in MacWrite; no more than one font can be in effect at a
time.

In an accumulating attribute group, any number of attributes can be in
effect at the same time. One special command in the group cancels all
the other commands. An example is the Style menu in MacWrite: the
user can choose any combination of Bold, Italic, Underline, Outline, or
Shadow, but Plain Text cancels all the other commands.

Toggles

Another way to show the presence. or absence of an attribute is by a
toggled command. In this case, the attribute has two states, and a
single command 'allows the user to toggle between the states. For
example, when rulers are showing in MacWrite, a command in the Format
menu reads "Hide Rulers". If the user chooses this command, the rulers
are hidden, and the command is changed to read "Show Rulers". This
kind of group should be used only when the wording .of the commands
makes it obvious that they're opposites.

Special Visual Features

In addition to the command names and how they're grouped, several other
features of commands communicate information to the user:

- A check mark indicates whether an attribute command is currently
in effect.

- An ellipsis (•••) after a command name means that choosing that
command brings up a dialog box. The command isn't actually
executed until the user has finished filling in the dialog box and
has clicked the OK button or its equivalent.

- The application dims a command (or flanks it with the ASCII 127
checkerboard) when the user can't choose it. If the user moves
the pointer over a dimmed item, it isn't highlighted.

- If a command can be chosen from the keyboard, it's followed by the
specific modifier key symbol (Open-Apple, Solid-Apple, or diamond

1/15/85 Tognazzini /INTF/COMMANDS

symbol for Control) and the character used to choose it.

The application can draw its own type of menu. An example of this is
the Fill menu in MacDraw.

STANDARD MENUS

One of the strongest ways in which applications can take advantage of
the consistency of the windowing user interface is by using standard
menus. The operations controlled by these menus occur so frequently
that it saves considerable time for users if they always match exactly.
Three of these menus, the? or Solid-Apple, File, and Edit menus,
appear in almost every application.

The~ Solid-Apple Menu
.-,. fill'. I otJ. nou.s.eT.tZ.n"" C-H,4f'<./lc.TeJ2s" ::rex
(4 in a MouseText-based application, Solid-K'pple in a graphics-based
application)

Desk accessories are mini-applications that you may make available to
your user while using your application. You can enable a user to issue
a command at any time to call up one of several desk accessories. More
than one accessory can be on the desktop at a time. An example of a
menu of accessories is shown in Figure 16.

Rbout MousePalnt ...
....- - _-_ ..

Scrapbook
Alarm Clock
NotePad
Calculator
Puzzle

Figure 16. Apple Menu

The? menu also contains the "About xxx" menu item, where "xxx" is the
name of the application. Choosing this item brings up a dialog box
with the name and copyright information for the application, as well as
any other information the application wants to display.

1/15/85 Tognazzini /INTF /SMENUS

OH
oS

STANDARD MENUS 95

The File Menu

The File menu allows the user to perform certain simple filing
operations. It also contains the commands for printing and for leaving
the application. The standard File menu includes the commands shown in
Figure 17.

New
Open•••

._-.._ _- ..

Close
Hide
Soue
Saue As•••
Reuert to Saued

...............__ - _ .

Poge Setup •••
Print... oP

Ouit OQ

Figure 17. File Menu

Other frequently used commands are Print Draft, Print Final, and Print
One. All of these commands are described below.

New

New opens a new, untitled document. The user names the document the
first time it's saved. This command is disabled when the maximum
number of documents allowed by.the application is already open.

Open opens an existing document. To select the document, the user is
presented with a dialog box (Figure 18). This dialog box shows a list
of all the documents on the disk whose name is displayed that can be
handled by the current application. The user can scroll this list
forward and backward. The dialog box also gives the user the chance to
look at the documents on other disks in other disk drives that belong
to the current application.

1/15/85 Tognazzini /INTF/SMENUS

Inective bu1ton 1nective bu1ton

letter
Mflrch Figures
Marketing
Memo
Messages
New Totols
Old Totals

rQ
~ lopo.

