
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES

neveloper's Handbook for t.he Apple II HouseText Tool Kit.

DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES
DEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTESDEVELOPERNOTES

030-0891-2

NOTICE

Apple Computer, Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED
IN THIS MANUAL, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. APPLE COMPUTER, INC. SOFTWARE IS SOLD
OR LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND
PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE
FOLLOWING THEIR PURCHASE, THE BUYER (AND NOT APPLE COMPUTER, INC.,
ITS DISTRIBUTOR OR ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY INCIDENTAL OR
CONSEQUENTIAL DAMAGES. IN NO EVENT WILL APPLE COMPUTER, INC. BE
LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER,
INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME
STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES
OR LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Apple Computer, Inc.

® 1985 APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, California 95014
(4()8) 996-1010

The word APPLE and the Apple logo are registered trademarks of
APPLE COMPUTER, INC.

Contents

Table of Contents

6 List of Figures and Tables

7 Foreword

9 Chapter 1. Introduction: The MouseText Tool Kit

10 Features Supported by the Tool'Kit
10 The Cursor
10 Events
11 Menus
14 Windows
14 Parts of a Window
17 Window Coordinates
19 Document Information
21 Control Regions: the Scroll Bar
22 Interrupts and the Tool Kit
22 Lists of Tool Kit Commands
28 }~use Emulation
28 Keyboard Mouse Mode
30 Safety-Net Mode

31 Chapter 2. Specifications of the Commands

32 Startup Commands
33 StartDeskTop
35 StopDeskTop
36 PascIntAdr
37 SetUserHook
39 Version
4~ KeyBoardMouse

Page 1

Page 2

41 Cursor Commands
41 SetCursor
42 ShowCursor
43 HideCursor
44 ObscureCursor
45 Event-Handling Commands
45 CheckEvents
47 GetEvent
49 PostEvent
50 FlushEvents
51 SetKeyEvent
52 PeekEvent
53 Menu Commands
53 Keys in Menus
55 InitMenu
56 SetHenu
60 MenuSelect
62 MenuKey
64 HiLiteMenu
65 DisableMenu
66 Disableltem
67 Checkltem
68 SetMark
69 Window Commands
70 InitWindowMgr
72 OpenWindow
77 CloseWindow
78 CloseAll
79 GetWinPtr
80 FindWindow
81 FrontWindow
82 SelectWindow
83 TrackGoAway
84 DragWindow
86 GrowWindow
88 WindowToScreen
89 ScreenToWindow
90 WinChar
91 \HnString
92 WinText
93 WinBlock
94 WinOp
95 Control Region Commands
95 FindControl
97 SetCt IMax
98 TrRckThumb
100 UpDateThumb
101 ActivateCtl

Contents: Table of Contents

Contents: Table of Contents

1~3 Chapter 3. The Machine Language Interface

103 Installing the Machine Language Tool Kit
1~4 Syntax of Machine Language Calls
105 The Machine Language Commands
105 Startup Commands
106 Cursor Commands
107 Event-Handling Commands
108 Menu Commands
110 Window Commands
114 Control Region Commands

117 Chapter 4. The Pascal Interface

117 Installing the Pascal Interface
117 Data Structures
117 Constants and Type Definitions
126 Command Functions and Procedures
126 Startup Commands
127 Cursor Commands
128 Event-Handling Commands
129 Menu Commands
131 Window Commands
134 Control Region Commands
135 Utility Functions

137 Chapter 5. The Applesoft Interface

137 Installing the Applesoft Interface
138 Using the Ampersand Commands
139 The Ampersand Commands
139 Startup Commands
140 Cursor Commands
141 Event-Handling Commands
142 Menu Commands
145 Window Commands
151 Control Region Commands
153 Utility Commands

155 Appendix A. The AppleMouse II Interface Card

155 Passive Versus Active Operation
156 Mouse Interrupts
156 The TimeData Firmware Call

Page 3

Page 4 Contents: Table of Contents

157 Appendix B. The Mouse Firmware Interface

157 Finding the Mouse Carn
156 Reading Mouse Data
160 Operating Modes
161 Passive Mode
162 Interrupt Mode
162 Unclaimed Interrupts
163 Making Calls to Mouse Firmware
164 Parameter Passing
165 The Firmware Routines
165 SetMouse
165 ServeMouse
166 ReadMouse
166 ClearMouse
166 PosMouse
166 ClampMouse
167 HomeMouse
167 InitMouse

169 Appendix C. The Mouse Pascal Attach Driver

169 Installing the Mouse Pascal Attach Driver
170 About Pascal Attach Drivers
171 The Pascal Interface
173 Interrupts

175 Appendix D. Sample Program

175 Pseudocode Listing

179 Appendix E. MouseText Characters

181 Appendix F. Tool Kit Error Codes

List of Figures and Tables

List of Figures and Tables

Page 5

13
15
16
17
20
23
24
25
25
25
26
27
27

54
56
57
58
59
73
74

75

75

76

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Table l-la.
Table I-lb.
Table 1-2a.
Table 1-2b.
Table 1-2c.
TRble 1-2d.
Table 1-2e.
Table 1-2f.

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.

Table 2-8.

Table 2-9.

Table 2-10.

Menu Components
Typical Display With Windows
Parts of a Window
Window With Inactive Scroll Bars
Location Parameters in a Document
Alphabetical List of Tool Kit Commands
Alphabetical List of Tool Kit Commands, Continued
Startup Commands
Cursor Commancis
Event-Handling Commands
Menu Commands
Winciow Commancis
Control Region Commands

Control Keys for Menu Items
Data Structure for a Menu Bar
Contents of Option Byte in Each Menu Block
Data Structure for a Menu
Contents of Option Byte in Menu Data Structure
Information Structure for a Window
Contents of Window Option Byte in Window
Information Structure
Contents of Horizontal or Vertical Control
Option Byte in Window Information Structure
Contents of Window Status Byte for Window
Information Structure
Information Structure for a Documents

Hl5 Table 3-1. Processor Status After Return From Tool Kit

159 Table B-l. Screen Locations for Mouse Data
160 Table B-2. Button and Interrupt Status Byte
161 Table B-3. Bits in the Mode Byte
164 Table B-4. Entry Point Address Bytes

170 Table C-l. Attach Files
171 Table C-2. Pascal I/O Calls

180 Figure E-1. The MouseText Icon Characters

182 Table F-l. MouseText Tool Kit Error Codes

Page 6

Page 7

Foreword

This is the developer's handbook for Version 2.1 of the MouseText
Tool Kit for the Apple II. The main purpose of the handbook is to tell
you how to use the Tool Kit routines in your application programs. In
addition, the handbook includes appendixes that contain information
about the mouse itself and about the hardware and software that make it
work.

Version 2.1 of the Apple II MouseText Tool Kit provides support for
mouse-operated menus and windows using the text display. It uses the
Mouse Text icon characters available on the Apple lIe. The icon
characters are available on the Apple lIe only with an updated character
ROM. Another tool kit, The Mouse Graphics Tool Kit, will support the
double high-resolution graphics displays on the Apple lIe and the
Apple lIe.

Note ~o Users: This is not the owner's manual for
AppleMouse II. That manual, The AppleMouse II User's
Manual, tells how to install the mouse on the Apple II and
describes the demonstration program that comes with the
mouse. This handbook tells you how to use the MouseText
Tool Kit routines in programs that you write yourself.

Chapter 1 outlines the features of the MouseText Tool Kit and tells you
what the Tool Kit routines will do for your application programs.

Chapter 2 gives complete specifications for the MouseText Tool Kit
commands.

Chapters 3, 4, and 5 describe how to use the MouseText Tool Kit
with application programs written in each of three different languages:
Chapter 3 describes the command calls in machine language, Chapter 4
describes the command procedures in Pascal, and Chapter 5 describes the

Page 8

ampersand commands used in Applesoft.

Foreword:

The appendixes provide additional information about using the
AppleMouse II. Appendix A describes the interface card that supports the
operation of the mouse hardware. Appendix B describes the interface to
the mouse firmware (the level of communication and control between the
hardware and the Tool Kit routines). Appendix C tells you how to install
the Pascal Attach Driver that adds mouse communications to the Pascal
BIOS. Appendix D contains programming examples using the MouseText
Tool Kit. Appendix E describes the special Mouse Text characters.
Appendix F is a combined list of the error codes returned by the Tool Kit
commands.

Page 9

Chapter 1

Introduction: The MouseText Tool Kit

The Apple II MouseText Tool Kit is a set of software routines that you
can use to implement mouse-controlled menus and text windows for your
application programs. This v'ersion of the Tool Kit provides commands
for displaying and controlling pull-down menus, including

- cursor selection and display

- menu bar displays

- menu item selection.

This version of the MouseText Tool Kit also has window-handling commands
used in desk-top displays for handling folders and the like. These
commands perform functions such as

- window selection and display

- window dragging and size changing

- writing text in windows.

The ~ool Kit also provides support for programs to perform functions
like scrolling windows through documents.

Special Characters: The character generator in the Apple IIc
includes special characters called MouseText that can be
used for cursor displays. A new character-generator ROM
will be available to. provide the MouseText characters on the
Apple lIe. The MouseText characters are described in
Appendix E.

The Tool Kit supports 80-column displays on the Apple IIc and, via the
Apple 8~-column text card or equivalent cards, on the Apple lIe.

Page 10 Chapter 1: Introduction: The MouseText Tool Kit

Features Supported by the Tool Kit

The commands in the MouseText Tool Kit enable your program to support
several kinds of features:

- The Cursor

- Events

- Menus

- Windows

- Control Regions consisting of Scroll Bars with Thumbs

The sections that follow outline these features and mention some of
the individual commands your program calls. Tables 1-1 and 1-2 list
all of the commands; they are described individually in Chapter 2.

The Cursor

The cursor is the character that moves on the display as the user
moves the mouse. Cursor commands enable the program to select the
character displayed as the cursor and to turn the cursor on and off.
The Tool Kit uses the mouse to control the position of the cursor.
There is also a means of controling the cursor and the Tool Kit
functions by pressing keys: see the section "Mouse ErilUlation" later in
this chapter.

Events

The Tool Kit deals with four kinds of events: mouse events. keyboard
events. update events. and application events (optional with the
application program). Mouse events are button pressed (down). button
released (up). and moving the mouse with the button held down (drag).
Mouse motion with the button up is not an event. but the program can
obtain the most recent mouse position even if no event has occurred.
Keyboard events are keypresses and are optional; that is. the program
specifies that it handles keypresses itself or that the Tool Kit deals
with them.

Update events are a special case. provided for those applications with
windows that can't be refreshed automatically. Please see the
description in Chapter 2 at the Get Event command.

Features Supported by the Tool Kit

Precedence of Events: If the mouse button is down, the
Tool Kit ignores keypresses.

Page 11

The Tool Kit's event-handling commands maintain a queue of events.

The program detects mouse events by calling GetEvent. With the Tool
Kit running in Passive Mode, GetEvent automatically issues an internal
call to CheckEvents. The CheckEvents command posts mouse events and
keypress events in the queue and updates the mouse position. If the
event queue is empty, the GetEvent command simply returns the most
recent mouse position.

In Interrupt Mode, the Tool Kit's interrrupt handler calls CheckEvents
60 times per second, synchronized with the display vertical blanking
(VBL). In Passive Mode, the application program must call CheckEvents
or GetEvent often enough to obtain smooth cursor motion. Also, the
application program can put its own events into the queue by calling the
PostEvent command.

CheckEvents is the only command that reads the mouse; if it is never
'. called, either directly, indirectly by GetEvent, or (in Interrupt

Mode) by the Tool Kit itself,the cursor will never move.

If the event queue fills up, the Tool Kit ignores new events until
there is room for them in the queue. To empty the queue, the program
calls the FlushEvents command.

Note: Frequent calls to CheckEvents also provide a
type-ahead feature by posting keyboard events in the queue
until the program can process them.

Menus

The Tool Kit's menu management commands enable programs to provide
pull-down menus. The visible components of a menu are

- a menu bar at the top of the display, showing the menu titles

- the menu items that appear, one to a line, when a menu pops down.

When the user moves the cursor onto a title in the menu bar and
presses the button on the Mouse, the application program calls the

Page 12 Chapter 1: Introduction: The MouseText Tool Kit

MenuSelect command, which displays a menu and tracks the mouse as long
as the mouse button stays down. The user doesn't literally pull it
down: instead, it pops down as soon as the application program
determines that the cursor has moved onto the title. As the user
keeps the button pressed and moves the cursor down the menu, the
Tool Kit highlights the item the cursor is pointing to by displaying
it in inverse video.

When the user releases the button, the item that the cursor was pointing
to is selected and the menu disappears. To tell the user that something
is happening, the Tool Kit leaves the menu title in the menu bar
highlighted. The application program turns off the highlighting of the
title as soon as it finishes performing the selected operation.

The data structures the Tool Kit uses to manage the menu information
also contain information that is not displayed, but is returned to the
program when a menu item is selected:

- a menu ID number for each menu

- a menu item number for each item

The program can set individual items or an entire menu to the disabled
state. Disabled items or menus are not highlighted when the cursor
moves onto them, and they cannot be selected.

Features Supported by the Tool Kit

Figure 1-1 Menu Components. Note:
Numbers in parentheses are menu ID
and menu item numbers and do not
appear in the display. The menu
item numbers are always sequential
starting with 1, but the menu ID
numbers can be in any order, as long
as they're between 1 and 255.

Page 13

Menu ID
Numbers----) (1) (2) (3)

Menu Bar---) IFile/Print Edit View
(1) Undo L_____
(2)
(3) Cut
(4) Copy <-----------
(5) Paste

~---------------------

-Menu Title

-Menu Item

-Menu Item
Numbers

The application program calls the SetMenu command with data structures
containing the menu information the Tool Kit needs, and the Tool Kit
displays the menus. The program can call SetMenu during the course of
operation to change the contents of menus. The menu data structures
are described in the "Menu Commands" section in Chapter 2.

When the FindWindow command detects the mouse button pressed in row ~

(the menu bar), the program calls the MenuSelect command. MenuSelect
takes care of the entire selection process: it displays the menus and
tracks the mouse position with the cursor for as long as the user holds
down the mouse button. If the user selects a menu item, the MenuSelect
command highlights the menu's title in the menu bar and returns the menu
item number and the menu ID number. If the user doesn't select a menu
item, the MenuSelect command returns a menu ID value of ~.

Keeping the selected menu title highlighted while the operation is
being performed gives useful feedback to the user. After the program
has carried out the selected operation, it should call HiLiteMenu
with menu ID set to ~ to un-highlight the menu title.

For menu items that are used often, the program can provide fast item
selection; it does this by allowing the user to press keys instead of
moving the mouse. To do this, the program specifies the keys the user
can press to select the items in the menus. When the GetEvent command

Page 14 Chapter 1: Introduction: The MouseText Tool Kit

returns a keypress, the program calls the MenuKey command. MenuKey gets
the menu ID and the item number by searching the menu data structure for
a matching key, and then highlights the selected menu title the same way
MenuSelect does. 4fter the operation has been performed, the program
must use the HiLiteMenu command to turn off the highlighting of the
selected title.

Windows

The Tool Kit's window commands make it
the mouse to control multiple windows.
appear on the display screen.

Parts of a Window

possible for programs to use
Figure 1-2 shows how windows

Each window has several parts, as shown in Figure 1-3. The two main
parts of a window are the drag bar at the top, including the title of
the window, and the content region, where the application displays
information. The drag bar is used for moving the window around on the
display. To move the window, the user positions the cursor on the drag
bar and holds down the mouse button while moving the cursor to the
desired position. The drag bar also contains the Close Box, or Go-Away Box.
To close the window, the user clicks and releases the mouse while in the
Go-Away Box.

The lower-right corner of the window contains the Grow Box, which
is used to change the size of a window. To do this, the user presses
the mouse button when the cursor is in the Grow Box, then holds the
button down while moving the mouse. The display shows the new size of
the window as an outline that moves around as the mouse moves. When the
user releases the mouse button, the Tool Kit redisplays the window
with its new size but without contents. The program puts appropriate
text into the re-sized window by calling window commands or its own
window subroutines.

Features Supported by the Tool Kit

FigaDre 1-2
Typical Display With Windows

Page 15

--

Desktop~--.
WTi ueZz

MenuBar

GOAWirIj Sox

............................
• • 0· •••.•••••••••••••••••••••

.
. , .

OesKioc

DragReglon

~~=======:!--~r--Con'ten'tReg.on

--

Page 16 Chapter 1: Introduction: The MouseText Tool Kit

Figure 1-3 Parts of a Window

--
Go Away Box

I
I
I

:r~on

Thunb

Grow Box

"Page Uc"
~-----

r ...------ Up a:rI'C'W

kiI~....----- Down arrow

~N"'-----"Page Down"
Z'egJ.0T'l

\
Rignt arrow

i
.p lSge F1 igtrt"

region

Thumb
i

"Page Lett"
region

I
I

Le-ft arrow

EJ

Features Supported by the Tool Kit

Figure 1-4
Window With Inactive Scroll Bars

Page 17

--

Go AWay 80x

j
I

~----- Up u:ow

\
Left arro..... Fl ight arrow Grow Box

Window Coordinates

Three different coordinate systems are used with the window commands:

- mouse coordinates, with X from '/J to 79 and y from '/J to 23

- screen coordinates, with X from -8'/J to 159 and y from -24 to 47

- window coordinates, with X from -R~ to 159 and y from -24 to 47

Page 18 Chapter 1: Introduction: The MouseText Tool Kit

The mouse coordinates correspond to the absolute range of the display
screen and are expressed as unsigned byte quantities. The window and
screen coordinates are represented as two-byte signed quantities.

It is important to be aware of the ranges of the signed two-byte
quantities because the Tool Kit routines make certain assumptions about
the high byte. The only time the high byte is not simply the sign
extension of the low byte's sign bit is when the value is in the range
128 to 159 for the X axis. The Y-axis quantities are.. als.o two-byte
quantities for the sake of consistency. The only legal values of the
high byte are $00 and $FF.

To be visible, characters must be in the top window, and their screen
coordinates must be in the range from ~ to 79 in the X axis and ~ to
23 in the Y axis. What's more, if the width of the window is Wand
the length of the window is L, characters are visible only if their
window coordinates are in the range from 0 to W - 1 in the X axis
and 0 to L - 1 in the Y axis. The scroll bars are considered to be in
the content area, so the useful content area range is from 0 to W - 3
if the vertical scroll bar space is used. Similarly, if there is a
horizontal scroll bar, the useful content area range is from 0 to
L - 2 in the Y axis.

Note: If a Grow Box is present, the vertical scroll bar
space is used even if the scroll bar is not present. This
ensures that the useful content area is always rectangular.

There must be at least one character in the window's content area
for a Window Information Data Structure to be displayed correctly.
The window length must be·at least I, or 2 if there is a horizontal
scroll bar. Window width must be at least one, or three if there is a
vertical scroll bar or a Grow Box. The maximum window width is 80.
The maximum length is 22 for normal windows, 23 for dialog windows.

Note: It is a good idea to keep window width greater than 3,
else you can have a window whose title does not show, or
even a window that cannot be dragged, but only closed,
because there is only space enough for the Close Box.

A window can be placed in any position on the screen, including
positions that make part of the window invisible. This is the reason
for the ranges of the screen and window coordinates. Even though the
ranges normally used are positive, you can get meaningful negative

Features Supported by the Tool Kit Page 19

values when you convert from one coordinate system to another. For
example, a window's drag bar is always in the negative range of the
window's Y axis.

Note: Windows are output-only devices; the Tool Kit will not
copy their contents into user memory•. The application
program must ensure that the information in the content
memory area and the contents of the window agree.

Document Information

The only document display feature built into the Tool Kit is a screen
image of the text. Each line is padded with spaces on the right, and
there are no special line delimiters; the number of characters per
line is fixed.

To support the document display, the window management part of the Tool
Kit needs certain information about the document. This information is
in the Document Information Data Structure (Dinfo), described in
Chapter 2. The location of the window in the document is specified by
Dinfo quantities Dx and Dy (see Figure 1-5). The window can be placed
anywhere within the document. In this sense, the document dimensions
can be considered as a fourth coordinate system in which the window
coordinates are embedded.

Other kinds of document displays are possible, but the routines to
create them must be provided by the application program. For
information about adding display routines, see the "SetUserHook" section
in Chapter 2.