ICflncel esC) INewPath ON)
{) "---------' I

letter
March Figures
Marketing
Memo
Meuoges
New Totnls
Old Totnls

I~Open oo~1

..

IConcel escl (N"ew Poth aNI

MouseGroRlJill MouseTex1

Figure 18. Open Dialog Box

Using the Open command, the user can only open a document that can be
processed by the current application. Opening a document that can only
be processed by a different application requires leaving the
application.

This command is disabled when the maximum number of documents allowed
by the application is already open.

Close

Close closes the active document or desk acceSsory. If the user has
changed the document since the last time it was saved, the command
presents an alert box giving the user the choice of whether or not to
save the changes.

Clicking in the close box of a window is the same as choosing Close.

Save

Save makes permanent any changes to the active document since the last
time it was saved. It leaves the document open.

If the user chooses Save for a new document that hasn't been named yet,
the application presents the Save As dialog (see below) to name the
document, and then continues with the save. The active document
remains active.

If there's not enough room on the disk to save the document, the
application asks if the user wants to save the document on another
disk. If the answer is yes, the application goes through the Save As
dialog to find out which disk.

1/15/85 Tognazzini /INTF/SMENUS

STANDARD MENUS' 97

Save As

Save As saves a copy of the active document under a file name provided
by the user.
\
If the document already has a name, Save As closes the old version of
the document, creates a copy, and displays the copy in the window.

If the document is untitled, Save As saves the original document under
the specified name. The active document remains active.

Revert to Saved

Revert to Saved returns the document to the state it was in the last
time it was saved. Before doing so, it puts up an alert box to confirm
that this is what the user wants.

Page Setup

Page Setup lets the user specify printing parameters such as what the
document's paper size and printing orientation are. These parameters
remain with the document.

Print

Print lets the user specify various parameters such as print quality
and number of copies, then prints the document. The parameters apply
only to the current printing operation.

Quit

Quit leaves the application. If any open documents have been changed
since the last time they were saved, the application presents the same
alert box as for Close, once for each document.

Other Commands

Other commands that are in the File menu in some applications include:

- Print Draft. This command prints one copy of a rough version of a
document more quickly than Print. It's useful in applications and
with printers where ordinary printing is slow. If an application
has this command, it should change the name of the Print command
to Print Final.

- Print One. This command saves time by printing one copy using
default parameters without bringing up the Print dialog box. If
an application has this command, Open-Apple-P should be its

1/15/85 Tognazzini /INTF/SMENUS

keyboard equivalent.

The Edit Menu

The Edit menu contains the commands that delete, move, and copy
objects, as well as commands such as Undo, Show Clipboard, and Select
All. This section also discusses the Clipboard, which is controlled by
the Edit menu commands. Text editing methods that don't use menu
commands are discussed under "Text Editing".

The standard order of commands in the Edit menu is shown in Figure 19.

Undo (183t) Z

cut
Copy
Paste
Clear

OH
OC
au

Show Clipboard
Select All

Figure 19. Edit Menu

The Clipboard

The Clipboard is a special kind of window with a well-defined function:
it holds whatever is cut or copied from a document. Its contents stay
intact when the user changes documents, opens a desk accessory, or
leaves the application. An application can choose whether to have the
Clipboard open or closed when the application starts up.

The Clipboard looks like a document window, with a close box but with
no scroll bars. Its contents cannot be edited.

Every time the user performs a Cut or Copy on the current selection, a
copy of the selection replaces the previous contents of the Clipboard.
The previous contents are kept around in case the user chooses Undo.

The user can see the contents of the Clipboard but can't edit them. In
most other ways the Clipboard behaves just like any other window.

There is only one Clipboard, which is present for all applications that
support Cut, Copy, and Paste. The user can see the Clipboard window by
choosing Show Clipboard from the Edit menu. If the window is already

1/15/85 Tognazzini IINTF/SMENUS

STANDARD MENUS 99

showing, it's hidden by choosing Hide Clipboard. (Show Clipboard and
Hide Clipboard are a single, toggled command.)

Undo

Undo reverses the effect of the previous operation. Not all operations
can be undone; the definition of an undoable operation is somewhat
application-dependent. The general rule is that operations that change
the contents of the document are undoable, and operations that don't
are not. Most menu items are undoable, and so are typing sequences.

A typing sequence is any sequence of characters typed from the keyboard
or numeric keypad, including Delete, Return, and Tab, but not including
keyboard equivalents of commands.

Operations that aren't undoable include selecting, scrolling, and
splitting the window or changing its size or location. None of these
operations interrupts a typing sequence. That is, if the user types a
few characters and then scrolls the document, the Undo command still
undoes the typing. Whenever the location affected by the Undo
operation isn't currently showing on the screen, the application should
scroll the document so the user can see the effect of the Undo.

An application should also allow the user to undo any operations that
are initiated directly on the screen, without a menu command. This
includes operations controlled by setting dials, clicking check boxes,
and so on, as well as drawing graphic objects with the mouse.

The actual wording of the Undo command as it appears in the Edit menu
is "Undo xxx", where xxx is the name of the last operation. If the
last operation isn't a menu command, use Sbme suitable term after the
word .Undo. If the last operatibn can't be undone, the command reads
"Undo", but is disabled.

If the last operation was Undo, the menu command says "Redo xxx", where
xxx is the operation that was undone. If this command is chosen, the
Undo is undone.

Cut

The user chooses Cut either to delete the current selection or to move
it. If it's a move, it's eventually completed by choosing Paste.

When the user chooses Cut, the application removes the current
selection from the document and puts it in the Clipboard, replacing the
Clipboard's previous contents. The place where the selection used to
be becomes the new selection; the visual implications of this vary
among applications. For example, in text, the new selection is an
insertion point, while in an array, it's an empty but highlighted cell.
If the user chooses Paste immediately after choosing Cut, the document
should be just as it was before the cut; the Clipboard is unchanged.

1/15/85 Tognazzini /INTF/SMENUS

ioo

When the user chooses Cut t the application doesn't know if it's a
deletion or the first step of a move. Therefore t it must be prepared
for either possibility.

Copy is the first stage of a copy operation. Copy puts a copy of the
selection in the Clipboard t but the selection also remains in the
document.

Paste

Paste is the last stage of a copy or move operation. It pastes the
contents of the Clipboard to the document t replacing the current
selection. The user can choose Paste several times in a row to paste
multiple copies~ After a paste t the new selection is the object that
was pasted t except in text t where it's an insertion point immediately
after the pasted text. The Clipboard remains unchanged.

Clear

When the user chooses Clear t the application removes the selection t but
doesn't put it on the Clipboard. The new selection is the same as it
would be after a Cut.

Show Clipboard

Show Clipboard is a toggled command. Initiallytthe Clipboard isn't
displayed t and the command is "Show Clipboard". If the user chooses
the command t the Clipboard is displayed and the command changes to
"Hide Clipboard".

Select All

Select All selects every object in the document.

Font-Related Menus

Three standard Macintosh menus affect the appearance of text: Font t
which determines the font of a text selection; FontSize t which
determines the size of the characters; and Stylet which determines
aspects of its appearance such as boldface t italics t and so on.

Because of the proliferation of printers on the Apple II familYt you
may find it too expensive to implement the kind of power and range of
font options available on the Macintosh. We have still including the
full specification; use that portion necessary for y~ur particular
application.

1/15/85 Tognazzini /INTF/SMENUS

STANDARD MENUS' 101

Font Menu

A font is a set of typographical characters created with a consistent
design. Things that relate characters in a font. include the thickness
of vertical and horizontal lines, the degree and position of curves and
swirls, and the use of serifs. A font has the same general appearance,
regardless of the size of the characters. The Font menu always lists
the fonts that are currently available. Figure 20 shows a Font menu
with some of the most common fonts.