Page 20 Chapter 1: Introduction: The MouseText Tool Kit

Figure 1-5
Location Parameters in a Document

iII--------DoclfIent IIi dtll --------1~~1

I
$t~rt'i

$t~rtx ,..;.------~h
R B C 0 E •••

Document ptr --'lloi-------~t~------------;

Docl.ment Y

DODunent X .!

vindOW Content Are~

Whenever a window is dragged, the Tool Kit must redisplay the content
areas of the windows. The application program can override the Tool
Kit's document display feature by having a routine that is called by
the Tool Kit whenever the window is to be redisplayed. The program
passes the address of this assembly language routine to the Tool Kit
as part of the Window Information Data Structure, described in
Chapter 2. Because of the way the Tool Kit saves zero-page locations,
the program's routine cannot rely on the contents of those zero-page
locations. Furthermore, the routine can only call the Tool Kit's
window update commands to update the content region. These commands
are WinChar, WinString, WinText, WinBlock, and WinOp. (Note:
WinBlock uses a Document Information Data Structure.)

Features Supported by the Tool Kit Page 21

In the case where the window should not be refreshed automatically,
the Tool Kit uses a type of event called an update event to signal the
application that the window needs to be refreshed. The application
specifies that a window is of this type by making the two-byte DInfo
pointer (in the Window Data Structure) equal to zero. Please see the
description in Chapter 2, under the GetEvent command.

Control Regions: The Scroll Bar

The only window control regions supported by the Tool Kit are the scroll
bars displayed in the content region of the front (active) window (see
Figure 1-3). Either horizontal or vertical scroll bars or both may be
present.

An active scroll bar has several components, as shown in Figure 1-3.
There are arrows at either end, an open box called the Thumb, and gray
regions in between called Page-Up and Page-Down Regions in a vertical
scroll bar, and Page-Left and Page-Right Regions in a horizontal
scroll bar. (Sometimes the gray regions are called Page-Up and
Page-Down Regions even in a horizontal scroll bar.)

An application program should support three different ways of
scrolling the window contents using the scroll bars:

- Pressing the mouse button with the mouse in the arrows to scroll
continuously as long as the button is down. The thumb moves to
indicate the relative position of the window in the document.

- Pressing the mouse button in the Thumb itself, and dragging the
Thumb to cause the corresponding scrolling of the document.

- Pressing the mouse button in a Page-Up or Page-Down Region to scroll
the window up or down a page--that is, a window full--at a time.

The Thumb should appear right next to one of the arrows only when the
first or last character of the document appears in the window. This
ensures that the user can always page and that the Thumb can he used
to get to the first and last characters of a document.

If the full width or length of a document appears in the window, the
program should make the scroll bars reflect this by putting them into
the inactive state, which shows the arrows, but no page regions or
Thumb (see Figure 1-4).

If the window is so narrow that fewer than three character cells are
available for the page regions and the Thumb, the Tool Kit will not
display the Thumb. If fewer than three cells are available for the
entire scroll bar, not even the arrows will show, and the user will be
unable to scroll. Instead, the Tool Kit will display a gray region if
the scroll bar is active, or a hollow region if it is inactive.

Page 22 Chapter 1: Introduction: The MouseText Tool Kit

Interrupts and the Tool Kit

Tollow this sequence of steps to start the mouse:

(1) (For Pascal only) Call PascIntAdr to get the address of the Tool
Kit's interrupt handler.

(2) (For Pascal only) Pass the interrupt address to the mouse firmware
by calling SetMouse as described in Appendix Bt "The Mouse Firmware
Interface." Mouse Mode should be set to passive.

(3) Call StartDesktop with the UseInterrupts parameter set the way you
want it for your program.

(4) (optional) Call SetUserHook to pass the addresses of your
program's interrupt handlers t if anYt to the Tool Kit.

The Tool Kit saves the interrupt state of the machine when your
program calls the StartDeskTop command. When the program calls the
StopDeskTop command t the Tool Kit sets the state of the machine to the
state saved by StartDeskTop.

When you use the Tool Kit in Interrupt Mode t the. Tnol Kit provides the
interrupt handler. In addition t the Tool Kit allows the application
program to have interrupt handler subroutines that. are called by the
Tool Kit. The program passes each subroutine's address to .theTool
Kit as a parameter by calling the SetUserHook command. This feature
makes it possible for the application program to perform tasks at
interrupt time.

A user hook routine that is called at interrupt time cannot call most
Tool Kit commands. Doing so could put the Tool Kit into an unknown
state. If a program needs to generate calls to the Tool Kit because
of an interruptt the interrupt routine should set a flag that the
program checks during its main polling loop.

Lists of Tool Kit Com-auds

Tables 1-1
function.
Chapter 2.
please see

and 1-2 list all of the Tool Kit commands by name and
For complete descriptions of the commands t please see

For the commands as called in the different languages t
the chapter devoted to the appropriate language interface.

Lists of Tool Kit Commands

Table l-la.
Alphabetical List of Tool Kit Commands

Page 23

Name Number Type

ActivateCtl ••••• 43 •••• Control Region Commands
CheckEvents •••••• S•••• Event-Handling Commands
Checkltem••••••• 16 •••• Menu Commands
CloseAll •••••••• 2S •••• Window Commands
CloseWindow••••• 24 •••• Window Commands
Disableltem••••• lS •••• Menu Commands
DisableMenu••••• 14 •••• Menu Commands
DragWindow •••••• 30 •••• Window Commands
FindControl ••••• 39 •••• Control Region Commands
FindWindow •••••• 26 •••• Window Commands
FlushEvents ••••• 07 •••• Event-Handling Commands
FrontWindow ••••• 27 •••• Window Commands
GetEvent ••••••••• 6•••• Event-Handling Commands
GetWinPtr ••••••• 4S •••• Window Commands
GroWWindow•••••• 31 •••• Window Commands
HideCursor ••••••• 4•••• Cursor Commands
HiLiteMenu •••••• 13 •••• Menu Commands
InitMenu••••••••• 9•••• Menu Commands
InitWindowMgr ••• 22 •••• Window Commands
KeyboardMouse ••• 48 •••• Startup Commands
MenuKey ••••••••• 12 •••• Menu Commands
MenuSelect •••••• ll •••• Menu Commands
ObscureCursor ••• 44 •••• Cursor Commands
OpenWindow •••••• 23 •••• Window Commands
PasclntAdr •••••• 17 •••• Startup Commands

Page 24 Chapter 1: Introduction: The MouseText Tool Kit

Table I-lb.
Alphabetical List of Tool Kit Commands,
continued

Name Type

PeekEvent ••••••• 21 •••• Event-Handling Commands
PostEvent ••••••• 46 •••• Event-Handling Commands
ScreenToWindow•• 33 •••• Window Commands
SelectWindow•••• 28 •••• Window Commands
SetCtlMax••••••• 40 •••• Control Region Commands
SetCursor •••••••• 2•••• Cursor Commands
SetKeyEvent •••••• 8•••• Event-Handling Commands
SetMark••••••••• 2~ •••• Menu Commands
SetMenu ••••••••• 10•••• Menu Commands
SetUserHook••••• 47 •••• Startup Commands
ShowCursor ••••••• 3•••• Cursor Commands
StartDeskTop••••• 0•••• Startup Commands
StopDeskTop •••••• 1•••• Startup Commands
TrackGoAway ••••• 29 •••• Window Commands
TrackThumb •••••• 41 •••• Control Region Commands
UpDateThumb••••• 42 •••• Control Region Commands
Version ••••••••• 19 •••• Startup Commands
WinBlock•••••••• 36 •••• Window Commands
WinChar ••••••••• 34 •••• Window Commands
WinOp ••••••••••• 37 •••• Window Commands
WindowToScreen •• 32 •••• Window Commands
WinStrin~ ••••••• 3S •••• Window Commands
WinText ••••••••• 38 •••• Window Commands

Lists of Tool Kit Commands

Table 1-2a. Startup Commands

Page 25

--

Number Name

~ StartDeskTop
1 StopDeskTop

17 PasclntAdr

47 SetUserHook
19 Version

48 KeyboardMouse

Description

Activates the mouse and the Tool Kit routines
Inactivates the mouse and the Tool Kit routines
Gets the interrupt handler address for Pascal (not
applicable to BASIC)
Sets the address of the user's interrupt handler
Returns the version and revision numbers of the
Tool Kit
Conditions Tool Kit to perform next operation
in emulation mode

Table 1-2b. Cursor Commands

Number Name Description

2
3
4

44

SetCursor
ShowCursor
HideCursor
ObscureCursor

Sets the character used for displaying the cursor
Makes the cursor visible
Makes the cursor invisible
Makes the cursor invisible until the mouse moves

Table 1-2c. Event-Handling Commands

Number Name Description

5

6
46

7
8

21

CheckEvents

GetEvent
PostEvent
FlushEvents
SetKeyEvent
PeekEvent

Reads the mouse, moves the cursor to the new
position, and posts event, if any
Gets next event; if none, gets mouse position
Posts an event in the event queue
Empties the event queue
Specifies whether Tool Kit handles keyboard events
Returns event data without removing it from the queue

--

Page 26 Chapter 1: Introduction: The MouseText Tool Kit

Table 1-2d. Menu Commands

Number Name

9 InitMenu
10 SetMenu

11 MenuSelect

12 MenuKey
13 HiLiteMenu
14 DisableMenu
15 DisableItem
16 CheckItem
20 SetMark

Description

Allocates memory for temporary screen save
Initializes a menu bar data structure and displays the
menu bar
Interacts with mouse to display menu and return
selection, if any
Selects a menu item to match a keypress
Turns highlighting of menu title on or off
Inhibits highlighting and selection over a whole menu
Inhibits highlighting and selection of a menu item
Turns checkmark next to item on or off
Sets the character to use as checkmark

Lists of Tool Kit Commands

Table I-Ze. Window Commands

Page 27

--

Number Name Description

22
23

24
25
45

26
27
28
29

3~

31

32
33
34
35
38
36
37

InitWindowMgr
OpenWindow

CloseWindow
CloseAll
GetWinPtr

FindWindow
FrontWindow
SelectWindow
TrackGoAway

DragWindow

GrowWindow

WindowToScreen
ScreenToWindow
WinChar
WinString
WinText
WinBlock
WinOp

Initializes the open window list and buffer area
Passes the Tool Kit a pointer to a Window
Information Data Structure
Deletes a window
Deletes all windows
Gets the pointer to the Window Information Data
Structure (not applicable to Pascal)
Finds the window region that contains a given point
Returns the ID number of the front window
Makes a window the front (active) window
Returns whether the mouse button was released in a
Go-Away Box
Displays window outline during drag, then redisplays
windows
Displays window outline during grow, then red is plays
windows
Converts window coordinates to screen coordinates
Converts screen coordinates to window coordinates
Writes a character in a window
Writes a string in a window
Writes text in a window
Writes a block of text in a window
Clears all or part of a window

Table 1-2£. Control Region Commands

Number Name Description

39
4~

41
42
43

FindControl
SetCtlMax
TrackThumb
UpdateThumb
ActivateCtl

Returns whether the mouse is in a control region
Sets the range of a scroll bar
Tracks the Thumb until the mouse button is released
Displays the Thumb in a given position
Changes the state of a scroll bar (active or inactive)

Page 28 Chapter 1: Introduction: The MouseText Tool Kit

Mouse Emulation

Although the menu and window capabilities of the Apple II MouseText
Tool Kit are normally used with the App1eMouse II, it is possible to
run a program using the Tool Kit on a computer that doesn't have a
mouse. It is also possible to use the keyboard to control the menus
and windows, even on a computer that has a mouse. Even when mouse
emulation is going on, the Tool Kit still responds to mouse movement
and button operation.

The first method of mouse emulation is called Keyboard Mouse Mode.
It enables the application to support menu selection and window
manipulation by means of keyboard commands. Note that the
application must include the appropriate calls to provide this
feature, in contrast to the Safety-Net Mode, which is transparent to
the application.

The second method of mouse emulation, Safety-Net Mode, is provided for
use with a computer that doesn't have a mouse. This might happen, for
example, when a dealer needs to demonstrate an application and a
mouse-equipped computer .is inoperative or is not available.

Keyboard Mouse Mode

The Keyboard Mouse Mode of mouse emulation makes it possible for
applications to provide keyboard commands for operations that
normally require the mouse: selecting menus, and dragging and
changing the size of windows. The choice of commands for selecting
these mouseless operations is up to the application program. The
recommended key sequences for use in English-speaking countries are:

ESC to get the menu display.
OPEN-APPLE-D or SOLID-APPLE-D to drag the window.
OPEN-APPLE-G or SOLID-APPLE-G to grow the window.

When the Tool Kit is in Keyboard Mouse Mode, it is performing one of
those three operations and remains in Keyboard Mouse Mode until
the operation is completed. Unlike Safety-Net Mode, the user doesn't
have to hold a key down.

When the user initiates Keyboard Mouse Mode, the Tool Kit makes the
cursor visible, even if it was previously hidden or obscured. When
the keyboard operation is completed, the Tool Kit returns the cursor
to its previous state of visibility.

In Keyboard Mouse Mode, the cursor keys move the cursor around on the
display. If the user is doing a drag or grow, the OPEN-APPLE key acts
as an accelerator for the cursor keys. With the OPEN-APPLE key down,
pressing left or right arrow keys moves the cursor sideways by 10 spaces
at a time. Likewise, the up and down arrow keys move the cursor up and
down 5 rows at a time.

Mouse Emulation

The user can terminate a Keyboard Mouse Mode operation in four
different ways:

by pressing the ESC key.
by pressing the RETURN key.
by pressing a valid command key.
by pressing and releasing the mouse button.

Page 29

When the user presses the ESC key, the Tool Kit cancels the operation
and returns the cursor to its former position.

When the user presses the RETURN key, the Tool Kit completes the
operation.

When the user presses a valid command key, the Tool Kit terminates the
operation and then posts an event for the command key. If the operation
was a menu selection, the Tool Kit cancels the operation. If the
operation was a drag window or a grow window, the Tool Kit completes the
operation. In any case, the Tool Kit returns the cursor to its original
position.

When the user presses and releases the mouse button, the mouse button
up event signals completion of the operation and initiates execution
of the selected command, just as if the mouse had been used
throughout.

After menu selection, the Tool Kit records the position of the cursor
(that is, the item that is highlighted) and returns to that position (and
item) when the user selects the menu again.

The three operations that can be performed in Keyboard Mouse Mode are
selecting from the menu, dragging a window, and growing window. To
perform these operations normally, the application calls the appropriate
command: MenuSelect, DragWindow, or GrowWindow, respectively. To
perform one of them in Keyboard Mouse Mode, the application must first
call the KeyboardMouse command, then call the MenuSelect, DragWindow, or
GrowWindow command. This causes the Tool Kit to perform the command in
Keyboard Mouse Mode, functioning in the manner described above. The
KeyboardMouse command has no parameters.

There is an alternative way for the application to get into Keyboard
Mouse Mode, and that is calling the MenuKey command with ESC as the
keystroke. That has the same effect as calling KeyboardMouse followed
by MenuSelect: it initiates a menu select operation in Keyboard Mouse
Mode.

Page 30

Safety-Net Mode

Chapter 1: Introduction: The MouseText Tool Kit

Safety-Net Mode uses inputs from the keyboard to provide the usual
mouse operations of moving the cursor around on the desktop and
selecting menus. When the Tool Kit is in Safety-Net Mode, the
application program works normally: all command calls are the same,
and the program need not even take into account the fact that there is
no mouse.

The user puts the Tool Kit
OPEN-APPLE key and holding
SOLID-APPLE key. The Tool
it is in Safety-Net Mode.
long as the user continues

into Safety-Net Mode by pressing the
it down, then pressing and releasing the
Kit generates a click to acknowledge that
The Tool Kit remains in Safety-Net Mode as
to hold down the OPEN-APPLE key.

In Safety-Net Mode, the cursor keys take the place of the mouse for
moving the cursor around. Each time you press a cursor key, the
cursor moves one space in the direction indicated on the key. The
cursor keys do not have wrap-around: when you have moved the cursor
all the way to a screen edge, pressing the same cursor key again has
no effect.

In Safety-Net Mode, the SOLID-APPLE key takes the place of the mouse
button. Pressing the SOLID-APPLE key is like pressing the mouse
button.

Note: All during Safety-Net Mode, the Tool Kit reads the
cursor keys and the SOLID-APPLE key even. if the application
program has specified that the keyboard is to be ignored.

Page 31

Chapter 2

Specifications of the Commands

This chapter gives the command number and the contents of the command
list for each of the Tool Kit commands. Each command occupies a
separate page and has the format shown here:

Function:

A brief statement of the command's function

Command Number:

The number, in decimal and hex, that specifies the command

Parameter List:

A description of the parameters being passed

Description:

A full description of the command

Error Codes:

A list of error codes for the command

In addition to the error codes listed with the commands, there are
three generic error codes that can be returned by any command. These
error codes are

Page 32

1 ($~l)

2 ($02)

3 ($~3)

Chapter 2: Specifications of the Commands

Illegal command number

Wrong number of parameters

StartDeskTop hasn't been called

All of the error codes are listed together in Appendix F.

Startup Comaands

A program will normally call these commands once to set up the
operating environment for the program. For example, calling the
Version command tells the program which version of the Tool Kit it is
using.

Your program calls the StartDeskTop command to activate the mouse and
set the Operating Mode for the Tool Kit, and the StopDeskTop command
to deactivate the mouse and the Tool Kit.

Pascal programs must also call the PascIntAdr command to get the
address of the Tool Kit's interrupt handler so the Pascal interface
can install the interrupt handler. (See Chapter 4, "The Pascal
Interface.")

Startup Commands

StartDeskTop

Function:

StartDeskTop initializes the mouse and the Tool Kit routines.

Command Number: 0 ($00)

Parameter List:

6 (input, byte) the number of parameters

id (input, byte) machine ID byte: $06 = Apple lIe or IIc

sid (input, byte) subsidiary ID byte:
$EA = Apple lIe
$E0 Apple lIe with revised ROM
$00 Apple IIc

op (input, byte) operating system byte:
o = ProDOS
1 = Pascal

s# (input or output, byte) slot number of the mouse card

int (input or output, byte) interrupt usage:
o Passive Mode only
1 = use interrupts

col (input, byte) number of text columns:
o 40 columns
1 = 80 columns

Description:

Page 33

StartDeskTop saves the current state of the computer, initializes the
Tool Kit routines, and activates the mouse card. If the calling
program specifies a slot number of 0, StartDeskTop will check the
slots for a mouse card and use the first one it finds, returning its
slot number in s#. If no mouse card is found, StartDeskTop will set
Passive Mode and return the int parameter as 0.

If the program requires that the mouse card be present, it should set
the high bit of the s# parameter on before calling StartDeskTop. When
that bit is set, StartDeskTop will return an error condition if it
doesn't find a mouse card.

If the program uses interrupts, it must set the int parameter to 1.

Page 34 Chapter 2: Specifications of the Commands

The ID bytes are the values found at locations $FBB3 and $FBC0 in the
Apple lIe and Apple lIe. Version 2 of the MouseText Tool Kit requires
the machine ID byte to be $06.

The Tool Kit doesn't do anything about the 80-co1umn firmware. The
program has to activate the firmware if it is needed.

StartDeskTop sets the cursor to the arrowhead character (ASCII
value $02) and sets it hidden; after calling StartDeskToPt an
application program can call ShowCursor immediately.

Error Codes:

4 ($04)

5 ($05)

6 ($~6)

11 ($0B)

Machine or operating system not supported

Invalid slot number (less than 0 or greater than 7)

Card not found

Could not install interrupt handler

Startup Commands

StopDeskTop

Function:

StopDeskTop deactivates the mouse and the Tool Kit routines.

Command Number: 1 ($~l)

Parameter List:

o (input, byte) the number of parameters

Description:

Page 35

StopDeskTop hides the cursor, removes the link to the interrupt
handler, and sets the mouse to an inactive state. StopDeskTop then
restores the computer to the initial state that was saved by
StartDeskTop.

Error Codes:

(none)

Page 36

Pasclnt.Aall.r

Function:

Chapter 2: Specifications of the Commands

PascIntAdr returns the address of the Tool Kit's interrupt handler.

Command Number: 17 ($11)

Parameter List:

1 (input. byte) the number of parameters

Adr (output. word) the address of the interrupt handler

Description:

PascIntAdr returns the address of the Tool Kit's interrupt handler in
the Adr parameter. Your Pascal program can pass that address on to
the Mouse Attach Driver when it calls SetMouse. The SetMouse call
should always specify Passive Mode along with the interrupt address.
The program should do this before calling StartDesktop. which will
enable interrupts if its Int parameter is set to 1.

See also Chapter 4. "The Pascal Interface."

Note: This command is used only in Pascal programs.

Error Codes:

(none)

Startup Commands

SetUserHook

Function:

SetUserHook sets the address of the user's interrupt handler.

Command Number: 47 ($2F)

Parameter List:

2 (input, byte) the number of parameters

Id (input, byte) the ID number of the interrupt routine

Adr (input, word) the address of the interrupt routine

Description:

Page 37

The SetUserHook command sets the starting address of the application
program's interrupt handler routine so that the Tool Kit can pass
control to it whenever CheckEvent is called. In Interrupt Mode, the
Tool Kit calls CheckEvent internally during interrupt servicing, so
routines installed by SetUserHook become interrrupt service routines
for the application.

CheckEvent can pass control to the program's interrupt routine either
before or after it checks events. The Id parameter determines at whIch
point CheckEvent will call the interrupt routine. If Id = 0, CheckEvent
will call the interrupt routine before checking events, and if Id = 1,
CheckEvent will call it after checking events. In this way there can be
an interrupt routine either before or after event checking, or there can
be two user routines, one before and one after event checking.

If the interrupt routine that is called before event checking (Id = 0)
returns to the Tool Kit with the carry flag clear, CheckEvent will not
check events. This allows the application program to handle event
checking itself and bypass event checking by the Tool Kit.

If the Adr parameter is set to 0, SetUserHook removes any routine
previously installed.

Page 38 Chapter 2: Specifications of the Commands

WARNING
The user interrupt routine can call only Tool Kit commands
PostEvent, ShowCursor, HideCursor, and SetCursor. Calling
any other commands from the user interrupt routine could put
the Tool Kit into an unknown and bizarre state.

Error Codes:

21 ($15) Illegal Id parameter (must be ~ or 1)

Startup Commands

Version

Function:

Version returns the Tool Kit's version and revision numbers.

Command Number: 19 ($13)

Parameter List:

2 (input, byte) the number of parameters

Ver (output, byte) the version number of the Tool Kit

Rev (output, byte) the revision number of the Tool Kit

Description:

Page 39

The Version command returns the version and revision numbers of the
Tool Kit. The program can use these numbers to determine
compa ti bi! ity.

Error Codes:

(none)

Page 40

KeyboardM01IIISe

Function:

Chapter 2: Specifications of the Commands

KeyboardMouse makes the next command work in mouse emulation mode t

if the command is one of the three that work in that mode.

Command Number: 48 ($30)

Parameter List:

o (input t byte) the number of parameters

Description:

The KeyboardMouse command is a function call; it has no parameters.

The KeyboardMouse command is used in conjunction with the three
commands that can operate in mOuse emulation mode: MenuSelect t

DragWindow t and GrowWindow. To make one of these three commands
operate in emulation mode t all you have to do is call the
KeyboardMouse command just before calling one of them.

An application can also get this form of mouse emulation on the
MenuKey command by calling the command with the ESC key as the
keystroke. That has the same effect as calling KeyboardMouse and then
calling MenuSelect.

Error Codes:

(none)

Cursor Commands

Cursor Comaands

Page 41

Your program calls these commands to select the character to display
as the cursor and to turn the cursor on and off.

SetCursor

Function:

SetCursor sets the character used for displaying the cursor.

Command Number: 2 ($~2)

Parameter List:

1 (input, byte) the number of parameters

cc (input, byte) character to use as cursor

Description:

SetCursor sets the character displayed as the cursor. Characters
normally used as the cursor include the following Mouse Text characters:

Arrowhead (ASCII value 02 $02)
Hourglass (ASCII value 03 $03)
Checkmark (ASCII value 04 $04)
Text Cursor (ASCII value 20 $14)
Cell Cursor (ASCII value 29 $1D)

If the cursor is visible, it changes to the new character as soon as
SetCursor is called. Each time the cursor is moved, if it is visible,
the Tool Kit saves the character at the new cursor position and
replaces it with the character specified by SetCursor.

Error Codes:

(none)

Page 42

SBImwCursor

Function:

Chapter 2: Specifications of the Commands

ShowCursor makes the cursor visible.

Command Number: 3 ($~3)

Parameter List:

o (input, byte) the number of parameters

Description:

ShowCursor makes the cursor visible. If the cursor is obscured,
ShowCursor has no effect.

Error Codes:

(none)

Cursor Commands

HideCursor

Function:

HideCursor makes the cursor invisible.

Command Number: 4 ($~4)

Parameter List:

~ (input, byte) the number of parameters

Description:

Page 43

HideCursor makes the cursor invisible. If the cursor is obscured,
ShowCursor has no effect.

Error Codes:

(none)

Page 44

ObscureCursor

Function:

Chapter 2: Specifications of the Commands

ObscureCursor makes the cursor temporarily invisible.

Command Number: 44 ($2C)

Parameter List:

o (input, byte) the number of parameters

Description:

ObscureCursor makes the cursor invisible until the mouse moves; then
the cursor reappears. An appropriate time to use OscureCursor is
when text is being entered, to keep the cursor from obstructing the
view of the text. As soon as the user moves the mouse to perform
another task, the cursor reappears.

Error Codes:

(none)

Event-Handler Commands

Event-Handler Commands

Page 45

The Tool Kit's event-handler commands maintain an event queue for mouse
and keyboard events. The CheckEvents command posts events in the queue
and updates the mouse position. The GetEvents command gets the next
event in the queue.

CheckEvents

Function:

CheckEvents reads the mouse, moves the cursor to the new mouse position,
and posts an event, if any.

Command Number: 5 ($05)

Parameter List:

o (input, byte) number of parameters

Description:

CheckEvents reads the mouse and posts a mouse event if the button
state changed. If a key on the keyboard is down and keypress events
are to be checked, CheckEvents posts a keypress event and clears the
keyboard strobe. (If a previous call to SetKeyEvent has disabled
keypress events, CheckEvents ignores the keypress.) CheckEvents also
updates the cursor position to the X and Y values from the mouse.

If the program is using Interrupt Mode, the interrupt handler calls
CheckEvents. If the program calls CheckEvents in Interrupt Mode, the
Tool Kit returns an error.

In Passive Mode, the GetEvent command calls CheckEvents internally.
If the program is using Passive Mode, it should call CheckEvents or
Get Event often to ensure smooth cursor motion.

Page 46 Chapter 2: Specifications of the Commands

Remember: CheckEvents is the only command that reads the
mouse and updates the cursor position.

An application program can have an interrupt-service routine of its
own that augments or even replaces the functions of CheckEvents.
CheckEvents can pass control to the routine either before or after
event checking. The program can even have two interrupt routines, one
called before event checking and one after. See the SetUserHook
command in the "Startup Commands" section to see how to do this.

Error Codes:

7 ($£\7) Interrupt Mode in use. (Program specified Interrupt
Mode in StartDeskTop, so it can't call CheckEvents.)

Event-Handler Commands

GetEvent

Function:

Page 47

GetEvent fetches the next event from the event queue. If there is none,
GetEvent returns the mouse position. In Passive Mode, GetEvent calls
CheckEvents.

Command Number: 6 ($06)

Parameter List:

3 (input, byte) number of parameters

et (output, byte) event type:
o no event
1 = button down
2 = button up
3 key pressed
4 = drag event
5 = Apple key down
6 = update event

ebl (output, byte) event byte 1: X coordinate or key value

eb2 (output, byte) event byte 2: Y coordinate or key modifier

Description:

GetEvent fetches the next event from the event queue so the program
can respond to the pressing of a key or the mouse button. In Passive
Mode, GetEvent calls CheckEvent internally to make sure the lastest
event gets processed.

The event-type variable is a byte that indicates what happened to
cause the event. If the event type is 0, 1, 2, 4, or 5, the event
bytes are the X and Y coordinates of the mouse position from the last
call to CheckEvents. If the event type is 3, the event bytes are the
key and the key modifier. The high bit of the key value is 0. The
key modifier values are:

o = no modifier
1 OPEN-APPLE pressed
2 = SOLID-APPLE pressed
3 both Apple keys pressed

The drag event (et parameter = 4) is similar to a no e~ent except that
the mouse button is still down. After getting a button-down event,

Page 48 Chapter 2: Specifications of the Commands

the program should get drag events or a button-up event. If the
program gets a no event while waiting for a button-up event~ that
indicates that a mouse-up event was missed and that you don't know what
the mouse position was at that time (you only know its present
position). If this happens~ the program must cancel any operation that
is in progress.

The Apple-key down event indicates that one of the Apple keys was down
when the mouse button was pressed.

By the Way: This is similar to the shift click event on a
Lisa or a Macintosh. We can't read the shift keys on the
Apple II~ but we can read the Apple keys.

An event type of 6 indicates an update event. This indicates that a
window that cannot be automatically refreshed needs updating. The
window ID is returned in ebl~ the key value parameter. This event only
occurs when the application has set the DInfo pointer in the Window Data
Structure to zero~ indicating that the window cannot be automatically
refreshed.

Error Codes:

(none)

Event-Handler Commands

PostEvent

Function:

PostEvent posts an event into the event queue.

Command Number: 46 ($2E)

Parameter List:

3 (input, byte) number of parameters

et (input, byte) event type:
o no event
1 = button down
2 button up
3 key pressed
4 = drag event
5 = Apple key down
6 = update event

ebl (input, byte) event byte 1: X coordinate or key value

eb2 (input, byte) event byte 2: Y coordinate or key modifier

Description:

Page 49

PostEvent posts an event into the event queue. The parameter list
is the same as for GetEvent except that all of the parameters are
inputs.

PostEvent can have an event type like the ones returned by GetEvent
(et = 0, 1, ••• 5) or it can have a type defined by the application
program (et = 128, 129, ••• 255). Any other value for the et parameter
is illegal. The Tool Kit ignores events of type 128-255.

Error Codes:

19 ($13) The event queue is full; the event was not posted.

20 ($14) Illegal event type; the event was not posted.

Page 50

FlusbEvents

Chapter 2: Specifications of the Commands

Function:

FlushEvents empties the event queue.

Command Number: 7 ($07)

Parameter List:

o (input, byte) number of parameters

Description:

FlushEvents empties the event queue.

Error Codes:

(none)

Event-Handler Commands

SetKeyEvent

Function:

Page 51

SetKeyEvent specifies whether Tool Kit treats keypresses as events.

Command Number: 8 ($08)

Parameter List:

1 (input, byte) number of parameters

sk (input, byte) set keyevent:
o = don't check keyboard,
1 = check the keyboard

Description:

SetKeyEvent specifies whether Tool Kit posts keypresses as events. If
the value of sk is 1, the Tool Kit reads the keyboard. If a~key is
pressed, the Tool Kit posts a key event and clears the key strobe. If
the value of sk is ~J the Tool Kit doesn't handlekeypresses. At
start up, the Tool Kit is set to post keyboard events.

The Tool Kit handles
form of type-ahead.
Keypress function in
Tool Kit.

Error Codes:

(none)

keypresses as events in the queue, providing a
This means that Pascal programs don't need the
the Applestuff Unit as long as they're using the

Page 52

PeekEvent

Function:

Chapter 2: Specifications of the Commands

PeekEvent reports on the next event without removing it from the
queue.

Command Number: 21 ($15)

Parameter List:

3 (input, byte) number of parameters

et (output, byte) event type:
o = no event
1 but ton down
2 button up
3 = key pressed
4 drag event
5 = Apple key down
6 update event

ebl (output, byte) event byte 1: X coordinate or key value

eb2 (output, byte) event byte 2: Y coordinate or key modifier

Description:

PeekEvent returns information from the next event in the event queue,
but does not remove the event from the queue. The parameters are the
same as for the GetEvent command, described earlier.

Error Codes:

(none)

Menu Commands

Menu ee-ands

Page 53

The Tool Kit's menu commands provide menu display and selection
functions. Once you have set up the menu data structures with SetMenu,
the MenuSelect command will display a menu, track the mouse and move the
cursor, highlight menu items as the cursor moves onto them, return with
the menu ID and item numbers selected, and leave the menu title
highlighted. Other menu commands inhibit menus or menu items and
display a checkmark beside specified menu items.

It is the responsibility of the application program to ensure that
menu titles do not extend past the right edge of the screen. The
program must make sure that a menu's width is always less than the
screen width minus two (38 or 78) and that a menu's length is always
less than screen length minus two (22). Otherwise, the menu routines
can write into main memory when they should be writing to the display,
thereby clobbering screen holes or program memory.

Keys in Menus

The MenuKey command gives your program the ability to use keypresses
to select menu items. Typically, you use a combination keypress
consisting of a letter key plus one of the Apple keys. Menu items
that can be selected in this way are indicated by the OPEN-APPLE or
SOLID-APPLE icon and the specified letter or other key displayed to
the right of the menu item. If an item can be selected using either
type of apple icon, the OPEN-APPLE icon appears with the letter in the
menu.

You can also specify a control character as the keypress that selects
a menu item. You do this by setting either Character 1 or Character 2
in the Menu Item Block to a value from 1 to 31, corresponding to
a contr~l character. (Menu Item Blocks are defined in Table 2-4.)
You need not set the modifier bits in the Item Option Byte.

When you specify a control key to select an item, the Tool Kit
displays a diamond icon and the key to the right of the menu item.
Only the character in Character 1 will be used, even if you made
Character 2 a control character.

Keypresses with the CONTROL key are easier to touch-type than those
with the Apple keys, but you should still use the Apple-key
combinations for most items and reserve the use of control keys for
high-speed or repetitive functions where the ability to touch-type the
command is important.

The user will expect control keys to be used for the same functions
across different products. Apple has defined the menu functions of
most of the control keys, as shown in Table 2-1.

I

Page 54 Chapter 2: Specifications of the Commands

If the user presses a key other than one of those specified in the
menu, the Tool Kit generates a beep.

TaMe 2-1.
Control Keys for Menu Items

Control Key

CTRL-B

CTRL-C

CTRL-D

CTRL-E

CTRL-F

CTRL-H

CTRL-I

CTRL-J

CTRL-K

CTRL-L

CTRL-M

CTRL-P

CTRL-U

CTRL-V

CTRL-X

CTRL-Z

CTRL- [

Function

Boldface

Copy

Delete

Editing type, insert or overstrike cursor

Forward delete

Left arrow

Tab

Down arrow

Up arrow

Begin or end underline

Return

Print

Right arrow

Paste

Cut

Zoom

Escape

~1enu Commands

lnit:Menu

Function:

Page 55

InitMenu establishes an area of memory that will be used to save the
part of the display obscured by menus.

Command Number: 9 ($09)

Parameter List:

2 (input, byte) number of parameters

sa (input, word) save area: pointer to reserved memory area

sas (input, word) save area size: number of bytes reserved

Description:

During calls to Menl.lSelect, the part of the display obscured by a menu
must be saved so that it can be replaced when the menu goes away. The
application program must provide memory space and reserve it for use by
the Tool Kit.

You can determine the amount of memory space to reserve for menu
displays by calculating the screen area of the largest menu in
the program. The largest menu could have a large screen area hecause
it has many items, or it could have only a few items, each of which
is very long.

You calculate the screen area of a menu by taking the product of the
number of items in the menu, plus 1, times five bytes more than the
length of the longest item string in that menu. If you are using keys
to select items, each item string must include three bytes to display
a space, an Apple icon, and the key that selects the item.

When the program calls the SetMenu command to initialize a menu bar,
SetMenu checks whether the amount of memory reserved by InitMenu is
enough for a particular menu and returns an error if it is not.

Error Codes:

(none)

Page 56

SetMenu

Function:

Chapter 2: Specifications of the Commands

SetMenu initializes the menu bar data structure and displays the menu
bar.

Command Number: 10 ($0A)

Parameter List:

1 (input, byte) number of parameters

mbs (input, word) pointer to menu bar structure

Description:

SetMenu initializes a menu bar data structure and displays the menu
bar. Given a pointer to a menu bar structure (see Tables 2-2
and 2-4), SetMenu fills in the data required by the menu commands and
saves the pointer for their use. Once SetMenu has been called, the
program must not move the data structure.

SetMenu checks to make sure that the memory area reserved by InitMenu is
enough to handle the display area that will be obscured by the menu bar
specified by the data structure. If it is not, SetMenu returns an
error, but it still displays the menu bar.

Error Codes:

10 ($0A) Save area (from InitMenu) is too small.

Menu Commands

Table 2-2. Data Structure for a Menu
Bar

Page 57

Parameter
Function

Parameter
Size Note

1 byte
1 byte

1 byte
1 byte
2 bytes
2 bytes
1 byte
1 byte
1 byte
1 byte

Number of Menus
Reserved for Future Use
First Menu Block:

Menu ID (can't be 0)
Menu Option Byte
Pointer to Title String
Pointer to Menu Data Structure
X Position for Title Display
Left for HiLite and Select
Right for HiLite and Select
Reserved for Future Use

Second Menu Block:
(same structure as First Menu Block)

Last Menu Block
(same structure as First Menu Block)

*Indicates items filled in by Tool Kit.

Table 2-3. Contents of Option Byte
in Each Menu Block (see Table 2-2)

*
*
*
*

--~-------------

Bit Bit
Number Function Note

7 Disable Flag *
6 Reserved for Future Use
5 Reserved for Future Use
4 Reserved for Tool Kit
3 Reserved for Tool Kit
2 Reserved for Future Use
1 Reserved for Future Use
0 Reserved for Future Use

*Disable Flag is updated by DisableMenu command. By setting the flag

Page 58 Chapter 2: Specifications of the Commands

off before calling SetMenu, the program can make the menu start out
disabled.

Table 2-4. Data Structure for a Menu

Parameter Parameter
Function Size Note

Number of Items 1 byte
Left Column of Save Box 1 byte 1
Right Column of Save Box 1 byte 1
Reserved for Future Use 1 byte 1
First Menu Item Block:

Item Option Byte 1 byte
Mark Character 1 byte 2
Character 1 (high bit off) 1 byte 3
Character 2 (hi gh bit off) 1 byte 3
Pointer to Item String 2 bytes

Second Menu Item Block:
(Same structure as First Menu Item Block)

Last Menu Item Block:
(Same structure as First Menu Item Block)

1 Indicates items filled in by Tool Kit.
2 Updated by the SetMark command. The program can set the initial
mark character in the data structure, but after that it should
change the mark character only by calling SetMark.
3 The program should set this byte to 0 if not using characters.

Menu Commands

Table 2-5. Contents of Option Byte
in Menu Data Structure

Bit Bit
Number Function Notes

7 Disable Flag 1 t 5
6 Item Is Filler 2
5 Item Is Checked 3 t 5
4 Reserved for Tool Kit
3 Reserved for Tool Kit
2 Item Has Mark 3 t 5
1 Modifier Is SOLID-APPLE Key
tJ Modifier Is OPEN-APPLE Key

1 Updated by the Disableltem Command.

Page 59

2 If the "Item Is Filler" bit in the Option Byte is on t then
Character 1 of the Menu Item Block (see Table 2..4) is the character to
use for filler; otherwise t Character 1 and Character 2 are the
uppercase and lowercase values of the key that identifies the item
when MenuKey is called.

3 Updated by the Checkltem command.

4 Used only with Applesott BASIC; set to ~ otherwise. See AppendixY t _

"Applesoft String Options."

5 The program can set the initial states of these flags in the data
structure before calling the SetMenu command. After that t the program
should update the flags only by calling the appropriate commands.

Page 60

MenuSe1ect

Function:

Chapter 2: Specifications of the Commands

MenuSelect interacts with the mouse to display a menu and return the
selection, if any.

Command Number: 11 ($0B)

Parameter List:

2 (input, byte) number of parameters

id (output, byte) menu ID, 0 = no menu item chosen

in (output, byte) menu item number, undefined if id

Description:

MenuSelect performs the interactive display of menus while the user
keeps the mbuse button depressed. MenuSelect does not return until
the user releases the button and a·button-up event occurs.

The application program calls MenuSelect whenever the user presses the
mouse button on line 0 of the display. As the user moves the mouse up
and down the menu display, MenuSelect tracks the mouse and updates the
cursor. When the cursor moves onto a menu item, MenuSelect highlights
the name of the item.

When the user releases the mouse button while the cursor is on a menu
item, MenuSelect removes the menu from the display, highlights the
menu title, and returns the menu ID number and the item number.
After the program finishes performing the selected operation, it must
call HiLiteMenu to turn off the highlighting of the menu title.

An application can also use the MenuSelect command in keyboard mouse
emulation mode by calling it immediately after calling the
KeyboardMouse command. In that mode, the Tool Kit tracks the cursor
while the user presses cursor keys to move the cursor. The user
indicates a menu selection by pressing the RETURN key or by pressing
and releasing the mouse button. The user can also press an
appropriate command key. Pressing the ESC key terminates the command.

Menu Commands

Error Codes:

(none)

Page 61

Page 62

MenuKey

Function:

Chapter 2: Specifications of the Commands

MenuKey finds the menu item that matches a key.

Command Number: 12 ($~C)

Parameter List:

4 (input, byte) number of parameters

id (output, byte) menu ID, 0 if no item selected

in (output, byte) item number, undefined if id = 0

k (input, byte) key: the character typed

km (input, byte) key modifier, as returned by GetEvent:
o = no modifier,
1 = OPEN-APPLE key
2 = SOLID-APPLE key
3 = either Apple key

Description:

After the user presses a key, MenuKey searches the menu data to find a
menu item that has a matching key. If it finds a match, it highlights
the menu title and returns the menu ID number and item number the
same way MenuSelect does.