Chicago
GenelJa

v"New York
Monaco
Uentce
lontlon
Rthens

Figure 20.

FontSize Menu

Font sizes are measured in points; a point is about 1/72 of an inch.
Each font is available in predefined sizes. The numbers of these sizes
for each font are shown outlined in the FontSize menu. The font can
also be scaled to other sizes, but it may not look as good. Figure 21
shows a FontSize menu with the standard Macintosh font sizes.

9 potnt
10

v'U?2
14
18
24
36
48
12

Figure 21. FontSize Menu

1/15/85 Tognazzini /INTFjSMENUS

1°2.

If there's insufficient room in the menu bar for the word FontSize. it
can be abbreviated to Size. If there's insufficient room for both a
Font menu and a Size menu. the sizes can be put at the end of the Font
or Style menu.

Style Menu

The commands in the Style menu are Plain Text. Bold, Underline, Italic,
Outline. and Shadow. The first three are reasonably implemented on
most printers and should be considered standard on Apple. All the
commands except Plain Text are accumulating attributes; the user can
choose any combination. They are also toggled commands; a command
that's in effect for the current selectiori is preceded by a check mark.
Plain Text cancels all the other choices. Figure 22 shows these
styles. II software.

MouseText

.......Ploili TeHt
Bold
I folic
Underline
IDmnDOmm
"[llQjCOQJ[,W

Figure 22.

P
tB
01
tl
00
OS

Style Menu

If you are working in a MouseText-based toolkit, mark the beginning and
end of a font-related change with.the s?lid"'diamond character. As the
user passes over this character. open a view box to let the user see
what the particular change is. (See: View Boxes under Dialogs and
Alerts)

Figure 22A. MouseText Example

TEXT EDITING

In addition to the operations described under "The Edit Menu" above,
there are other ways to edit text that don't use menu items.

1/15/85 Tognazzini /INTF/EDIT

TEXT EDITING 103

Inserting Text

To insert text, the user selects an insertion point by clicking where
the text is to go, then starts typing it. Alternatively, the user can
move the current insertion point location, using the cursor key~, and
then resume typing. As the user types, the application continually
moves the insertion point to the right of each new character.

Applications with multiline text blocks should support word wraparound,
according to the definition of a word detailed above under "Selecting a
Word". The intent is that no word be broken between lines.

Delete

When the user presses the Delete key (or Control-D), one of two things
happens:

- If the current selection is one or more characters, it's deleted.

If the current selection is an insertion point, the previous
character is deleted.

In both cases, the deleted characters don't go into the Clipboard, and
the insertion point replaces the deleted characters in the document.

Forward Delete

When the user presses Control-F, one of two things happens:

- If the current selection is one or more characters, it's deleted
(exactly as with Delete).

- If the current selection is an insertion point, the character to
the right of the insertion point is deleted. (The cursor in a
MouseText-based program is a blinking underscore. Since the
underscore itself is to the right of the insertion-point, the
effect is that the character immediately above the underscore is
deleted.)

In both cases, the deleted characters don't go into the Clipboard.

Replacing Text

If the user starts typing when the selection is one or more characters,
the characters that are typed replace the selection. The deleted
characters don't go into the Clipboard, but the replacement can be
undone by immediately choosing Undo.

1/15/85 Tognazzini /INTF/EDIT

lOY

Intelligent Cut and Paste

An application that lets the user select a word by double-clicking
should also see to it that the user doesn't regret using this feature.
The only way to do this is by providing "intelligent" cut and paste.

To understand why this feature is necessary, consider the following
sequence of events in an application that doesn't provide it:

1. A sentence in the user's document reads: "Returns are only
accepted if the merchandise is damaged." The user wants to change
this to: "Returns are accepted only if the merchandise is·
damaged."

2. The user selects the word "only" by double-clicking. The letters
are highlighted, but not either of the adjacent spaces.