Also like MenuSelect, MenuKey leaves the selected menu highlighted;
the progam must call HiLiteMenu to turn off the highlighting.

If you set the key modifier parameter to 3, either Apple key
will serve to modify a matching keypress.

If an item is disabled, its menu key or keys will not select it.

As a special case, the MenuKey command can operate like MenuSelect
does in keyboard mouse emulation mode. Calling MenuKey with ESC as
the key initiates that mode of operation. The Tool Kit tracks the
cursor while the user presses cursor keys to move the cursor. The
user indicates his selection by pressing the RETURN key or pressing
and releasing the mouse button. The user can also press an
appropriate command key. Pressing the ESC key terminates the command.

Menu Commands

Error Codes:

(none)

Page 63

Page 64

HiLiteMetm

Function:

Chapter 2: Specifications of the Commands

HiLiteMenu turns highlighting of a menu title on or off.

Command Number: 13 ($0D)

Parameter List:

1 (input, byte) number of parameters

id (input, byte) menu ID: 0 = turn highlighting off

Description:

HiLiteMenu turns highlighting of a specified menu title in the Menu
Bar on. Call HiLiteMenu with id = 0 to turn off highlighting after a
call to MenuSelect or MenuKey.

Error Codes:

8 ($08) Menu ID was not found.

Menu Commands

DisableMenu

Function:

Page 65

DisableMenu disables or enables selection and highlighting over a
whole menu.

Command Number: 14 ($~E)

Parameter List:

2 (input t byte) number of parameters

id (input t byte) menu ID

dis (input t byte) disable:
1 disable
~ = enable

Description:

DisableMenu disables or enables selection and highlighting over a
whole menu. If the menu has been disabled t none of the items can be
selected t either by MenuSelect or by MenuKey. The menu will still
appear when the user moves the mouse onto the menu title t but the
title will not be highlighted t and none of the items in the menu will
be highlighted when the mouse moves onto them.

When a call to DisableMenu enables a menu t any items that were
individually disabled remain disabled. (See the DisableItem command.)

By setting the Disable Flag in the Menu Block's Option Byte when you
set up the Menu Bar data structure, your program can make the menu
start out disabled. ~fter that t the program should use the
DisableMenu command to disable and enable menus.

Error Codes:

8 ($~8) Menu ID was not found

Page 66

Disahleltem

Function:

Chapter 2: Specifications of the Commands

DisableItem disables or enables selection and highlighting of a menu
item.

Command Number: 15 ($~F)

Parameter List:

3 (input, byte) number of parameters

id (input, byte) menu In

in (input, byte) item number

dis (input, byte) disable:
1 disable item
0 = enable item

Description:

DisableItem disables or enables selection and highlighting of a menu
item. If an item is disabled, it cannot be selected, either by
MenuSelect or by MenuKey, and it will not be highlighted when the
mouse moves onto it.

To enable an item, call DisableItem with the disable parameter set to ~.

By setting the Disable Flag in the Menu Item Block's Item Option Byte
when you set up the menu data structure, your program can make the
menu item start out disabled. After that, the program should use the
DisableItem command to disable and enable menu items.

Calling DisableItem with item number set to zero generates error 9,
Item Number Not Valid.

Error Codes:

8 ($~8)

9 ($09)

Menu ID was not found

Item Number not valid

Menu Commands

Cbeck.Item

Function:

CheckItem turns the checkmark displayed next to item on or off.

Command Number: 16 ($1~)

Parameter List:

3 (input, byte) number of parameters

id (input, byte) menu ID

in (input, byte) item number

ck (input, byte) checkmark:
~ = turn checkmark off
1 = turn checkmark on

Description:

Page 67

CheckItem turns the checkmark displayed next to item on or off. The
checkmark appears in the blank column in the left edge of the menu.

Your program can call the SetMark command to change the checkmark to
any ASCII character.

Calling CheckItem with item number set to zero generates error 9,
Item Number Not Valid.

Error Codes:

8 ($~8)

9 ($09)

Menu ID was not found

Item Number not valid

Page 68

SetMark

Function:

Chapter 2: Specifications of the Commands

SetMark enables a program to select the character to display for items
that are checked in a ~enu.

Command Number: 20 ($14)

Parameter List:

4 (input, byte) number of parameters

id (input, byte) menu ID

in (input, byte) item number

mk (input, byte) checkmark:
~ use checkmark character
1 = install new character

char (input, byte) character to display for this item

Description:

SetMark sets the character that is displayed when a program calls
CheckItem. The default character is the checkmark.

Error Codes:

8 ($~8)

9 ($09)

Menu ID was not found

Item Number not valid

Window Commands

Window CoIImands

.Page fi9

The Tool Kit's window management commands provide the functions your
application program needs to set up and display windows. Once you have
set up the window information structure with OpenWindow, you can use
these commands to select a window, bring it to the front of the display,
put text into it, drag it, change its size, or close it.

Each open window must have a unique ID number in the range from 1
through 255. An attempt to open a second window with the same ID number
as one already open will return an error.

A window ID number of 0 is not valid because FrontWindow returns ID = 0
when no window is open. An attempt to open a window with ID number of 0
will return an error.

With some of the Tool Kit commands, you can use an ID number of 0 to
indicate the front window. If there is no front window when you do
this, these commands return an error. The commands that interpret
ID = 0 to mean the front window are

CloseWindow
- GetWinPtr
- SelectWindow
- DragWindow
- GrowWindow
- WindowToScreen
- ScreenToWindow
- WinChar
- WinString
- WinText
- WinBlock
- WinOp

Note: The use of ID = 0 to select the front window is only a
convenience. You can always use the actual ID number of the
front window instead.

Page 70

lnit:W:irubwMgr

Function:

Chapter 2: Specifications of the Commands

InitWindowMgr initializes the internal list of open windows and
establishes an area o~ memory that will be used to save parts of the
display while a window is being dragged or grown.

Command Number: 22 ($16)

Parameter List:

2 (input, byte) number of parameters

ptr (input, word) pointer to reserved memory area

size (input, word) size of reserved memory area, in bytes

Description:

InitWindowMgr resets the pointers to the first and last entries ih the
internal linked list of open windows and establishes an area of memory
that will be used to save parts of the display while a window is being
dragged or grown.

During calls to DragWindow and GrowWindow t the Tool Kit must save the
part of the display obscured by the outline of the window so that it
can be replaced when the window operation is finished. The
application program must provide the necessary memory space ann
reserve it for use by the Tool Kit.

The amount of memory space required is determined by the perimeter of
the largest window (the sum of twice the window's width plus twice its
length) •

Note: This memory area can be the same as the area reserved
by InitMenu.

Window Commands

Error Codes:

(none)

Page 71

Page 72

OpenWfundow

Function:

Chapter 2: Specifications of the Commands

OpenWindow opens a window by supplying a pointer to the window's
Information Data Structure.

Command Number: 23 ($17)

Parameter List:

1 (input, byte) number of parameters

ptr (input, word) pointer to Window Information Data Structure

Description:

OpenWindow passes window information to the Tool Kit via a pointer to
a Window Information Data Structure, or Winfo Data Structure (see
Table 2-6). The Winfo Data Structure must reside at a fixed location
in memory while the window is open.

The Window Information Data Structure includes a pointer to a Document
Information Data Structure (Dinfo Data Structure) that the Tool Kit
uses to obtain the text to display in the window (see Table 2-10).
Each call to OpenWindow makes that window the front, or active, window.

OpenWindow forces X and Y position coordinates to valid values. It
also forces the Thumb positions to be no greater than the maximums.
However, OpenWindow does not check to make sure that window minimums
are less than maximums or that current window size is between the
maximum and the minimum.

The application program can substitute its own routine for OpenWindow.
The program passes the address of its open routine in the Winfo Data
Structure in place of the pointer to the Dinfo Data Structure and set
bit 7 of the Window Option Byte. The Tool Kit will pass control to
the program's routine whenever the contents of the window need to be
changed.

Because the user routine is called from within the Tool Kit, it cannot
rely on the zero-page locations the Tool Kit uses (currently $0~ to
$18). When the Tool Kit calls the user routine, the register contents
are

- accumulator: window ID number
- X register: low byte of Winfo address
- Y register: high byte of Winfo address

Window Commands Page 73

The routine can only call the Tool Kit commands whose names start with
Win- to update the content region of the window it was requested to
update. Any other calls can put the Tool Kit into an unknown state.

Error Codes:

12 ($0c) A window with the same ID is already open

13 ($0D) InitWindowMgr buffer too small for this window

14 ($0E) Bad Winfo--tried to open with ID=0 t or conflicting
maximum and minimum width or length

17 ($11) Error returned by user hook

Table 2-6. Information Structure for
a Window

Parameter
Function

Parameter
Size Note

Window ID Number (not 0) 1 byte
Window Option Byte 1 byte
Title String Pointer 2 bytes
Window Position X Coordinate 2 bytes 1 t 2
Window Position Y Coordinate 2 bytes 1 t 2
Current Content Width 1 byte I t 3
Current Content Length 1 byte I t 3
Minimum Content Width 1 byte
Maximum Content Width 1 byte 4
Minimum Content Length 1 byte
Maximum Content Length 1 byte 4
Document Information Structure Pointer 2 bytes
Horizontal Control Option Byte 1 byte
Vertical Control Option Byte 1 byte
Horizontal Scroll Maximum 1 byte
Current Horizontal Thumb Position 1 byte ItS
Vertical Scroll Maximum 1 byte
Current Vertical Thumb Position 1 byte ItS
Window Status Byte 1 byte 1
Reserved for Future Use 1 byte 6
Pointer to Next Winfo Structure 2 bytes 6
Reserved for Tool Kit 2 bytes 6
Screen Area Covered 4 bytes 6

Page 74 Chapter 2: Specifications of the Commands

1 Program sets initial values t Tool Kit updates these.
2 Initial values determine initial position of window.
3 Initial values determine initial window size.
4 Document width and length determine maximum content width and length.
S Initial values determine initial position of thumb.
6 Items filled in by Tool Kit.

Table 2-7. Contents of Window Option
Byte in Window Information Structure

Bit
Number

7
6
5
4
3
2
1
~

Bit
Function

Document Pointer Function
Reserved for Future Use
Reserved for Future Use
Reserved for Tool Kit
Reserved for Tool Kit
Grow Box is present
Close Box is present
Window is Dialog or Alert Box

Notes

1

2
2
3
3
3

1 This bit indicates the function of the Document Pointer.
o = Pointer to Document Information Structure
1 = Pointer to User Window Routine

2 The program must set these bytes to ~.

3 These items set the initial appearance of the window. They cannot
be changed when the window is open; instead t you must close the window,
change the values t then open the window again.

Window Commands

Table 2-8. Contents of Horizontal or
Vertical Control Option Byte in
Window Information Structure

Page 75

Bit
Number

7
6
5
4
3
2
1
o

Bit
Function

Scrollbar is present
Thumb is present
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Scrollbar is active

Notes

1
1

2

1 These items set the initial appearance of the window. They cannot
be changed when the window is open; instead, you must close the window,
change the values, then open the window again.
2 Initial value set by program; after that, use ActicateCtl to change it.

Table 2-9. Contents of Window Status
Byte in Window Information Structure

Bit
Number

7
6
5
4
3
2
1
o

Bit
Function

Window is open
Reserved for Future Use
Reserved for Future Use
Reserved for Future Use
Used by Tool Kit
Used by Tool Kit
Used by Tool Kit
Used by Tool Kit

Note

*

* Program can read to determine state of window.

Page 76 Chapter 2: Specifications of the Commands

Table 2-1e. Information Structure
for a Document

Parameter Parameter
Function Size Note

Document Pointer 2 bytes 1
Reserved (set to ~) 1 byte
Document Width 1 byte
Document X Coordinate 2 bytes 2
Document Y Coordinate 2 bytes 2
Reserved for Tool Kit 4 bytes 3

1 See bit 7 of the Window Option Byte
2 Set to ~ or set initial position in the document.
3 The program must set these bytes to ~.

Window Commands

CloseW:iindow

Function:

Page 77

CloseWindow removes the window with given ID number and redisplays the
screen.

Command Number: 24 ($18)

Parameter List:

1 (input, byte) number of parameters

id (input, byte) ID number of window to close

Description:

CloseWindow removes the window with the given ID number from the list
of open windows and redisplays the screen with the window removed.
Setting ID = 0 selects the top window as the window to be closed.

Error Codes:

15 ($0F) Window ID not found

17 ($11) Error returned by user hook

Page 78

CloseAll

Function:

Chapter 2: Specifications of the Commands

CloseAl1 closes all open windows and redisplays the screen.

Command Number: 25 ($19)

Parameter List:

o (input, byte) number of parameters

Description:

CloseAll removes all windows from the list of open windows and
red is plays the screen.

Error Codes:

(none)

Window Commands

Gett:WinPl:r

Function:

GetWinPtr returns the pointer to the Winfo structure of the open
window that has the specified ID number.

Command Number: 45 ($2D)

Parameter List:

2 (input, byte) number of parameters

id (input, byte) ID number of window

ptr (output, word) pointer to Winfo Data Structure

Description:

Page 79

GetWinPtr returns the pointer to the Window Information Data Structure
(Winfo) of the open window that has the specified ID number. Setting
ID = 0 selects the top window.

Error Codes:

15 ($0F) Window ID not found

Page 80

F:indWindow

Function:

Chapter 2: Specifications of the Commands

FindWindow returns the ID number of the window that contains the given
point.

Command Number: 26 ($lA)

Parameter Lis t:

4 (input, byte) number of parameters

px (input, byte) X mouse-coordinate of point

py (input, byte) Y mouse-coordinate of point

type (output, byte) type of area point is in:
{; Desktop
1 Menu Bar
2 = content region
3 drag region
4 = Grow Box
5 = Close Box

id (output, byte) ID number of window the point is in (0 if
point is in desktop or menu bar).

Description:

FindWindow returns the ID number of the window that contains the given
point and returns the type of region the point is in: Menu Bar, content
region, drag region, Grow Box, or Close Box. The point is specified in
mouse coordinates. If the point is not in a window, FindWindow returns
an ID number of 0 and a region type of desktop.

If the point is in the content region, the application program should
call the FindControl command with window coordinates of the point to
determine whether the point is in a scroll bar.

Error Codes:

(none)

Window Commands

Fron~W:iindow

Function:

FrontWindow returns the ID number of the front window.

Command Number: 27 (SlB)

Parameter List:

1 (input, byte) number of parameters

id (output, byte) ID number of front window

Description:

Page 81

FrontWindow returns the ID number of the front, or active, window. It
returns 0 if no windows are open.

Error Codes:

(none)

Page 82

SelectWindaw

Function:

Chapter 2: Specifications of the Commands

SelectWindow activates the window with the given ID number.

Command Number: 28 (SIC)

Parameter List:

1 (input, byte) number of parameters

id (input, byte) ID number of window

Description:

SelectWindow makes the window with the given ID number the front, or
active, window and redisplays the screen. The window that was active
becomes the second window in the list. Setting ID = 0 selects the
front window. If the window selected is already the front window, the
Tool Kit does not redisplay the screen.

Error Codes:

15 (S0F) Window ID not found

17 (SII) Error returned by user hook

Window Commands

TrackGoAway

Function:

Page 83

TrackGoAway tracksthe mouse and indicates whether the mouse button was
released in the Go-Away Box.

Command Number: 29 ($ID)

Parameter List:

1 (input, byte) number of parameters

go (output, byte) Go-Away status:
~ = not in Go-Away Box
1 = mouse was in Go-Away Box

Description:

TrackGoAway tracks the mouse until the mouse button is released. If
the mouse is in the Go-Away Box when the button is released, the
return status is 1; if not,. it is ~.

The application program should call TrackGoAway when it detects that
the mouse button is down with the mouse in the Go-Away Box of the
front window. If the return status indicates that the button was
released in the Go-Away Box, the application program should then call
the CloseWindow command.

Error Codes:

16 ($1~) There are no windows

Page 84

DragWindlDW

Function:

Chapter 2: Specifications of the Commands

DragWindow displays the outline of the window being dragged t then
redisplays it in its new position.

Command Number: 3~ ($lE)

Parameter List:

3 (input t byte) number of parameters

id (input t byte) ID number of window being dragged

mx (input t byte) X mouse coordinate of starting position

my (input t byte) y mouse coordinate of starting position

Description:

DragWindow displays the outline of the window being dragged until
the user releases the mouse button t whereupon DragWindow clears the
display area preViously occupied by the window and redisplays the
windows from back to front.

The application program should call the DragWindow command when it
detects tha.t the mouse button is down in the drag region of a window.
In addition to the ID number of the window t the DragWindow command
also needs the mouse coordinates of the position returned as px and py
by the FindWindow command. In this it differs from the TrackGoAway
and GrowWindow commands; while the Go-Away Box and the Grow Box
consist of only one character each t the drag bar consists of
several characters t and the mouse could be in any of them when the
user starts dragging the window.

Setting ID = ~ selects the front window.

An application can also use the DragWindow command in keyboard mouse
emulation mode by calling it immediately after calling the
KeyboardMouse command. In that mode, the Tool Kit tracks the cursor
and moves the window outline while the user presses cursor keys. The
user indicates the completion of the move by pressing the RETURN key
or by pressing and releasing the mouse button. Pressing the ESC key
terminates the command and redisplays the window in its original
position.

Window Commands

Error Codes:

15 ($0F) Window ID not found

17 ($11) Error returned by user hook

22 ($16) Operation cannot be performed

Page 85

Page 86

GrowWindow

Function:

Chapter 2: Specifications of the Commands

GrowWindow displays the outline of the window being grown. then
redisplays an empty window with the new size.

Command Number: 31 ($1F)

Parameter List:

1 (input. byte) number of parameters

stat (output, byte) return status:
o window did not change size
1 = window did change size

Description:

GrowWindow displays the outline of the window being grown until
the user releases the mouse button, whereupon GrowWindow clears the
display area previously occupied by the window and redisplays the
windows from back to front.

The application program should call the GrowWindow command when it
detects that the mouse button is down in the Grow Box of the front
window.

GrowWindow leaves the content area of the front window blank because
it can't determine whether the bottom of the document has been passed
and whether the content area should be shifted. If the return status
indicates that GrowWindow changed the size of the window, the
application must redisplay the content area and update the scroll
bars.

An application can also use the GrowWindow command in keyboard mouse
emulation mode by calling it immediately after calling the
KeyboardMouse command. In that mode, the Tool Kit tracks the cursor
and draws the window outline in diffferent sizes while the user
presses cursor keys. The user indicates the completion of the
resizing by pressing the RETURN key or by pressing and releasing the
mouse button. Pressing the ESC key terminates the command and
redisplays the window in its original size.

Window Commands

Error Codes:

16 ($10) There are no windows

17 ($11) Error returned by user hook

22 ($16) Operation cannot be performed

Page 87

Page 88

WindowToScreen

Function:

Chapter 2: Specifications of the Commands

WindowToScreen converts window coordinate values to screen coordinates.

Command Number: 32 ($20)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) ID number of window to use

wx (input, word) X coordinate in the window

wy (input, word) y coordinate in the window

sx (output, word) X coordinate for the screen

sy (output, word) y coordinate for the screen

Description:

WindowToScreen converts passed coordinate values from window coordinates
to screen coordinates.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Window Commands

ScreenToWindow

Function:

Page 89

ScreenToWindow converts screen coordinate values to window coordinates.

Command Number: 33 ($21)

Parameter List:

5 (input t byte) number of parameters

id (input t byte) ID number of window to use

sx (input t word) X coordinate for the screen

sy (input t word) y coordinate for the screen

wx (output t word) X coordinate in the window

wy (output t word) y coordinate in the window

Description:

ScreenToWindow converts passed coordinate values from screen coordinates
to window coordinates.

Setting ID = 0 selects the front window.

Error Codes:

15 ($~F) Window ID not found

Page 90

WfulChar

Function:

Chapter 2: Specifications of the Commands

WinChar writes a character in a window.

Command Number: 34 ($22)

Parameter List:

4 (input, byte) number of parameters

id (input, byte) ID number of window

wx (input, word) X coordinate in window

wy (input, word) y coordinate in window

char (input, byte) character to display

Description:

WinChar writes a character at a given position in a window. If the
position given is not inside the window, WinChar does not write the
character.

WinChar does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Window Commands

WinStr:ing

Function:

WinString writes a string in a window.

Command Number: 35 ($23)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) ID number of window

wx (input, word) X coordinate in window

wy (input, word) y coordinate in window

ptr (input, word) pointer to the string

res (input, byte) must be 0.

Description:

Page 91

WinString writes a string at ~given position in a window. WinString
does not wrap around; if the string extends past the right edge of the
window, WinString just truncates it. WinString does not display any
characters in the string that fall outside the edges of the window.

WinString does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Page 92

WinTex1:

Function:

Chapter 2: Specifications of the Commands

WinText writes ASCII characters in a window.

Command Number: 38 ($26)

Parameter List:

5 (input, byte) number of parameters

id (input, byte) ID number of window

wx (input, word) X coordinate in window

wy (input, word) y coordinate in window

ptr (input, word) pointer to the first character of text

len (input, byte) number of characters to display

Description:

WinText writes ASCII characters at a given position in a window.
WinText does not wrap around; if the characters extend past the right
edge of the window, WinText just truncates them. WinText does not
display any characters that fall outside the edges of the window.

WinText does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 (S0F) Window ID not found

Window Commands

WinBlock

Function:

WinBlock writes a block of text in a window.

Command Number: 36 ($24)

Parameter List:

6 (input, byte) number of parameters

id (input, byte) ID number of window

Page 93

ptr (input, word) pointer to Document Information Data Structure
for the text to be displayed. If ptr = 0, WinBlock uses
the Dinfo pointer from the Winfo specified by the window ID.
(Document Information Data Structure definition is Table 2-9.)

startx (input, word) X coordinate of upper-left corner of display
window position within the document window (see Fig. 1-4)

starty (input, word) Y coordinate of upper-left corner of display
window position within the document window (see Fig. 1-4)

stopx (input, word) X coordinate of lower-right corner of display
window position within the document window (see Fig. 1-4)

stopy (input, word) Y coordinate of lower-right corner of display
window position within the document window (see Fig. 1-4)

Description:

WinBlock writes a block of text in a window. Startx, starty, stopx, and
stopy define a rectangle in the window where the characters are
displayed; WinBlock does not alter anything outside this rectangle.

WinBlock does not update the document.

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Page 94

'WhOp

Function:

Chapter 2: Specifications of the Commands

WinOp performs an operation on a window.

Command Number: 37 ($25)

Parameter List:

4 (input~ byte) number of parameters

id (input~ byte) ID number of the window

wx (input~ word) X window coordinate

wy (input ~ word) Y window coordinate

op (input~ byte) operation to perform:

26 ($IA) = clear to start of window*
27 ($IB) = clear to start of line*
28 ($IC) clear window
29 ($ID) clear to end of window
30 ($IE) clear line
31 ($IF) clear to end of line

* Operations do not clear the character at position X~Y.

Description:

WinOp clears all or a portion of a window~ depending on the operation
code. Except for operation code 28~ clear window~ WinOp clears the
characters from position X~Y to the end of the area indicated by the
operation. Notice that the forward clears include the character at
position X~Y~ but the backward clears--that is~ clear to start of
window and clear to start of line--do not. You can think of the latter
operations as "clear from start of area up to~ but not through~ position
X~Y."

Setting ID = 0 selects the front window.

Error Codes:

15 ($0F) Window ID not found

Control Region Commands

Control Region Comaands

Page 95

These commands deal with the control regions in the front window:
the horizontal and vertical scroll bars t including the Thumbs.

FindControl

Function:

FindControl indicates which control region of a window a given point is
in.

Command Number: 39 ($27)

Parameter List:

4 (input t byte) number of parameters

wx (inpu t t word) X window coordinate of point

wy (input t word) y window coordinate of point

ctl (output t byte) control region the point is in:
0 content region
1 = vertical scroll bar
2 horizontal scroll bar
3 none of the above (dead zone)

part (output t byte) part of control region the point is in:
1 = Up-Arrow of vertical scroll bart

Left-Arrow of horizontal scroll bar
2 Down-Arrow of vertical scroll bart

Right-Arrow of horizontal scroll bar
3 page-up region of vertical scroll bart

page-left region of horizontal scroll bar
4 page-down region of vertical scroll bart

page-right region of horizontal scroll bar
5 Thumb of scroll bar

Description:

FindControl indicates which control region of a window a given point
is in. The application program should call FindControl when it
determines t by means of a call to FindWindow t that the mouse is in the
content region of the front window. Depending on the control and part
codes returned by FindControl, the application should then take

Page 96 Chapter 2: Specifications of the Commands

appropriate action--for example, if the mouse is in a page-up or
page-down region or in an Up-Arrow or Down-Arrow, the application
scrolls the contents of the window, then calls UpdateThumb to make the
Thumb reflect the new position in the file.

The application program must make sure that the wx and wy values are
converted to window coordinates before calling FindControl.

Note: This is different from FindWindow, which takes mouse
coordinates.

Error Codes:

16 ($10) There are no windows

Control Region Commands

Set:CtlMax

Function:

Page 97

SetCtlMax changes the range of the scroll bar of the front window.

Command Number: 40 ($28)

Parameter List:

2 (input, byte) number of parameters

ctl (input, byte) control region to update max value for:
1 vertical scroll bar
2 = horizontal scroll bar

max (input, byte) new maximum value (must be greater than 1)

Description:

SetCtlMax changes the range of the scroll bar of the front window. If
the current Thumb position is greater than the new maximum, SetCtlMax
sets the Thumb to the new maximum and calls UpdateThumb to display it at
the proper position. SetCtlMax changes the control max value and (if
necessary) Thumb position in the Winfo Data Structur~~

The program normally calls SetCtlMax whenever the size of a window
changes (for example, by GrowWindow).

Maximum values depend on the application; a typical maximum value for
the horizontal scroll bar would be calculated as the document width,
minus the content width, plus twice the width of the vertical scroll
bar or grow box. Likewise,a typical maximum value for the vertical
scroll bar would be calculated as the document length, minus the
content length, plus the height of the horizontal scroll bar.

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Page 98

TrackThumb

Function:

Chapter 2: Specifications of the Commands

TrackThumb tracks the thumb until the mouse button is released, then
it updates the data in the Winfo.

Command Number: 41 ($29)

Parameter List:

3 (input, byte) number of parameters

ctl (input, byte) the control region whose Thumb is moving:
1 vertical scroll bar
2 = horizontal scroll bar

pos (output, byte) position the Thumb moved to

stat (output, byte) return status:
~ Thumb didn't move, pos is not valid
1 = Thumb did move

Description:

TrackThumb tracks the Thumb until the mouse button is released. The
application program should call TrackThumb when, FindControl indicates
that the mouse button is down in the Thumb. When the mouse button is
released, TrackThumb updates the position information in the Winfo
Data Structure and returns the new position of the Thumb. If the
value of the return status is ~, the Thumb is in the same position
it started in, and the value of pos is not valid.

The Thumb position is a number in the range from ~ to the maximum
position on the horizontal or vertical scrolling bar. A position of
~ means the first character of the document should be made visible;
a position equal to the maximum means the last character of the
document should be made visible.

If the Thumb position is the same as it was when TrackThumb is called,
it is treated as if it had not moved. If the Thumb does move,
TrackThumb updates the Thumb position in the Winfo Data Structure.

TrackThumb operates only on the front window.

Control Region Commands

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Page 99

Page 100

UpdateThumb

Function:

Chapter 2: Specifications of the Commands

UpdateThumb redisplays the Thumb in the designated position.

Command Number: 42 ($2A)

Parameter List:

2 (input. byte) number of parameters

ctl (input. byte) control region whose Thumb is being moved

pos (input; byte) new position of Thumb

Description:

UpdateThumb redisplays the Thumb in the designated position and updates
the position value in the Winfo Data Structure. UpdateThumb operates
only on the front window.

The program should call UpdateThumb after scrolling or paging.

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Control Region Commands

ActivateCtl

Function:

ActivateCtl changes the state of a scroll bar.

Command Number: 43 ($2B)

Parameter List:

2 (input t byte) number of parameters

ctl (input t byte) which control region to change

state (input t byte) state to make control region:
(/) = inactive
1 = active

Description:

Page 101

ActivateCtl changes the state of a scroll bar and updates the Control
Option Byte in the Winfo Data Structure. An active scroll bar shows the
Thumb and page regions; an inactive bar shows a hollow page region.

ActivateCtl operates only on the front window.

Error Codes:

16 ($10) There are no windows

18 ($12) Bad control ID (not 1 or 2)

Page 102

Page 103

Chapter 3

The Machine Language Interface

This chapter tells you what you need to know to use the MouseText
Tool Kit with your machine language programs. For descriptions of the
individual Tool Kit commands, see Chapter 2.

Installing the Machine Language Tool Kit

The MouseText Tool Kit is a relocatable package of machine language
subroutines. To use the Tool Kit in a Pascal environment, you'll need
to load the routines as a library unit, as described in Chapter 4. To
use the Tool·· Kit in a ProDDS environment, you'll need to load the
routines with the relocating loader that COmes with the ProDOS
Assembly Tools.

By The Way: Make sure you get up-to-date documentation and
code for R10ad; the early versions don't work.

Version 2.1 of the MouseText Tool Kit is designed to run only on the
Apple lIe and only in the primary 64K memory space; later versions may
be able to take advantage of auxiliary memory.

Important: Version 2.1 of the MouseText Tool Kit must reside
in the main 64K memory bank, and all calls must be made from
main memory.

All calls to the MouseText Tool Kit go through a single entry point
named ToolKit. In addition to necessary housekeeping functions, the

Page 104 Chapter 3: The Machine Language Interface

main entry point of the MouseText Tool Kit saves the X and Y index
registers and saves the locations in zero page that it uses for
temporary storage.

The exit routine for the Tool Kit also performs housekeeping
functions, as well as restoring the contents of the zero-page
locations, restoring the previous contents of the X and Y index
registers, and setting the carry flag to reflect the error status.
The exit routine also loads the error status into the accumulator,
thereby setting the 65~2's Nand Z flags.

Syntax of Machine Language Calls

A machine language call to the MouseText Tool Kit looks like this:

JSR
DB

DW
B~

TOOLKIT
CMDNUM

CMDLIST
ERROR

;main Tool Kit entry point
;command number of
;routine being called
;pointer to parameter list
;optional error handling

For programming examples showing calls to the MouseText Tool Kit,
refer to Appendix D.

By The Way: Calls to the MouseText Tool Kit have the same
syntax as calls to the ProDOS Machine Language Interface,
which is described in the ProDOS Technical Reference Manual.

After a return from a call to the Tool Kit, the value of the program
counter is six bytes beyond the location of the calling JSR, and the
accumulator contains the error code. The index registers and the
stack pointer are unchanged. If the called routine generated an
error, the carry bit is on and the zero bit is off; if it did not
generate an error, the zero bit is on and the carry bit is off.
Table 3-1 gives a summary of the return status for Tool Kit calls.

Installing the Machine Language Tool Kit

Table 3-1. Processor Status After
Return from Tool Kit. A bit value
of x means the bit is undefined.

Page 105

Processor Accumulator Program
Status Bits Contents Counter
N Z C D V

Successful Call rtJ 1 0 0 x rtJ Calling JSR + 6

Unsuccessful Call 0 rtJ 1 rtJ x Error Code Calling JSR + 6

The Maehine language Cl!PWands

Here are the command numbers and parameter lists for each of the Tool Kit
commands.

Startup Commands

A program normally calls
operating environment.

StartDeskTop

StartDesktop equ rtJ

start.parms db 6
start.mid db rtJ
start.msid db ~

start.opsys db $00
start.slotn db S00
start.int db SM
start.col db $01

StopDesktop

StopDesktop equ 1

stop.parms db 0

appropriate startup commands once to set up its

command number

parameter list for StartDeskTop
machine id byte
machine subid byte
using ProDOS
slot no. for mouse (0 check all slots)
using Interrupt Mode
using 80 columns

command number

parameter list for StopDeskTop

Page 106

PascIntAdr

PascIntAdr equ 17

pasc.parms db 1
pasc.addr dw '/J

SetBasAdr

SetBasAdr equ 18

setb.parms db 1
setb.addr dw '/J

Version

Version equ 19

ver.parms db 2
ver.ver db '/J
ver.rev db '/J

SetUserHook

SetUserHoo k equ 47

shook.parms db 2
shook.id db '/J
shook.addr db '/J

KeyboardMouse

KeyboardMouse equ 48

kdbms.parms db '/J

Chapter 3: The Machine Language Interface

command number

parameter list for PascIntAdr
address of int handler

command number

parameter list for SetBasAdr
base address of string area

command number

parameter list for Version
version number
revision number

command numbe r

parameter list for SetUserHook
user's routine ID
starting address of user's routine

command number

parameter list for KeyboardMouse

Cursor Commands

These commands control the appearance of the cursor.

SetCursor

SetCursor

setc.parms
setc.char

equ

db
db

2

1
$£)'/J

command number

parameter list for SetCursor
character to use for cursor

The Machine language Commands Page 107

ShowCursor

ShowCursor equ 3 command number

showc.parrns db f/J parameter list for ShowCursor

HideCursor

HideCursor equ 4 command number

hidec.parrns db f/J parameter list for HideCursor

ObscureCursor

ObscureCursor equ 44 command number

obscc.parms db f/J parameter list for ObscureCursor

Event-Handling COBaands

These commands deal with events in the event queue.

CheckEvents

CheckEvents

chke.parms

GetEvent

GetEvent

evt.parms
evt. type
evt.eb1
evt.eb2

evt.x
evt. y
evt.key
evt. keyrnod

equ

db

equ

db
db
db
db

equ
equ
equ
equ

5

6

evt.eb1
evt.eb2
evt. eb 1
evt.eb2

command number

parameter list for CheckEvents

command number

parameter list for GetEvent
the event type
event byte 1 (x or key)
event byte 2 (y or modifier)

x pos of mouse
y pos of mouse
key input by user
modifier to key input by user

Page 108

FlushEvents

Chapter 3: The Machine Language Interface

FlushEvents

flshe.parms

SetKeyEvent

equ

db

7 command number

parameter list for FlushEvents

SetKeyEvent equ

setkey.parms db
setkey.sk db

PeekEvent

8

1
'/J

command number

parameter list for SetKeyEvent
set key event

PeekEvent

pke.parms
pke.type
pke.eb1
pke.eb2

pke.x
pke.y
pke.key
pke.keymod

equ

db
db
db
db

equ
equ
equ
equ

21

pke.eb1
pke.eb2
pke.eb1
pke.eb2

command number

parameter list for PeekEvent
the event type
event byte 1 (x or key)
event byte 2 (y or modifier)

x pos of mouse
y pos of mouse
key input by user
modifier to key input by user

PostEvent

PostEvent equ 46 command number

post.parms db 3 parameter list for PostEvent
post. type db '/J the event type
post.eb1 db '/J event byte 1 (x or key)
post.eb2 db '/J event byte 2 (y or modifier)

post.x equ post.eb1 x pos of mouse
post.y equ post.eb2 y pos of mouse
post. key equ post.eb1 key input by user
post. keymod equ post.eb2 modifier to key input by user

Menu eo-anllis

These commands deal with menu selection and display.

The Machine language Commands Page 109

InitMenu

InitMenu equ 9 command number

im. parms db 2 parameter list for InitMenu
im. sarea dw savearea area to use for saving screen under menu
im.ssize dw savesize size of save area

SetMenu

SetMenu equ 10 command number

sm.parms db 1 parameter list for SetMenu
sm.mbar dw mymenu pointer to Menu Data Structure

MenuSelect

MenuSelect equ 11 command number

ms. parms db 2 parameter list for MenuSelect
ms.mid db 0 menu ID returned
ms.item db 0 item number returned

MenuKey

MenuKey equ 12 command number

mkey.parms db 4 parameter 1ist for MenuKev
mkey.mid db 0 menu ID returned
mkey.item db 0 item number returned
mkey. key db 0 key user typed
mkey.mod db 0 modifier of key

HiliteMenu

HiliteMenu equ 13 command number

hili. parms db 1 parameter list for HiliteMenu
hili-mid db 0 menu ID (0 for all)

DisableMenu

DisableMenu equ 14 command number

dism. parms db 2 parameter list for DisableMenu
dism. id db 0 menu ID
dism.dis db 0 disable code

Page 110

DisableItem

DisableItem equ 15

ditm.parms db 3
ditm. id db 0
ditm. item db 0
ditm. dis db 0

CheckItem

CheckItem equ 16

chki. parms db 3
chki.id db 0
chki. item db 0
chki. chk db 0

SetMark

SetMark equ 20

setm.parms db 4
setm.id db 0
setm.item db 0
setm. chk db 0
setm.char db 0

Chapter 3: The Machine Language Interface

command number

parameter list for DisableItem
menu ID
item number
disable code

command number

parameter list for CheckItem
menu ID
item number
checkmark code

command number

parameter list for SetMark
menu ID
item number
checkmark code
character to use as checkmark

Window Commands

These commands deal with window selection and display.

InitWindowMgr

InitWindowMgr equ 22 command number

iwm.parms
iwm.sarea
iwm.ssize

db
dw
dw

2
savearea
savesize

parameter list for InitWindowMgr
area to use when saving window screen
size of save area

OpenWindow

OpenWindow equ 23

open.parm db 1
open.wind dw {)

command number

parameter list for OpenWindow
pointer to Winfo Data Structure

The Machine language Commands

CloseWindow

Page 111

CloseWindow

cwo parms
cwo id

CloseAll

CloseAll

cla.parms

GetWinPtr

GetWinPtr

gwip.parms
gwip.id
gwip.winfo

FindWindow

FindWindow

fdw.parms
fdw.x
fdw.y
fdw. type
fdw.window

FrontWindow

FrontWindow

frtw. parms
frtw.id

SelectWindow

equ

db
db

equ

db

equ

db
db
dw

equ

db
db
db
db
db

equ

db
db

24

1
o

25

45

2
o
o

26

4
o
o
o
o

27

1
o

command number

parameter list for CloseWindow
ID number of window to close

command number

parameter list for CloseAll

command number

parameter list for GetWinPtr
window ID number
pointer to Winfo Data Structure

command number

parameter list for FindWindow
X coordinate of mouse
Y coordinate of mouse
type of region mouse is in
window ID number (0 = desktop)

command number

parameter list for FrontWindow
ID number of front window

SelectWindow equ

selw.parms db
selw. id db

28

1
o

command number

parameter list for SelectWindow
ID number of window

Page 112

TrackGoAway

Chapter 3: The Machine Language Interface

TrackGoAway

tga.parms
tga.closeit

DragWindow

DragWindow

dg.parms
dg.id
dg.x
dg.y

GrowWindow

GrowWindow

grow. parms
grow. result

equ

db
db

equ

db
db
db
db

equ

db
db

29

1
o

30

31

1
'/)

command number

parameter list for TrackGoAway
Go-Away status

command number

parameter list for DragWindow
window ID number
x mouse coord of cursor start
y mouse coord of cursor start

command number

parameter list for GrowWindow
return status

WindowToScreen

WindowToScreen equ 32 command number

w2s.parms
w2s. id
w2s .wx
w2s.wy
w2s.sx
w2s.sy

db
db
dw
dw
dw
dw

parameter list for WindowToScreen
window ID number
X coordinate in window
Y coordinate in window
X screen coordinate
Y screen coordinate

ScreenToWindow

ScreenToWindow equ 33 command number

s2w.parms
s2w.id
s2w.sx
s2w. sy
s2w.wx
s2w.wy

db
db
dw
dw
dw
dw

parameter list for ScreenToWindow
window ID number
X screen coordinate
Y screen coordinate
X coordinate in window
Y coordinate in window

The Machine language Commands

WinChar

Page 113

WinChar

wch.parms
wch. id
wch.wx
wch.wy
wch. char

WinString

WinString

wstr.parms
wstr.id
wstr.wx
wstr.wy
wstr.ptr
wstr.res

WinText

WinText

wtxt.parms
wtxt.id
wtxt.wx
wtxt.wy
wtxt.ptr
wtxt.len

WinBlock

WinBlock

wblk.parms
wblk. id
wblk.ptr
wblk.xl
wblk.yl
wblk.x2
wblk.y2

equ

db
db
dw
dw
db

equ

db
db
dw
dw
dw
db

equ

db
db
dw
dw
dw
db

equ

db
db
dw
dw
dw
dw
dw

34

35

38

36

command number

parameter list for WinChar
window ID number
X coordinate in window
Y coordinate in window
ASCII character to display

command number

parameter list for WinString
window ID number
X coordinate in window
Y coordinate in window
pointer to string
reserved (for BASIC only)

command number

parameter list for WinString
window ID number
X coordinate in window
Y coordinate in window
pointer to first character
number of characters

command number

parameter list for WinBlock
window ID number
pointer to Dinfo Data Structure
X upper-left window coordinate
Y upper-left window coordinate
X lower-right window coordinate
Y lower-right window coordinate

Page 114

WinOp

WinOp equ 37

wop.parms db 4
wop.id db tJ
wop.wx dw tJ
wop.wy dw 0
wop.op db tJ

Chapter 3: The Machine Language Interface

command number

parameter list for WinBlock
window ID number
X window coordinate
Y window coordinate
window operation

Control Region COBaands

These commands deal with the control regions in the front window: the
horizontal and vertical scrolls bars t including the Thumbs.