3. The user chooses Cut, clicks just before the word "if", and
chooses Paste.

4. The sentence now reads: "Returns are accepted onlyif the
merchandise is damaged." To correct the sentence, the user has to
remove a space between "are" and "accepted", and add one between
"only" and "if". At this point he or she may be wondering why
Apple computers are supposed to be easier to use than other
computers.

If an application supports intelligent cut and paste, the rules to
follow are:

- If the user selects a word or a range of words, highlight the
selection, but not any adjacent spaces.

- When the user chooses Cut, if the character to the left of the
selection is a space, discard it.

- When the user chooses Paste, if the character to the left of the
current selection isn't a space, .add a space. If the charac ter to
the right of the current selection isn't a punctuation mark or a
space, add a space. Punctuation marks include the period, comma,
exclamation point, question mark, apostrophe, colon, semicolon,
and quotation mark.

This feature makes more sense if the application supports the full
definition of a word (as detailed above under "Selecting a Word"),
rather than the definition of a word as anything between two spaces.

These rules apply to any selection that's one or more whole words,
whether it was chosen with a double-click or as a range selection.

Figure 23 shows some examples of intelligent cut and paste.

1/15/85 Tognazzini /INTF/EDIT

TEXT EDITING 105
Exernple 1:

1. Select e word, Drink to me with thine eyes.

2, Choose Cut. Drink to mel with thine eyes.

3, .Select an in~tion point. Drink to me with ~hine eyes.

-4. Ch003e Pe3te. Drink to me with only Ithine eyes.

Example 2:

1. Select e word How, brown cow

2. Choo3e Cut. How,l brown cow

3. Select an in5ertion point How~ brown cow

-4. Choose Peste. How now~ brown cow

Figure 23. Intelligent Cut and Paste

Editing Fields

If an application isn't primarily a text application, but does use text
in fields (such as in a dialog box), it may not be able to provide the
full text editing capabilities described so far.

It's important, however, that whatever editing capabilities the
application provides under these circumstances be upward-compatible
with the full text editing capability. The following list shows the
capabilities that can be provided, going from the minimal to the most
sophisticated:

The user can move around using the cursor keys or mouse.

- The user can select the whole field and type in a new value.

- The user can backspace delete.

The user can forward delete.

- The user can select a substring of the field and replace it.

- The user can select a word by double-clicking.

- The user can choose Undo, Cut, Copy, Paste, and Clear, as
described above under "The Edit Menu". In the most sophisticated
version, the application implements intelligent cut and paste.

1/15/85 Tognazzini /INTF/EDIT

lab

An application should also perform appropriate edit checks. For
example t if the only legitimate value for a field is a string of
digits t the application might issue an alert if the user typed any
nondigits. AlternativelYt the application could wait until the user is
through typing before checking the validity of the contents of the
field. In this case t the appropriate time to check the field is when
the user clicks anywhere other than within the field.

DIALOGS ALERTS

The "select-then-choose" paradigm is sufficient whenever operations are
simple and act on only one object. But occasionally a command will
require more than one object t or will need additional parameters before
it can be executed. And sometimes a command won't be able to carry out
its normal function t or will be unsure of the user's real intent. For
:these special circumstances the windowing user interface includes three
additional features:

- dialogs t to allow the user to provide additional information
before a command is executed

- alerts t to notify the user whenever an unusual situation occurs

- view t to enable the user of a text-based program to "look inside"
the diamond icon

Since all of these features lean heavily on controlstcontrols are
described in this section t even though controls are also used in other
places.

Controls

Friendly systems act by direct cause-and-effect; they do what they're
told. Performing actions on a system in an indirect fashion reduces
the sense of direct manipulation. To give users the feeling that
they're in control of their machines t many of a windowing application's
features are implemented'with controls: graphic objects that, when
directly manipulated by the mouse, cause instant action with visible
results.

There are four main types of controls: buttons, check boxes t radio
buttons, and dials. These four kinds are shown in Figure 24.