FindControl

FindControl equ 39

findc.parms db 4
findc.wx dw 0
findc.wy dw tJ
findc. ctl db tJ
findc.part db 0

SetCtlHax

SetCtlMax equ 40

setct.parms db 2
setct.ctl db tJ
setct.newmax db 0

TrackThumb

TrackThumb equ 41

tkthmb.parms db 3
tkthmb.ctl db 0
tkthmb. pos db tJ
tkthmb.moved db tJ

UpdateThumb

UpdateThumb equ 42

upt.parms db 2

command number

parameter list for FindControl
X window coordinate of point
Y window coordinate of point
control region point is in
part of region point is in

command number

parameter list for SetCtlMax
control region affected
new maximum va~ue

command number

parameter list for TrackThumb
control region affected
position Thumb moved to
Thumb moved code

command number

parameter list for UpdateThumb

The Machine language Commands Page 115

upt.ctl
upt.newpos

ActivateCtl

ActivateCtl

actl.parms
actl. ctl
actl. inact

db
db

equ

db
db
db

43

control region affected
new position of Thumb

command number

parameter list for ActivateCtl
ctl region to change
inactivate code

Page 116

Page 11 7

Chapter 4

The Pascal Interface

The Pascal Interface for the MouseText Tool Kit is a Pascal intrinsic
unit that provides the interface to the MouseText Tool Kit, Version 2.1.
Each of the Tool Kit commands described in Chapter 2 is supported by one
of the Pascal Interface procedures described in this chapter. In
addition to the command procedures, there is a utility procedure for
obtaining the address of a Pascal variable.

Installing the Pascal Interface

The Pascal Interface and the Tool Kit routines are supplied together
in a linked object file named ~ITXKIT.CODE. To use the Tool Kit, you
must install MTXKIT.CODE as a Unit in your System.library file. With
the Tool Kit code in the system library, the application program can
use the Tool Kit commands by including the statement "Uses MTXKIT;"
after the hea~ing.

Data Structures

This chapter presents the specifications of the data types and data
structures used in the Pascal Tool Kit, including the Menu Data
Structure, the Window Information Data Structure, and the Document
Information Data Structure, as defined in Chapter 2.

Constants and Type Definitions

The following constants and data types are used in the Pascal
Interface.

Page 118

Constants

Chapter 4: The Pascal Interface

max menus= 10 (A maximum of 10 menus is supported).
max-title str= 20 (A maximum of 20 characters per menu title is

- supported).
max item str= 30 (A maximum of 30 characters per menu item name is

- supported).
max_num_items= 10 (A maximum of 10 menu items is supported).

The following event type values are provided as constants rather than
as an enumerated type so that the user can define and handle his own
events.

no event = 0
button down = 1
button=up = 2
key down = 3
drag = 4
apple_key = 5

A single byte value is defined as:

byte = 0 •• 255;

Event

An event is defined as:

type event = packed record
- evt_kind : byte;

charI : byte;
char2 : byte;
reservel byte;
end;

where:

evt kind is the event type value (see above under Constants).
charI is event byte 1, X coordinate or key value.
char2 is event byte 2, Y coordinate or key modifier.
reservel is reserved for use by the Tool Kit.

Menu titles are defined as:

title str string[max title_str];

Data Structures

Menu Item Names

Menu item names are defined as:

item str = string[max_item_str];

Menu Item Blocks

A Menu item block is defined as:

menu item = packed record

open apple : boolean;
solid_apple : boolean;
item_has~ark : boolean;
reserve2 : boolean;
reserve3 : boolean;
item is checked : boolean;
item-is-filler : boolean;
disable-flag : boolean;

mark_char : byte;

{bit ~}

{bit 7}

Page 119

charI
char2

byte;
byte;

end;

where:

The first 8 fields in the record are the bits in the Item Option Byte:

open apple is on when the modifier is OPEN-APPLE key;
solid_apple is on when the modifier is SOLID-APPLE key;
item has mark is on when the item has mark;
reserve2~ reserve3 are reserved for use by the Tool Kit;
item is checked is on when the Item Is Checked;
item=is=filler is on when the Item Is Filler;
disable_flag is the Disable Flag;

mark char is the mark character;

charI is Character 1;
char2 is Character 2;

item str_ptr is Pointer to Item String;

Page 120

Menu Data Structures

Chapter 4: The Pascal Interface

The Data Structure for a Menu is defined as:

menu data = packed record
- num items : byte;

reserve 1 byte;
reserve2 : byte;
reserve3 : byte;
items: packed array [1 •• max_num_items] of menu_item;
end;

where:

num items is the Number of Items;
reserve1, reserve2, reserve3 are reserved for use by the Tool Kit;
items is the array of Menu Item Blocks;

Menu Title Blocks

A Menu Title Block is defined as:

menu title = packed record
menu_id : byte;
disabled : byte;
tit1e_ptr : A t it1e_str;
m data ptr : A menu data;
r;serv;d : packed ~rray [1 •• 4] of byte;
end;

where:

menu id is the Menu ID;
disabled is the Disable Flag (only bit 7 can be used);
tit1e_ptr is the Pointer to Title String;
m data ptr is the Pointer to Menu Data Structure;
reserv;d is reserved by the Tool Kit;

Menu Bars

The menu bar is defined as:

menu bar = packed record
num_menus : byte;
reserved : byte;
menus: array [l •• max_menus] of menu_title;
end;

Data Structures

where:

num menus is the Number of Menus;
reserved is reserved for use by the Tool Kit;
menus is the array of Menu Blocks;

Window Information Data Structures

A Window Information Data Structure (Winfo) is defined as:

winfo = packed record
window_id: byte;

Page 121

dialog: boolean;
goawaybox: boolean;
growbox: boolean;
reserve1: boolean;
reserve2: boolean;
reserve3: boolean;
reserve4: boolean;
dinfo_or_user: boolean;

windowx: integer;
windowy: integer;

contwidth: byte;
contlength: byte;

mincontwidth: byte;
maxcontwidth: byte;
mincontlength: byte;
maxcontlength: byte;

hactive: boolean;
reserve6: boolean;
reserve7: boolean;
reserve8: boolean;
reserve9: boolean;
reserv10: boolean;
hthumb: boolean;
hscrollbar: boolean;

vactive: boolean;
reserv11: boolean;
reserv12: boolean;
reserv13: boolean;

{bit ~}

{bit 7}

{bit ~}

{bit 7}

{bit 0}

Page 122

reserv14: boolean;
reserv15: boolean;
vthumb: boolean;
vscrDllbar: boolean;

hthumbmax: byte;
hthumbpos: byte;
vthumbmax: byte;
vthumbpos: byte;

reserv16: boolean;
reserv17: boolean;
reserv18: boolean;
reserv19: boolean;
reserv20: boolean;
reserv21: bDolean;
reserv22: boolean;
win_open: boolean;

reserv23: byte;

nextwinfo = Awinfo

reserv24: byte;
reserv25: byte;
reserv26: byte;
reserv27: byte;
reserv28: byte;
reserv29: byte;

end;

where:

window id is the Window ID#

Chapter 4: The Pascal Interface

{bit 7}

dialog is dialog/alert window flag
goawaybox is on when Go-Away Box present
growDox is on when Grow Box present
reserve1, reserve2, reserve3, reserve4

are all reserved by the Tool Kit

dinfo or user is user routine adr/dinfo ptr

title_ptr is Title Str ptr

windowx is Window Location X
windowy is Window Location Y

contwidth is Current Content Width
contlength is Current Content Length

Data Structures

mincontwidth is Min Content Width
maxcontwidth is Max Content Width
mincontlength is Min Content Length
maxcontlength is Max Content Length

dinfo_ptr is Dinfo Ptr

hactive is on when horizontal scroll bar active
reserve6, reserve7, reserve8, reserve9, reserv10

are all reserved by the Tool Kit
hthumb is on when horizontal Thumb present
hscrollbar is on when horizontal scroll bar present

vactive is on when vertical scroll bar active
reservll, reservl2, reservl3, reservl4, reserv15

are all reserved by the Tool Kit
vthumb is on when vertical Thumb present
vscrollbar is on when vertical scroll bar present

hthumbmax is horizontal scroll maximum
hthumbpos is current horizontal Thumb position
vthumbmax is vertical scroll maximum
vthumbpos is current vertical Thumb position

reservl6, reservl7, reservl8, reservl9, reserv2~,

reserv21, and reserv22
are all reserved by the Tool Kit

win_open is window open

reserv23 is reserved by the Tool Kit

nextwinfo is the pointer to the next winfo structure

reserv24, reserv25, reserv26, reserv27
reserv28, and reserv29

are all reserved by the Tool Kit

Document Information Data Structures

A Document Information Data Structure (Dinfo) is defined as:

dinfo = packed record

doc_ptr: integer;

reserved: byte;
docwidth: byte;

docx: integer;
docy: integer;

Page 123

Page 124

doc1ength: integer;
reserve2: byte;
reserve3: byte;

end;

where:

doc_ptr is Document ptr

reserved is reserved by the Tool Kit
docwidth is Document Width

docx is Document X
docy is Document Y

Chapter 4: The Pascal Interface

doc1ength is Document Length
reserve2, reserve3 are reserved by the Tool Kit

Screen Region Types

The type of screen region is defined as:

type area = (inDeskTop,
- inMenubar,

inContent,
inDrag,
inGrow,
inGoAway) ;

where each value is as returned by FindWindow:

inDeskTop is in desktop
inMenubar is in menu bar
inContent is in contentregion
inDrag is in drag region
inGrow is in Grow Box
inGoAway is in Go-Away Box

Control Region Types

The type of control region is defined as:

ct1area = (notct1,
ver scroll,
hor-scro11,
deadzone);

Data Structures

where each value is as returned by FindControl:

notctl is in content region
ver scroll is in vertical scroll bar
hor_scroll is in horizontal scroll bar
dead zone is none of the above

Control Region Part Types

The type of a part of a control region is defined as:

ctlpart = (ctlinactive,
scrollupleft,
scrolldownright,
pageupleft,
pagedownright,
thumb) ;

where each value is as returned by FindControl:

ctlinactive is never returned
scrollupleft is up arrow of vertical scroll bar

or Left-Arrow of horizontal scroll bar
scrolldownright is Down-Arrow of vertical scroll bar

or Right-Arrow of horizontal scroll bar
pageupleft is "page up" region of vertical scroll bar

or "page left" region of horizontal scroll bar
pagedownright is "page down" region of vertical scroll bar

or "page right" region of horizontal scroll bar·
thumb is Thumb of scroll bar

Pointers

A general purpose pointer is provided and defined as:

pointer: integer;

Error Codes

The Mouse Tool Kit error code is defined as:

TKError : integer;

Page 125

Page 126 Chapter 4: The Pascal Interface

eom.and F1llIllctions and Procedures

Here are the specifications of the procedure calls in the Pascal Tool
Kit Interface.

Startup COIIDU.nds

A program will normally call the appropriate startup commands once to
set up the operating environment. The proper sequence of steps to
start the mouse is:

(1) Call PascIntAdr to get the address of the Tool Kit's interrupt
handler.

(2) Pass the interrupt address to the mouse firmware by calling
SetMouse as described in Appendix B, "The Mouse Firmware Interface."
Mouse Mode should be set to passive.

(3) Call StartDesktop with the UseInterrupts parameter set the way you
want it for your program.

(4) (optional) Call SetUserHook to pass the addresses of your
program's interrupt handlers, if any, to the Tool Kit.

StartDeskTop

Procedure StartDeskTop (mach_id: integer; sub id: integer;
var slot num integer; use_interrupts -boolean;
column 80: boolean);

mach id is the machine ID number.
sUb_id is the subsidiary ID number.
slot num is the slot number of the mouse card.
use_interrupts is the interrupt usage parameter:

false= Passive Mode only
true= use interrupts

column 80 is the col (number of text columns) parameter:
false= 40 columns
true= 80 columns

StopDeskTop

Procedure StopDeskTop;

Command Functions and Procedures

PascIntAdr

Procedure PascIntAdr (var IntAdr: integer);

IntAdr is the address of the interrupt routine

SetUserHook

Procedure SetUserHook (hook_id, hook_adr: integer);

Page 127

hook_id is the ID number (~ or 1) for the program's interrupt routine.
hook adr is the address of the program's interrupt routine.

Version

Procedure Version (var ver_num, rev num: integer);

ver num is the version number.
rev num is the revision number.

KeyboardMouse

This function is us.ed with the MenuSelect, DragWindow, and. GrowWindow
commands only. Calling one of those commands immediately after calling
KeyboardMouse causes the command to operate in keyboard mouse emulation
mode, where the user can control the cursor motion by means of the
keyboard. The KeyboardMouse function has no parameters.

Function KeyboardMouse;

Cursor Commands

These commands control the appearance of the cursor.

SetCursor

Procedure SetCursor (new_ch: integer);

new ch is the character to use as cursor.

ShowCursor

Procedure ShowCursor;

Page 128

HideCursor

Procedure HideCursor;

ObscureCursor

Procedure ObscureCursor;

Event Hand1:ii.ng eo..ands

Chapter 4: The Pascal Interface

These commands deal with the event queue.

CheckEvents

Procedure CheckEvents;

GetEvent

Procedure GetEvent (var event

event is returned with:

evt kind set to the event type.
charI set to event byte 1: X coordinate or key value.
char2 set to event byte 2: Y coordinate or key modifier.

PostEvent

Procedure PostEvent (var event

event should be supplied with:

evt kind set to the event type.
charI set to event byte 1: X coordinate or key value.
char2 set to event byte 2: Y coordinate or key modifier.

FlushEvents

Procedure FlushEvents;

SetKeyEvent

Procedure SetKeyEvent (chk_keyboard: boolean);

ch~keyboard is the sk (set keyevent) parameter:

Command Functions and Procedures

false= don't check keyboard
true= check the keyboard

PeekEvent

Page 129

Procedure PeekEvent (var event

event is returned with:

evt kind set to the event type.
charI set to the event byte 1: X coordinate or key value.
char2 set to the event byte 2: Y coordinate or .key modifier.

Menu Cm-anlllls

These commands handle menu selection and display.

InitMenu

Procedure InitMenu (save_buffer, buf_size

save buffer is a pointer to the save area.
buf size is the save area size.

SetMenu

integer);

Procedure SetMenu (var my_menu_bar: menu_bar);

my menu bar is the menu bar structure. The procedure obtains
the poi;ter to the structure for you.

MenuSelect

Procedure MenuSelect (var menu_id, menu choice

menu id is the menu ID number.
menu choice is the menu item number.

MenuKey

Procedure MenuKey (var menu id, menu choice
var key_event: type_event);

menu id is the menu ID number.
menu choice is the item number.
key_event is returned with:

integer);

integer;

Page 130

charl as the key value
char2 as the key modifier

HiliteMenu

Procedure HiliteMenu (menu id

menu id is the menu ID number.

DisableMenu

Chapter 4: The Pascal Interface

integer);

Procedure DisableMenu (menu_id integer; disable boolean);

menu id is the menu ID number.
disable is the dis (disable) parameter:

false= enable
true= disa ble

DisableItem

Procedure DisableItem (menu id, item num
disable: boolean);-

menu id is the menu ID number.
item num is the item number.
disable is the dis (disable) parameter:

false= enable
true= disable

CheckItem

Procedure CheckItem (menu id, item num
check: boolean);-

menu id is the menu ID number.
item-num is the item number.
check is the ck (check) parameter:

false= turn checkmark off
true= turn checkmark on

SetMark

integer;

integer;

Procedure SetMark (menu id, item num: integer; mark on: boolean;
mark char: char);-

menu id is the menu ID number.
item-num is the menu item number.

Command Functions and Procedures

mar~on is the mark on parameter.
mark char is the mark char parameter.

Window eo-ands

These commands deal with window selection and display.

InitWindowMgr

Page 131

Procedure InitWindowMgr (drag_buffer, buf_size

drag_buffer is the pointer to the buffer.
buf size is the buffer size.

OpenWindow

Procedure OpenWindow (var my_Winfo: winfo);

my_Winfo is the Winfo data structure.

CloseWindow

Procedure CloseWindow (window id: integer);

window id is the window ID number.

CloseAll

Procedure CloseAll;

GetWinPtr

integer);

Procedure GetWinPtr (window_id: integer; var winfo_ptr: integer);

window id is the ID number of the window.
winfo_ptr is a pointer to the Winfo data structure.

FindWindow

Procedure FindWindow (pointx, pointy: integer; var area: type_area;
var window id: integer);

pointx is the X coordinate of the point.
pointy is the Y coordinate of the point.

Page 132 Chapter 4: The Pascal Interface

area is the type_area (region type) parameter.
window id is the window ID number.

FrontWindow

Procedure FrontWindow (var window id: integer);

window id is the window ID number.

SelectWindow

Procedure SelectWindow (window_id: integer);

window id is the window ID number.

TrackGoAway

Procedure TrackGoAway (var makeitgoaway: boolean);

makeitgoaway is the go away status:
~ not in Go-Away Box
1 = mouse was in Go-Away Box

DragWindow

Procedure DragWindow (window_id. mousex. mousey: integer);

window id is the window ID number.
mousex is the mouse X coordinate.
mousey is the mouse Y coordinate.

GrowWindow

Procedure GrowWindow(var makeitgrow: boolean);

makeitgrow is the return status:
o = window did not grow
1 = window did grow

WindowToScreen

Procedure WindowToScreen (window id. windowx. windowy: integer;
var screenx. screeny: integer);

window id is the window ID number.
windowx is the window X coordinate.

Command Functions and Procedures

windowy is the window Y coordinate.
screenx is the screen X coordinate.
screeny is the screen Y coordinate.

ScreenToWindow

Page 133

Procedure ScreenToWindow (window id, screenx, screeny: integer; var
windowx, windowy: integer);

window id is the window ID number.
screenx is the screen X coordinate.
screeny is the screen Y coordinate.
windowx is the window X coordinate.
windowy is the window Y coordinate.

WinChar

Procedure WinChar (window id, windowx, windowy: integer;
my_char: char)j -

window id is the window ID number.
windowx is the window X coordinate.
windowy is the window Y coordinate.
my_char is the character to display.

WinString

Procedure WinString (window id, windowx, windowy: integerj
my_string: string);-

window id is the window ID number.
windowx is the window X coordinate.
windowy is the window Y coordinate.
my_string is the string to write.

WinText

Procedure WinText (window id, windowx, windowy, text_buffer,
textlength: integer-)j

window id is the window ID number.
windowx is the X coordinate in the window.
windowy is the Y coordinate in the window.
text buffer is the pointer to the first character of text.
textlength is the number of characters to display.

Page 134

WinBlock

Chapter 4: The Pascal Interface

Procedure WinBlock (window_id: integer; var my dinfo: dinfo;
startx, starty, stopx, stopy: integer);

window id is the window ID number.
my_dinio is the document information structure.
startx is the X coordinate of the upper-left corner.
starty is the Y coordinate of the upper-left corner.
stopx is the X coordinate of the lower-right corner.
stopy is the Y coordinate of the lower-right corner.

WinOp

Procedure WinOp (window id, windowx, windowy: integer;
opcode: byte); -

window id is the window ID number.
windowx is the window X coordinate.
windowy is the window X coordinate.
opcode is the code for the operation to perform.

Control Region CODDBnds

These commands deal with the control regions in the front window:
the horizontal and vertical scroll bars, including the Thumbs.

FindControl

Procedure FindControl (windowx, windowy: integer;
var whichctl: ctlarea; var whichpart: ctlpart);

windowx is the window X coordinate.
windowy is the window Y coordinatei.
whichctl is the control region.
whichpart is the part of the control region.

SetCtlMax

Procedure SetCtlMax (whichctl: ctlarea; newmax: integer);

whichctl is the control region.
newmax is the new maximum value.

Command Functions and Procedures

TrackThumb

Page 135

Procedure TrackThumb (whichct1: ct1area; var thumbpos: integer;
var thumbmoved: boolean);

whichct1 is the control region.
thumbpos is the Thumb position.
thumbmoved is the return status:

o = Thumb didn't move, thumbpos not valid
1 = Thumb did move

UpdateThumb

Procedure UpdateThumb (whichct1: ct1area; thumbpos: integer);

whichct1 is the control region.
thumbpos is the new Thumb position.

ActivateCt1

Procedure ActivateCt1 (whichct1: ct1area; makeactive: boolean');

whichct1 is the control region.
makeactive is the state to make the control region:

o inactive
1 active

Utility Functions

In addition to a call for each of the Tool Kit commands, there is a
utility function for obtaining the address of a Pascal variable.

PointerTo

This function obtains the address of the specified variable and
returns it as the function value.

Function PointerTo(var Variable): integer;

Page 136

Page 137

Chapter 5

The Applesoft Interface

The Applesoft Interface for the MouseText Tool Kit is a set of
commands that are added to the standard Applesoft commands by means of
the ampersand hook. So that you can use it with other ampersand
packages t the Applesoft Interface saves the existing ampersand hook
address and passes any unrecognized ampersand commands on. If there
is another ampersand package t that package then gets control and can
test the commands. If there is no other ampersand package t then
Applesoft gets control arid issues a SYNTAX ERROR message.