1/15/85 Tognazzini /INTF/BOX

DIALOGS 107

IYI Check Box 1 em mmm-£lI:il Check Box 2 DialDllIls Check Box 3

o RrJdio Button 1
IButton 1 ~I

~ RrJdio Button 2
IButton 2 escl

IButtonl Jj
IButton 2 eit j

~ Check BOH 1

~ Check BOH 2

~ Check BOH 3

o Radio Button 1

[!J Radio Button 2

o Radio Button :3

MouseGraphics .t1ouseText

Figure 24. Controls

Buttons

Buttons are small objects, usually inside a window, labeled with text.
Clicking or pressing a button performs .the action described by the
button IS label.

Buttons perform instantaneous actions, such as completing operations
defined by a dialog box or acknowledging error messages. Conceivably
they could perform continuous. actions, in which case the effect of
pressing on the button would be the same as the effect of clicking it
repeatedly.

Two particular buttons, OK and Cancel, are especially important in
dialogs and alerts; they're discussed under those headings below.

Check Boxes and Radio Buttons

Whereas buttons perform instantaneous or continuous actions, check
boxes and radio buttons let the user choose among alternative values
for a parameter.

Check boxes act like toggle switches; they're used to indicate the
state of a parameter that must be either off or on. The parameter is
on if the box is checked, otherwise it's off. The check boxes
appearing together in a given context are independent of each other;
any number of them can be off or on.

Radio buttons typically occur in groups; they're round and are filled
in with a black circle when on. (In a MouseText-based program, they

1/15/85 Tognazzini /INTF/BOX

(O<?

are rectangular and are filled in with a white rectangle when on.)
They're called radio buttons because they act like the buttons on a car
radio. At any given time, exactly one button in the group is on.
Clicking one button in a group turns off the current button.

Both check boxes and radio buttons are accompanied by text that
identifies what each button does.

Dials

Dials display the value, magnitude, or position of something in the
application or system, and optionally allow the user to alter that
value. Dials are predominantly analog devices, displaying their values
graphically and allowing the user to change the value by dragging an
indicator; dials may also have a digital display.

The most common example of a dial is the scroll bar. The indicator of
the scroll bar is the scroll box; it represents the position of the
window over the length of the document. The user can drag the scroll
box to change that position.

Dialogs

Commands in menus normally act on only one object. If a command needs
more information before it can be performed, it presents a dialog box
to gather the additional information from the user. The user can tell
which commands bring up dialog boxes because they're followed by an
ellipsis (•••) in the menu.

A dialog box is a rectangle that may contain text, controls, and icons.
There should be some text in the box that indicates which command
brought up the dialog box.

Other than explanatory text, the contents of a dialog box are all
objects that the user sets to provide the needed information. These
objects include controls and text fields. When the application puts up
the dialog box, it should set the controls to some default setting and
fill in the text fields with default values, if possible. One of the
text fields (the "first" field) should be highlighted, so that the user
can change its value just by typing in the new value. If all the text
fields are blank, there should be an insertion point in the first
field.

Editing text fields in a dialog box should conform to the guidelines
detailed above, under "Text Editing".

When the user is through editing an item:

- Pressing Tab accepts the changes made to the item, and selects the
next item in sequence.

1/15/85 Tognazzini /INTF/BOX

DIALOGS 109

- Clicking in another item accepts the changes made to the previous
item and selects the newly clicked item.

Dialog boxes are either modal or modeless, as described below.

Modal Dialog Boxes

A modal dialog box is one that the user must explicitly dismiss before
doing anything else, such as making a selection outside the dialog box
or choosing a command. Figure 25 shows a modal dialog box.

esclICancel

Print the document OP l'-O_oK_" -+J_1

G 8 1/2" xii" pllper

o 8 1/2" x 11" paper

[Xl stop printing llfter ellch page

Title: Annual ReporL _

Pri nt the document: OP (OK ~)

008 1/2" x II" paper ~---~

08 1/2" x 14" paper [Cancel esc]

t8J stop printing llfter each pllge

Title: IAnnual Reportl

MQUseGraRbics MouseText

Figure 25. A Modal Dialog Box

Because it restriet:s the user' s fR~~d()tlti9r.~ction, this type of dialog
box should be used sparingly. In particular, the user can't choose a
menu item while a moda.l dialog box is up, and therefore can only do the
simplest kinds of text editing. .

For these reasoIls~ the main use of a modal dialog box is when it's
important for the user to complete an operation before doing anything
else.

A modal dialog box usually has at least two buttons: OK and Cancel.
clicking on OK or pressing Return dismisses the dialog box and performs
the ot.iginal commandac:cordirig to the information provided; it can be
given a more descriptive name than "OK". Clicking on Cancel or
pressing Escape dismisses the dialog box and cancels the original
command; it must always be called "Cancel".

A dialog box can have other kinds of buttons as well; these mayor may
not dismiss the dialog box.

[Note to reviewers: Because of the needs of keyboard users, I have
tentitively decided to make OK always be selectable with Return and
Cancel always be selectable with Escape. This is in conflict with the
MacIntosh guideline that follows:

"One of the buttons in the dialog box may be outlined boldly. The
outlined button is the default button; if no button is outlined, then

1/15/85 Tognazzini /INTF/BOX

liO

the OK button is the default button. The default button should be the
safest button in the current situation. Pressing the Return or Enter
key has the same effect as clicking the default button. If there is no
default button, then Return and Enter have no effect."

If you have any ideas on how we could retain the MacIntosh guideline
and still make the boxes reasonable for the keyboard user, please let
me know.]

A special type of modal dialog box is one with no buttons. This type
of box is just to inform the user of a situation without eliciting any
response. Usually, it would describe the progress of an ongoing
operation. Since it has no buttons, the user has no way to dismiss it.
Therefore, the application must leave it up long enough for the user to
read it before taking it down again.

Modeless Dialog Boxes

A modeless dialog box allows the user to perform other operations
without dismissing the dialog box. Figure 26 shows a modeless dialog
box.

o
Find text:

Change to:

Guide lines

guidelines

[Change all

(Change next

(Cancel esc]

Figure 26. A Modeless Dialog Box

A modeless dialog box is dismissed by clicking in the close box or by
choosing Close when the dialog is active. The dialog box is also
dismissed implicitly when the user chooses Quit. It's usually a good
idea for the application to remember the contents of the dialog box
after it's dismissed, so that when it's opened again, it can be
restored exactly as it was.

Controls work the same way in modeless dialog boxes a~ in modal dialog
boxes, except that buttons never dismiss the dialog box. In this

1/15/85 Tognazzini /INTF/BOX

DIALOGS III

context, the OK button means "go ahead and perform the operation, but
leave the dialog box up", while Cancel usually terminates an ongoing
operation.

A mode1ess dialog box can also have text fields; since the user can
choose menu commands, the full range of editing capabilities can be
made available.

Alerts

An alert box looks like a modal dialog box, except that it's somewhat
narrower and appears lower on the screen. An alert box is primarily a
one-way communication from the system to the user; the only way the
user can respond is by clicking buttons. Therefore alert boxes might
contain dials and buttons, but usually not text fields, radio buttons,
or check boxes. Figure 27 shows a typical alert box.

escl

101<
IConcel

CRUTION

Rre you sure
you want to erase all
changes to. your document?

Figure 27. An Alert Box

How the buttons in an alert box are labeled depends on the nature of
the box. If the box presents the user with a situation in which no
alternative actions are available, the box has a single button that
says OK. Clicking this. button means "I have read the alert." If the
user is given alternatives, then typically the alert is phrased as a
question that can be answered "yes" or "no". In this case, buttons
labeled Yes and No are appropriate~ although some variation such as
Save and Don't Save is also acceptable. OK and Cancel can be used, as
long as their meaning isn't ambiguous.

[As noted above, the following paragraph needs to be excised if we go
with the "OK equals Return" scheme.]