InStalling the AppleSoft IlI.t:effaer:e

You'll need the relocating loader from the ProDOS Assembler Tools to
load both the MouseText Tool Kit routines and the Applesoft Interface
that contains the ampersand commands. The procedure for loading the
Mouse Tool Kit is as follows:

(1) Load the MouseText Tool Kit from file MTXKIT.OBJ using RBOOT.

(2) Load the Applesoft Interface from file MTXAMP.OBJ using RBOOT.

(3) Write the starting address of the Tool Kit in the first
two bytes of the Applesoft Interface (--not the other way
around t now!).

(4) Start the Applesoft Interface by a CALL to its address plus two.

One way to do this in Applesoft looks like this:

Page 138 Chapter 5: The Applesoft Interface

10 PRINT CHR$ (4);"BRUN RELEASE"
20 Al = ~:A2 = ~

30 PRINT CHR$ (4); "BRUN RBDOT"
40 Al = USR (~)~"MTXKIT.OBJ"

50 A2 = USR un, "MTXAMP .OBJ"
60 IF Al < 0 THEN Al = Al + 65536
70 IF A2 < 0 THEN A2 = A2 + 65536
80 I = INT (AI / 256)
90 J = Al - I * 256
100 POKE A2,J
110 POKE A2 + 1,1
120 CALL A2 + 2
130 "END

The MouseText Tool Kit routines are in the file named MTXKIT.OBJ; the
Applesoft Tool Kit ampersand routines are in the file named MTXAMP.OBJ.

Using the Ampersand Commands

The Applesoft Tool Kit interface does not treat string variables
the same as numeric variables. The interface routines copy numeric
variables into internal buffers, so altering the values of those
variables after an ampersand command will not change anything that the
Tool Kit is doing. String.'V<3.riabl~s,.on the other hand , are not copied
into buffers, so changing a BASIC string variable will cause changes in
the display the next time the Tool Kit redisplays the menu or window
with the changed string.

Note: All input parameters can be either variables or
expressions, but output parameters must, of course, be
variables.

The Ampersand Commands

The Ampersand eo-.ands

Page 139

The Applesoft Interface includes an ampersand call for each of the
Tool Kit commands except for a few, such as PascIntAdr, which is used
only with Pascal. There are also two utility commands, &STCNTNT
(Set Content), and &DSKTPERR (Desktop Error).

The names of the ampersand commands are not the same as the command
names listed in the other chapters. This is to avoid having Applesoft
tokenize certain letter combinations, thereby altering a program and
its listing. You must spell the command names exactly as shown or the
Applesoft Interface won't recognize them and Applesoft will give you a
SYNTAX ERROR message.

WARNING
A misspelled ampersand command can
if it occurs after a RUN command.
recognize the misspelled ampersand
the RUN statement, thereby gettin~

condition.

cause Applesoft to han~

When Applesoft fails to
command, it jumps back to
itself into a loop

By The Way: The variable names shown here are only
suggestionsj you may use any variable names you choose.

St.artup em-ands

A program normally calls these commands once to set up its operating
environment.

StartDesktop

&STRTDSKTP(ID%,SID%,SN%,IU%,COL%)
ID% = machine ID
SID% = subsidiary ID
SN% slot number (input and output). If SN% = ~, StartDeskTop

searches for a mouse card and returns the slot number in SN%.
IU% interrupt usage:

o = Passive Mode
1 = Interrupt Mode

Page 140

COL% = number of text columns:
o 40 columns
1 = 80 columns

StopDeskTop

Chapter 5: The Applesoft Interface

In addition to making the appropriate call to the Tool Kit, the
Applesoft version of the StopDeskTop command disconnects the Applesoft
Interface from the ampersand hook and restores the previous address.

Tool Kit ampersand commands will not work after a call to &STPDSKTP
unless you reconnect the Tool Kit by means of the Applesoft command
CALL A2+2, where A2 is the starting address of the Tool Kit Applesoft
Interface. If you do stop and reconnect, you don't get back any used
memory pages; for that, you have to run RELEASE and reload the Tool
Kit and the Applesoft Interface.

To make sure that the ampersand hooks get properly restored when the
program ends, there must be a call to StopDeskTop. Your program
should include an ONERR call to &DSKTPERR, then a call to &STPDSKTP.

&STPDSKTP
(no parameters)

Version

&VRSN(V%,R%,AV%,AR%)
V% = version number
R% = revision number
AV% Applesoft Interface version number
AR% = Applesoft Interface revision number

KeyboardHouse

The application calls this command immediately before MenuSelect,
DragWindow, or GrowWindow to make those commands run in keyboard
mouse emulation mode. Note that the KeyboardMouse command has
no parameters.

&KY'BRDMSE

Cursor Co1IIIIIIands

These commands control the appearance of the cursor.

The Ampersand Commands

SetCursor

&STCRSR(CC%)
CC% = cursor character (ASCII code)

ShowCursor

&SHWCRSR
(no parameters)

HideCursor

&HDCRSR
(no parameters)

ObscureCursor

&OBCRSR
(no parameters)

Event-Handl.:ii.ng CoD!!!8ClD4!ls

These commands deal with the event queue.

CheckEvents

&CHCKEVNTS
(no parameters)

PostEvent

&PSTEVNT(ET%,E1%,E2%)
ET% = event type (input):

9) = no event
1 = button down
2 = button up
3 key pressed
4 = drag event
5 Apple key down

E1% = X coordinate or key value (input)
E2% Y coordinate or key modifier (input)

Page 141

Page 142

GetEvent

>EVNT(ET%,E1%,E2%)
ET% = event type:

0 = no event
1 button down
2 = button up
3 = key pressed
4 = drag event
5 Apple key down

E1% = X coordinate or key value
E2% = Y coordinate or key modifier

FlushEvents

&FLSHEVNTS
(no parameters)

SetKeyEvent

&STKYEVNT(SK%)
SK% = Setkey flag:

o = don't check keyboard
1 = check keyboard

PeekEvent

&PKEVNT(ET%,E1%,E2%)
ET% = event type:

o no event
1 = button down
2 button up
3 = key pressed
4 drag event
5 = Apple key down

E1% = x coordinate or key
E2% y coordinate or key modifier

Menu COIIImands

Chapter 5: The Applesoft Interface

These commands handle menu selection and display.

InitMenu

The InitMenu command sets aside memory space needed for the Menu
Data Structure and for saving the part of the display obscured by
menus.

The Ampersand Commands Page 143

You can determine the amount of memory space to reserve for menu
displays by calculating the screen area of the largest menu in
the program. The largest menu could have a large screen area because
it has many items, or it could have only a few items, each of which
is very long.

You calculate the screen area of a menu by taking the product of the
number of items in the menu, plus one, times five bytes more than the
length of the longest item string in that menu. If you are using keys
to select items, each item string must include three bytes to display
a space, an Apple key, and the key that selects the item. A page is
256 bytes, so to find the number of pages required, divide the size of
the largest menu by 256 and round to the next highest integer.

To calculate the amount of memory to set aside for the Menu Data
Structures, in bytes, add fourteen bytes for each menu plus six bytes
for each item, plus two. Divide the result by 256 and round to the
next highest integer to find the number of pages required. If you
don't make this parameter large enough, you'll get garbage in the
display when you open the menu.

&INITMNU(P1%,P2%)
P1% number of pages to set aside for menu area buffer
P2% = number of pages to set aside for menu data structure

SetMenu

&STMNU(N%,M%,MI%,NA$,OR%,KC%)
N% = number of menus
M% = maximum number of items in any menu
MI% = menu information array, DIM MI%(1,N%),

where:
MI%(~,n) = menu ID of nth menu
MI%(1,n) = number of items in nth menu

NA$ = name array, DIM NA$(M%,N%),
where:

NA$(~,n) = title of nth menu
NA$(m,n) = name of mth item in nth menu

OB% = option byte array, DIM OB%(M%,N%),
where:

OB%(~,n) = option byte of nth menu (see Table 2-2)
OB%(m,n) = option byte of mth item in nth menu (see Table 2-4)

KC% = key character array, DIM KC%(H%,N%),
where:

KC%(m,n) = both key characters for the mth item
in the nth menu. Both key characters are stored in a single
integer element of the form 256*(char1)+(char2).

Page 144 Chapter 5: The Applesoft Interface

Note: The key character array must be dimensioned even if
you don't use it.

MenuSelect

&MNUSLCT(ID%,IN%)
ID% = menu ID number
IN% = item number

MenuKey

&MNUKY(K%,KM%,ID%,IN%)
K% = character typed (ASCII)
KM% = key modifier
ID% menu ID number
IN% = item number

By the way: The parameters are not in the same order as in
the machine-language call.

HiLiteMenu

&HILTMNU(ID%)
ID% = menu ID number: 0 = turn off highlighting

DisableMenu

&DSABLMNU(ID%,DIS%)
ID% = menu ID number
DIS% = disable flag:

1 disable
o = enable

The Ampersand Commands

DisableItem

&DSABLITM(ID%,IN%,DIS%)
ID% = menu ID number
IN% = item number
DIS% = disable flag:

1 = disable
o = enable

CheckItem

&CHCKITM(ID%,IN%,CK%)
ID% = menu ID number
IN% = item number
CK% = check status:

o = turn item off
1 = turn item on

SetMark

&STMRK(ID%,IN%,MF%,MC%)
ID% = menu ID number
IN% item number
MF% mark flag:

o = don't use mark
1 = use mark

MC% mark character (ASCII)

These commands deal with window selection and display.

InitWindowMgr

Page 145

The InitWindowMgr command sets aside memory space needed for the
Window Information Data Structure and for saving the part of the
display obscured by the outline of the window.

You can determine the amount of memory space to reserve for the
outline of the window by by calculating the perimeter of the largest
possible window. The perimeter is the sum of twice the height plus
twice the width. A page is 256 bytes, so to find the number of pages
required, divide the perimeter of the largest window by 256 and round
to the next highest integer.

To calculate the amount of memory to set aside for the Window
Information Data Structures, in bytes, allow 42 bytes times the
maximum number of windows that can be open at the same time. Divide

Page 146 Chapter 5: The Applesoft Interface

the result by 256 and round to the next highest integer to find the
number of pages required.

&INITWM(P1%,P2%)
P1% = number of pages to set aside for window area buffer
P2% = number of pages to set aside for Winfo data structure

OpenWindow

Note: The dimensioned variable called WI% here can only be
one dimensional.

&OPNWNDW(WI%,TSS,CS$)
WI% = window information array, DIM WI%(18),
where:

WI%(~) is reserved
WI%(l) = window ID number
WI%(2) = window option byte (see Table 2-6)
WI%(3) = window X coordinate
WI%(4) = window Y coordinate
WI%(5) = current content width
WI%(6) = current content length
WI%(7) = minimum content width
WI%(8) maximum content width (>~)

WI%(9) = minimum content length
WI%(l~) = maximum content length (>~)

WI%(ll) = horizontal ctl option (see Table 2-7)
WI%(12) = vertical ctl option (see Table 2-7)
WI%(13) = horizontal scroll maximum
WI%(14) = horizontal Thumb pos
WI%(15) = vertical scroll maximum
WI%(16) = vertical Thumb pos
WI%(17) = contents X offset
WI%(18) = contents Y offset

TS$ = title string
CS$ = content string array: a one-dimensional string array, where
each element is one row of the contents of the window

CloseWindow

&CLSWNDW(ID%)
ID% = ID of window to be closed

The Ampersand Commands

CloseAll

&CLSALL
(no parameters)

FindWindow

&FDWNDW(X%,Y%,T%,ID%)
X% = X coordinate (in mouse coordinates)
Y% = Y coordinate (in mouse coordinates)
T% type of area point is in:

£) desktop
1 = menu bar
2 = content region
3 = drag bar
4 = Grow Box
5 = Go-Away Box

ID% window ID if in window: £) = not in a window

FrontWindow

&FRNTWNDW (ID %)
ID% = ID number of front window

SelectWindow

&SLCTWNDW(ID%)
ID = window ID number

TrackGoAway

&TRCKGA(GF%)
GF% GoAway function:

o window should not close
1 = window should close

DragWindow

&DRGWNDW(ID%,X%,Y%)
ID% = window In
X% X coordinate
Y% = Y coordinate

Page 147

Page 148

GrowWindow

Chapter 5: The Applesoft Interface

Note: After you change the size of a window, you'll need to
call &STCNTNT to redisplay its contents.

&GWNDW (ST %)
ST% = Status:

o = size didn't change
1 = size changed

WindowToScreen

&WN2SCR(ID%,WX%,WY%,SX%,SY%)
ID% = window ID
WX% window X coordinate
WY% = window Y coordinate
SX% = screen X coordinate
SY% = screen Y coordinate

ScreenToWindow

&SCR2WN(ID%,SX%,SY%,WX%,WY%)
ID% window ID
SX% = screen X coordinate
SY% = screen Y coordinate
WX% window X coordinate
WY% window Y coordinate

SetContent

This ampersand command changes the contents and content offsets in a
window definition. It is typically used to redisplay the contents of
a window after a call to GrowWindow. It can also be used for
scrolling the contents of a window by making the content string the
same as before and changing the X and Y offset.

The Ampersand Commands Page 149

You should not expect the window position with coordinates
X%,Y% to contain the X%th character in the Y%th element of
the content string array. Remember that there are offsets
OX% and OY%, and that the window Y coordinate of the first
column in a window has the value ~, not 1. You will
normally have to perform some arithmetic to figure out which
character in the content string array corresponds to a given
window position.

Note: The SetContent command subsumes the functions of
WinString, WinChar, WinText, and WinBlock. Of those
commands, the Applesoft Interface includes as separate
commands only WinString and WinChar.

&STCNTNT(ID%,RE%,CS$,OX%,OY%)
ID% = window ID number
RE% = a reserved variable (should be set = ~)

CS$ new content string (see &OPNWNDW command)
OX% = new X offset into content (replaces value set by WI%(17»
OY% new Y offset into content (replaces value set by WI%(18»

WinChar

Please refer to the notes under the WinOp command.
&WNCHR(ID%,X%,Y%,CH%)
ID% = window ID
X% X coordinate of position in window
Y% Y coordinate of position in window
CH% = ASCII code for character

WinString

Please refer to the notes under the WinOp command.
&WNSTR(ID%,X%,Y%,S$)
ID% = window ID
X% = X coordinate of position in window
Y% Y coordinate of position in window
S$ character string

Page 150 Chapter 5: The Applesoft Interface

--

Parameter Note: While all the WinString parameters are
inputs, S$ cannot be an expression, although it can be
either a simple variable or an array element.

WinOp

&WNOP(ID%,X%,Y%,OC%)
ID% = window ID
X% = X coordinate of position in window
Y% = Y coordinate of position in window
OC% operation code:

26 = clear from start of window to (but not including)
position X,Y.

27 = clear from start of line to (but not including)
position X,Y

28 = clear entire window
29 = clear from position X,Y to end of window
3~ = clear line
31 clear from position X,Y to end of line

Important Note: The window commands &WNCHR, &WNSTR, and
&WNOP change the contents of the window in the display, but
they do not change the content string array (called CS$ in
this manual) that is used to update the window after it has
been moved, resized, re-exposed, or the like. It is up to
the application to update the content string array to match
the new content of the window. (It is not necessary to call
&STCNTNT under these circumstances.)

You should not expect the window position with coordinates
X%,Y% to contain the X%th character in the Y%th element of
the content string array. Remember that there are offsets
OX% and OY%, and that the window Y coordinate of the first
column in a window has the value ~, not 1. You will
normally have to perform some arithmetic to fi~ure out which
character in the content string array corresponds to a given
window position.

The Ampersand Commands

Cont.rol Region em-ands

Page 151

These commands deal with the control regions in the front window:
the horizontal and vertical scroll bars, including the thumbs.

ActivateControl

&ACTVTCTL(CTL%,DIS%)
CTL% = which control region

1 = vertical scroll bar
2 = horizontal scroll bar

DIS% = disable flag
o = disable
1 = enable

FindControl

&FDCTL(WX%,WY%,CTL%,PC%)
WX% = window X coordinate
WY% = window Y coordinate
CTL% = control region point is in:

o = content
1 vertical scroll bar
2 = horizontal scroll bar
3 = none of the above

PC% = part of the control point is in:
o = inactive control
1 Up/Left-Arrow
2 = Down/Right-Arrow
3 = page up/left region
4 = page down/right region
5 Thumb

SetCtlMax

&STCTLMX(CTL%,NM%)
CTL% = control to set new maximum for:

1 = vertical scroll bar
2 = horizontal scroll bar

NM% new maximum for control range (must be > 1)

TrackThumb

&TRCKTHMB(CTL%,TP%,MF%)
CTL% = which control to update Thumb for:

1 = vertical scroll bar
2 = horizontal scroll bar

TP% new Thumb position

Page 152

MF% = move flag:
~ Thumb didn't move
1 = Thumb did move

UpdateThumb

Chapter 5: The Applesoft Interface

&UPDTTHMB(CTL%,TP%)
CTL% = which control to update Thumb for:

1 = vertical scroll bar
2 = horizontal scroll bar

TP% = new Thumb position

Utility Commands

These commands provide utility functions not included in the standard
Tool Kit commands.

Get Window Info

This ampersand command fills the WI% array with the current values of
the array originally set in &OPNWNDW. An application program can use
it to obtain values changed by the Tool Kit by user actions--for
example, current width and length after a call to &GWNDW (GrowWindow).
The WI% array need not be the same as the one in the original call to
&OPNWNDW.

Important: The dimensioned variable called WI% here must be
dimensioned to at least eighteen; otherwise, the call will
return an error.

>WNFO(ID%,WI%)
ID% = window ID number
WI% = window information array, as dimensioned in &OPNWNDW.

DesktopError

Errors that are generated by the Tool Kit return an Applesoft error
number 53, ILLEGAL QUANTITY; when this happens, a call to &DSKTPERR will
return the Tool Kit command and error number. The Applesoft Interface
itself can also generate other Applesoft errors such as SYNTAX ERROR and
OUT OF MEMORY.

The Ampersand Commands

&DSKTPERR(CN%,EN%)
CN% = command number of the last call made to the Tool Kit
EN% = error code returned by that command: 0 = no errors

NextWindow

Page 153

Starting with &FRNTWNDOW and using this call repeatedly until 12% = ~,

the program can select each window on the screen, in order of depth,
testing or changing them as it goes.

&NXTWNDW(Il%,I2%)
11% = input window ID number. 11% = ~ selects front window.
125 = output ID of the next window. If none, 12% = ~.

Set Interrupt Mask

This command sets the interrupt mask bit in the 6502's status
byte. If IB% = 1, the bit is set--that is, interrrupts are
disabled. If IB% = ~, the bit is cleared and interrupts are
enabled.

WARNING
This is a
anything,
Tool Kit.
the final

dangerous command. It does not save or restore
nor does it update any status information in the
It is included for debugging, and may not be in

version of the Tool Kit.

&STIMB(IB%)
IB% = value to set interrupt mask bit (0 or 1)

Page 154

Page 155

Appendix A

The AppleMollse II Interface Card

To use the Apple mouse with an Apple II, Apple II Plus, or
Apple lIe, you need the AppleMouse II Interface Card installed in one
of the expansion slots (Apple recommends using slot 4). Like most
Apple peripheral cards, it contains I/O firmware that is
executed by the 65~2 central processor whenever you access the slot.
The mouse interface card also contains its own microprocessor with
firmware and a timer. The microprocessor on the card keeps track of
the position of the mouse and the state of the button on the mouse.
The microprocessor handles the transfer of mouse information and other
communications between the card and the central processor.

Passive Versus Active Operation

Most positioning devices used with the Apple II, such as the joystick
and the graphics tablet, are passive devices: they don't require any
processing until an application program requests information from them.
The mouse, on the other hand, is an active device, at least at the
hardware leyel: movement of the mouse requires. immediate attention to
keep the system from losing track of its position and direction.

A computer normally handles this need for immediate response by means
of interrupts. When the mouse is moved rapidly, it generates
interrupts often enough to have a significant impact on the computer's
operation. If the computer is engaged in other tasks that are
dependent on precise timing, as the Apple II often is, the added burden
of processing the interrupts from the mouse can be intolerable.

To reduce the interrupt burden on the Apple II's processor, the
AppleMouse II uses an intelligent interface card. The card has an
MC68~5 microprocessor that is dedicated to keeping track of the mouse,
thus making it possible for the AppleMouse II to operate as either an
active device or a passive device. In the Passive Mode, the MC68~5

determines the instantaneous movement and direction of the mouse and
stores the information on the card until the processor in the Apple II
requests the information. Thus, the AppleMouse II can act like a

Page 156 Appendix A: The AppleMouse II Interface Card

passive device in applications that cannot tolerate interrupts, or,
for applications where interrupts are appropriate, it can operate as
an active device.