The preferred (safest) button to use in the current situation is boldly
outlined. This is the alert's default button; its effect occurs if the
user presses Return or Enter.

For further information on beeps, the types of alert messages, and how
and when to write one, read Alert Messages in the Generic Interface

1/15/85 Tognazzini /INTF/BOX

section•

.-
View Boxes

MouseText-based programs have a restricted ability to deliver
what-you-see-is-what-you-get: standard printer features such as bold,
underline, and super- and subscript are impossible to produce on the
text screen. To enable the user to see where such changes begin and
end, flank the changed area with a pair of solid-diamond icons. These
icons let the user know that there is some control information at those
locations, but not what the information is.

The user can
a view box.
buttons. It
icon:

"look through the keyhole" of the diamond icon by opening
A view box looks like an alert box, except it has no
displays the information hidden within the solid-diamond

"Begin Underline" "End Bold Text" "Begin Plain Text"

The view box is normally located beginning two lines below the icon's
position, so that the user need look no further than necessary to see
it. (The single unaffected line below the diamond enables the user to
continue seeing the diamond in context.) Horizontally, approximately
one-third of the view box should lie to the left of the diamond;
two-thirds, to the right. This position relative to the icon should be
as consistent as possible throughout your application: move(it abov.e
or slide it toward one side only when you lack room on the display for
its normal position.

The contents of a view box cannot be edited. The diamond icon itself
(along with its contents) can be deleted in the same manner as any
other text character, and a new icon can be created with the
appropriate menu command.

The user can open a view box in one of two ways:

- By moving the insertion point to the left of the diamond icon. In
this position, the blinking underscore is directly beneath the
diamond icon. (Recall that the insertion point itself lies
between characters; the blinking underscore is a necessary
compromise with the text hardware and appears under the character
to the right of the insertion point.) The view box remains open
until the insertion point is moved away from the icon, the mouse
cursor is moved, or any valid short-cut key is pressed. In all of
these cases, the view box remains closed until the user formally
reopens it: it is not suddenly reopened when the mouse stops
moving.

- By covering the diamond with the mouse cursor. It is irrelevant
whether the mouse button is pressed or not: if the mouse cursor is
over the diamond, the view box is opened. This enables the user
to quickly view all diamonds on the display without having to
relocate the insertion point, and lets the user see the

1/15/85 Tognazzini /INTF/BOX

DIALOGS 113

information in the same way whether simply moving the cursor
around or actively marking a selection. The view box remains open
until either the mouse cursor or the insertion point moves, or
until any valid shortcut key is pressed.

DO'S AND DON'TS OF A FRIENDLY USER INTERFACE

Do:

- Let the user have as much control as possible over the appearance
of objects on the screen--their arrangement, size, and visibility.

- Use verbs as menu commands.

- Make alert messages self-explanatory.

- Use controls and other graphics instead of just menu commands.

- Take the time to use good graphic design; it really helps.

Don't:

- Overuse modes, including modal dialog boxes.

Require using the keyboard for an operation that would be easier
with the mouse, or require using the mouse for an operation that
would be easier with the keyboard.

- Change the way the screen looks unexpectedly, especially by
scrolling automatically more than necessary.

- Make up your own menus and then give them the same names as
standard menus.

- Take an old-fashioned prompt-based application and pass it off as
a mouse-based application.

1/15/85 Tognazzini /INTF/THOUS

	apple_forumdesdeveloppeurs_02_interface_01
	apple_forumdesdeveloppeurs_02_interface_02
	apple_forumdesdeveloppeurs_02_interface_03
	apple_forumdesdeveloppeurs_02_interface_04
	apple_forumdesdeveloppeurs_02_interface_05
	apple_forumdesdeveloppeurs_02_interface_06
	apple_forumdesdeveloppeurs_02_interface_07
	apple_forumdesdeveloppeurs_02_interface_08
	apple_forumdesdeveloppeurs_02_interface_09
	apple_forumdesdeveloppeurs_02_interface_10