Mouse Interrupts

One reason to use the mouse in Interrupt Mode is to be able to move a
cursor on the display screen without the flicker produced by updating
the cursor during the wrong part of the display refresh cycle. In
Interrupt Mode, the AppleMouse II generates interrupts that are
synchronized with the vertical blanking interval.

The Apple lIe has a signal named VBL, but it isn't available as an
interrupt. The VBL signal is not available at all on an Apple II or
Apple II Plus, so the mouse card has a hardware timer that it uses to
generate interrupts synchronized with the vertical blanking interval.

Because the AppleMouse II transmits an interrupt request only at the
beginning of a vertical blanking interval, it cannot generate
interrupts faster than 60 times per second. This limits the number of
mouse interrupts and keeps the mouse from monopolizing the central
processor.

The TimeData Firmware Call

There is a little-used call in the firmware on the AppleMouse II card.
That call sets the interrupt rate to either 50 or 60 Hz. The default is
6~ Hz., which keeps the VBL interrupts the card generates in step with
the true VBL on a North American Apple II. For European machines, the
VBL rate is 50 Hz.

The low byte of the TimeData entry-point address is $CnIC. Input data
is in the accumulator. With the accumulator set to ~, TimeData sets
the VBL rate to 60 Hz. With the accumulator set to 1, the call sets
the VBL rate to 5~ Hz. The only valid accumulator contents for this
call are 0 and 1. On output, the carry bit is clear and the screen
holes are unchanged.

You should call TimeData just before calling InitMouse. If you do not
call TimeData first, the VBL rate will be set to 60 Hz when you call
InitMouse.

Page 157

Appendix B

The Mouse Firmware Interface

On the Apple IIc t the interface hardware and firmware for the
AppleMouse II is built in. On the Apple IIe t the user must install a
mouse interface card in order to use the AppleMouse II. The interface
card for the AppleMouse II contains the firmware that communicates
with and controls the mouse hardware.

The Apple II MouseText Tool Kit uses the mouse firmware in the
Apple lIc orin the card in the Apple lIe to operate the mouse. This
appendix describes the interface to the .. firmware.

Note: If you do all your mouse operations via Tool Kit
commands t you do not need to communicate directly with the
mouse firmware and so do not need to learn the material in
this appendix.

Finding the Mouse Card

The AppleMouse II interface card can be installed in any peripheral
slot except slot 0; use of slot 4 is recommended but not required.
The firmware on the card stores signature bytes in five of the memory
locations assigned to the slot it is in. The addresses and values of
the signature bytes are as follows:

Page 158

Address Value

$Cn{l5 $38

$Cn07 $18

$Cn{lB $~1

$Cn~C $20

$CnFB $D6

Appendix B: The Mouse Firmware Interface

The letter n in the addresses stands for the slot number. Your program
can determine which slot the mouse card is in by reading the memory
locations for each value of n from 1 to 7 and comparing the values with
the values shown above.

Reading Mouse Data

The mouse firmware stores position and status information in the
display buffer locations reserved for the slot the mouse card is in
(the screen holes, also called mouse holes). When you call the
ReadMouse routine or the ServeMouse routine (described later in this
appendix), the firmware updates the information in the mouse holes.
Your program can address these locations by using the slot number as
an index, as indicated by the letter n in Table B-1.

By the way: Chapter 6 of the Apple lIe Reference Manual
describes the way you address the reserved screen locations.

WARNING
If your program ever uses the auxiliary memory in the
Apple lIe, be sure that you get all the switches set hack to
main memory before you use the Tool Kit. If you write data
into the reserved screen locations in the auxiliary memory,
not only will the mouse firmware not read them, but you may
cause other firmware to malfunction (spelled c-r-a-s-h).

Reading Mouse Data

Table B-1. Screen Locations for
Mouse Data

Address Contents

$478 + n Low byte of X position

$4F8 + n Low byte of y position

$578 + n High byte of X position

$5F8 + n High byte of y position

$678 + n (used by the firmware)

$6F8 + n (used by the firmware)

$778 + n Button and interrupt status

$7F8 + n Current Operating Mode

Page 159

In its normal operatin~ position (oriented with its cable directed
away from the user). the value of the X position coordinate increases
as the mouse is moved to the right and the value of the Y position
coordinate increases as the mouse is moved toward the user. The maximum
values of X and Yare -32768 to +32767. but the firmware normally clamps
them to the range 0 to +1023 ($0 to $3FF). You can change the clamping
range by calling the ClampMouse routine. which is described later in
this appendix.

The smallest mouse movement ·that the mouse hardware can detect is one
count in either the X or Y direction; that is equivalent to about ~.~1

inch (0.3 rom) .~The largest movement that the hardware can handle is
16 bits in either axis. A change of position from -32768 to +32767
corresponds to about 60 feet of mouse movement.

The bits in the button and interrupt status byte are assigned as
shown in Table B-2. where a value of 1 means the function is true.

Page 160 Appendix B: The Mouse Firmware Interface

Table B-2. Button and Interrupt
Status Byte

Bit #

7

6

5

4

3

2

1

Function

Button is down

Button was down at last reading

Mouse moved since last reading

(used by the firmware)

Video blanking interrupt

Button press interrupt

Mouse movement interrupt

(used by the firmware)

Operating Modes

When you turn on the power,the firmware comes up in the off condition
with its X and Yposition registers set to 0. You activate the
firmware by loading the accumulator with a mode byte and calling the
SetMouse routine. The settin~s of the bits in the mode byte determine
the mode of operation, as shown in Table B-3.

Operating Modes

Table B-3. Bits in the Mode Byte

Bit # Function

7-4 (used by the firmware)

3 Enable interrupt on video blanking (VBL)

2 Enable interrupt on next VBL after button pressed

1 Enable interrupt on next VBL after mouse movement

~ Turn on the mouse

Page 161

You can enable any combination of interrupts by setting the appropriate
bits in the mode byte. You can set mode combinations that don't make
sense, such as $~2: Mouse Off plus Enable Interrupt On Mouse Movement,
which acts just like $~~: Mouse Off.

Setting the low bit in the mode byte to ~ turns off certain functions
of the mouse: the mouse position is not tracked, calls to ReadMouse
don't update the status byte or the screen holes, and button and
movement interrupts are not generated. Other mouse functions will work
as usual: PosMouse and ClearMouse will change the mouse position data,
ClampMouse will set new values, and so on. Turning the mouse on and off
by changing the mode byte does not reset any mouse values •

.WARNING
You must not set the high bits of the mode byte. Mode byte
values greater than $~F will cause the SetMode routine to
return an illegal-mode error.

Passive Mode

Calling the SetMouse routine with a mode byte of $~1 puts the firmware
into Passive Mode (no interrupts occur). Passive mode is the simplest
way to use the mouse, and it is the only way to use it in systems with
peripherals that cannot tolerate interrupts.

Page 162 Appendix B: The Mouse Firmware Interface

In Passive Mode. the interface card stores mouse information without
affecting the operation of the CPU. When your program calls the
ReadHouse routine. the firmware updates the mouse information in the
screen locations. where your program can read it.

Interrupt Mode

If your program uses interrupts. it must include an interrupt handling
routine that calls the ServeMouse routine. The ServeMouse routine
determines whether the interrupt was caused by the mouse. If it was,
the ServeMouse routine calls ReadMouse.

Depending on the setting of the mode byte. the firmware can interrupt
the CPU on one or more of the following events:

Mouse motion

- Mouse button pressed

- Display video blanking

You can set the mode byte to $~8--mouse off. VBL interrupt on--
to generate interrupts on display video blanking (VBL) only.
Regardless of the kind of event that causes the interrupt. the mouse
hardware will interrupt the CPU only at the beginning of the video
blanking interval. which occurs every 60th of a second. This enables
your program to update the display between screen refresh cycles and
avoid making the display flicker.

Unclaimed Interrupts

There is a bug in the AppleMouse II firmware that can effect the way
ServeMouse works. If the application program takes more than one
video blanking cycle (normally about 16 milliseconds) to respond to
a mouse-generated interrupt. there is a chance that ServeMouse will
not claim the interrupt. In a ProDOS or Pascal environment. this can
be fatal. Tnere are several possible ways to avoid this problem.

One approach. if you are not working under a system like ProDOS or Pascal,
is to make sure that unclaimed interrupts aren't fatal to your system and
just ignore them. Another solution is to make sure that you always
service interrupts within one VBL cycle (one sixtieth of a second). If
you have to turn off interrupts for that long or longer. you should first
use SetMouse to set the mode to '/J and call ServeMouse to clear any
existing interrupt.

If you are working under an established operating system. like ProDOS or
Pascal. for which unclaimed interrupts are fatal. you can use one of the
following suggestions to make sure that all interrupts are claimed.

Operating Modes Page 163

If the mouse is the only interrupting device, write your interrupt handler
so that it claims all interrupts.

If the mouse is not the only interrupting device, there are three ways of
handling the problem. One is to write the mouse interrupt handler to claim
all unclaimed interrupts and make sure that it is installed last. Another
method is to write a spurious interrupt handler (sometimes called a
demon), not associated with any device, that claims all unclaimed
interrupts. This interrupt handler must be installed last. The third
method is to include code in every interrupt handler to determine
whether that interrupt handler is last. If it is, then that interrupt
handler claims any unclaimed interrupts, even if not generated by its
device.

Making Calls to Mouse Firmware

Your programs make calls to the mouse firmware by means of a table that
conforms to Apple Firmware Protocol 1.1, described in the Apple lIe
Design Guidelines as Pascal 1.1 Protocol. Table B-4 contains the low
byte of the entry address of each of the firmware routines. (The high
byte of each address is $Cn, where n is the number of the slot the
mouse interface card is in.) The address bytes are stored in
locations $Cn12 through $Cn19, arranged as shown in Table B-4.

Page 164 Appendix B: The Mouse Firmware Interface

Table B-4. Entry Point Address Bytes

Location Contents

$Cn12 Low byte of SetMouse entry~point address

$Cn13 Low byte of ServeMouse entry-point address

$Cn14 Low byte of ReadMouse entry-point address

$Cn15 Low byte of ClearMouse entry-point address

$Cn16 Low byte of PosMouse entry-point address

$Cnl? Low byte of ClampMouse entry-point address

$Cn18 Low byte of HomeMouse entry-point address

$Cn19 Low byte of InitMouse entry-point address

Thus, for a mouse card installed in slot 4, you can calculate the
entry address for the SetMouse routine by adding $C4~0 to the contents
of location $C412. Your program can use the values in the table to
construct a jump table to use for calling the routines.

By the Way: You must disable interrupts before calling the
mouse firmware.

Parameter Passing

Before calling any of the firmware routines, your program must load the
X and Y index registers with the number of the slot the mouse card is
in, as follows:

X index register: $Cn

Y index register: $n~

Making Calls to Mouse Firmware Page 165

Your program passes information to certain firmware routines via the
accumulator and the screen locations, as noted in the descriptions of
the routines.

When your program regains control, the contents of the accumulator
and the index registers will be undefined, except as noted in the
descriptions of the routines. The carry bit indicates the error
status of the routine just ended:

Successful execution: C 0

Unsuccessful execution: C = 1

The Firmware Routines

This section describes the functions of the firmware routines whose
entry-point addresses are given in the previous section.

SetMouse

SetMouse starts the mouSe operating in the mode indicated by the
contents of the accumulator, as defined in the "Operating Modes"
section earlier in this appendix. If the mode byte is greater
than $0F, the routine will return with the carry bit set to one,
indicating an error. This routine does not clear the screen locations
used for storing mouse data.

ServeMouse

If the pending interrupt was caused by the mouse, ServeMouse sets the
status byte at location $77R + n to show what event caused the
interrupt. Upon return from this routine, the carry bit is set to 0
if the interrupt was caused by the mouse; otherwise, the carry
bit is set to 1. This routine does not update the other mouse screen
locations.

Note: This routine is an interrupt service routine; it does
not require particular values in the accumulator or the
index registers.

--

Page 166

ReadMouse

Appendix B: The Mouse Firmware Interface

Readmouse transfers the current values of the mouse X and Y position
and button data into the appropriate screen locations and sets
bits 1, 2, and 3 of the status byte at location $778 + n to 0. On
return, the carry bit is 0.

ClearMouse

ClearMouse sets the mouse's X and Y position values to
on the interface card and in the screen locations. It
the contents of the interrupt and button status byte.
carry bit is tfJ.

PosMouse

zero, both
does not change
On return, the

PosMouse sets the mouse X and Y position to the values in the screen
locations. On return, the carry bit is 0.

WARNING
Do not change the contents of any screen locations other
than the X and Y position locations.

ClampMouse

ClampMouse sets the clamping bounds for either the X or Y position
value. To clamp the X direction, load the accumulator with a 0; to
clamp the Y direction, load the accumulator with a 1. Store the new
bounds in the slot 0 screen locations, as follows:

$478
$4F8
$578
$5F8

low byte of. lower clamping bound
low byte of upper clamping bound
high byte of lower clamping bound
high byte of upper clamping bound

On return, the carry bit is 0 and the X and Y position screen
locations are undefined. To get valid position data, you have to call
the ReadMouse routine.

The Firmware Routines

HomeMouse

Page 167

HomeMouse sets the internal position values to the upper-left corner
of the clamping window. On return, the carry bit is ~ and the X
and Y screen locations are changed.

lnitMouse

InitMouse sets internal mouse data to default values and synchronizes
the interrupt timer on the card with the display vertical blanking.
On return, the carry bit is zero and the screen locations are
unchanged. To get valid position data, you have to call the ReadMouse
routine.

VADlING
On the Apple II plus, the InitMouse routine clears the
Hi-Res screen in order to synchronize its timer with the
vertical blanking, so you should display Hi-Res graphics
only after you have called InitMouse.

Page 168

Page 169

Appendix C

The Mouse Pascal Attach Driver

What's-It-All-About Department: The material in this
appendix is not part of the MouseText Tool Kit. It is
included here because it is new and is not described in any
existing manuals.

Installing the Monse Pascal Attam Driver

The Pascal disk that came with the Tool Kit contains two versions of
the Pascal mouse I/O attach driver. It also contains the file
SYSTEM. ATTACH , which performs the attach operation each time the user
starts with it on the system disk. If the mouse driver is the only
one you need to attach, all you have to do is copy the appropriate
files onto your system disk. Table C-l contains a list of the files
on the Pascal disk that came with the Tool Kit.

Page 170

Table C-l. Attach Files

Appendix C: The Mouse Pascal Attach Driver

File Name

SYSTEM. ATTACH

ATTACH. DRIVERS

ATTACH. DATA

M. ATTACH. DRIVER

M.ATTACH.DATA

Contents of File

The system code file that performs the
attach operation each time the system is
initialized.

Driver with its own interrupt manager.

Data for driver with own interrupt manager.

Add to existing drivers with interrupts.

Data to add to drivers with interrupts.

There are two versions of the ATTACH.DATA and ATTACH.DRIVERS files,
one with interrupts and one without. If the mouse is the only source
of interrupts in your system, use the files named ATTACH. DRIVERS and
ATTACH. DATA • If you already have other attach drivers that include
an interrupt handler, you can add just the mouse driver by using the
files named M.ATTACH.DRlVER and M.ATTACH.DATA. To do this, you'll
have to use the Library Program to make a new ATTACH. DRIVERS file with
the mouse driver added to your other attach drivers. You'll also have
to execute the ATTACHUD.CODE utility program to make a new ATTAr.H.DATA
file. For a complete description of Pascal attach drivers and the
procedures to follow in installing them, see Pascal Tech Note #11.

About Pascal Atta~ Drivers

Pascal 1.1 and Pascal 1.2 for the Apple II include a method for adding
custom I/O drivers to the system. To add a driver using this method,
you have to use the programs ATTACHUD.CODE and SYSTEM. ATTACH provided by
Apple.

When the system is initialized, part of the program SYSTEM. PASCAL looks
for the program SYSTEM. ATTACH on the main system disk. If program
SYSTEM.ATTACH is present, the system executes it before executing
SYSTEM. STARTUP. SYSTEM.ATTACH, in turn, uses files named ATTACH.DATA
and ATTACH.DRIVERS, which must also be on the main system disk.
ATTACH. DATA is the file you created using the ATTACHUD program, and
ATTACH. DRIVERS is a library file that contains all of the drivers being
attached.

SYSTEM. ATTACH installs the attach drivers in the Pascal heap space below

Installing the Mouse Pascal Attach Driver Page 171

the point where ordinary programs access it. This reduces the stack and
heap space available to the program by an amount equal to the size of
the drivers.

The Pascal Interface

Table C-2 shows the Pascal I/O calls for each of the mouse firmware
entry points. An outline of the functions of the direct I/O
calls follows.

Table C-2. Pascal I/O Calls

Firmware entry point

PINIT
PREAD
PWRITE
PSTATUS
SETMOUSE
SERVEMOUSE
READMOUSE
CLEARMOUSE
POSMOUSE
CLAMPMOUSE
HOMEMOUSE
INITMOUSE

Direct I/O call

none
none
none
none
UNITSTATUS control code ~

interrupt handler
UNIT READ
UNITCLEAR
UNITSTATUS control code 1
UNITSTATUS control code 2
UNITSTATUS control code 3
UNITCLEAR (first time only)

UNIT CLEAR
reset mouse position to ~, ~.

reset user interrupt address to No-op.
reset clamping to default values [(~, 1~23), (~, 1~23)1.

UNITREAD
read x, y button status
The read buffer should be defined as follows:

ReadBuffer: record
X: integer;
Y: integer;
Button: integer;

end;

Page 172

UNITWRITE
No-op.

Appendix C: The Mouse Pascal Attach Driver

UNITSTATUS
CONTROL CODE 0: set Mouse Mode and user interrupt address
The control data buffer should be defined as follows:

Buffer: record
MouseMode: integer;
IntAddr: integer;

end;

IntAddr should be obtained by a call to the user's interrupt handler.
(See the GetIntAddr procedure in MouseInt.Text). If IntAddr is zero,
the user interrupt address will be set to a No-op (RTS instruction).

CONTROL CODE 1: set mouse position
The control data buffer should be defined as follows:

Buffer: record
X: integer;
Y: integer;

end;

CONTROL CODE 2: clamping
The control data buffer should be defined as follows:

Buffer: record
MouseLeft: integer;
MouseRight: integer;
MouseTop: integer;
MouseBottom: integer;

end;

CONTROL CODE 3: Home mouse.

STATUS CODE 0: return Mouse Mode and interrupt address
The status data buffer should be defined as follows:

Buffer: record
MouseMode: integer;
IntAddr: integer;

end;

STATUS CODE 1: No-op

STATUS CODE 2: return clamping values
The status data buffer should be defined as follows:

The Pascal Interface

Buffer: record
MouseLeft: integer;
MouseRight: integer;
MouseTop: integer;
MouseBottom: integer;

end;

STATUS CODE 3: No-op.

Interrupts

Page 173

Call SERVEMOUSE.
Call user interrupt handler. If no user interrupt, the call defaults
to a No-op (RTS instruction).

Page 174

Page 175

Appendix D

Sample Progr3JII

This appendix contains a sample program showing how to use the mouse and
the Tool Kit. The disks that contain the Tool Kit routines also contain
three versions of a sample program, in Pascal, Applesoft, and assembly
language. All three sample programs are functonally the same. The
pseudocode listing that follows is similar to those sample programs, but
it is not identical. To find out exactly what the sample programs look
like, you should list them from the disk.

The pseudocode program is an example of the way the Tool Kit is intended
to be used. The program includes the following functions.

- start the desktop
- set up menus
- set up a cursor
- track the mouse
- display a pull-down menu

enable and disable an item in a menu
- open a window
- select a window
- drag a window
- grow a window
- scroll the contents of a window
- close a window

The user stops this program by selecting the "Quit" item in the menu.

Pseudocode Listing

Here is the pseudocode listing of the program.

call StartDeskTop
call I nitMenu
call SetMenu(DemoMenu)
call ShowCursor

start up the Tool Kit
allocate screen save space
set up our menus
turn on cursor

Page 176

call InitWindowMgr
quitflag := false

while not quit flag do
call CheckEvents
call GetEvent
case eventtype of

button up, no event, drag_event,
do nothing -

keypress : call HandleKeys
button down : call HandleButton

end case
end while
do any clean up
end program

HandleKeys :
if open_apple_key down do

call MenuKey
call MenuCase

end if
return

HandleButton
call FindWindow
case event location of

in desktop : do nothing
in-menu : call HandleMenu
in-content : call DoContent
in-drag bar : call DragIt
in-grow-: call DoGrow
in close : call CloseIt

end case
return

HandleMenu
call HenuSelect
call MenuCase
return

MenuCase
if menu id = 0

then do nothing
else do

case menu id & menu item
do corresponding operation

end case
call HiliMenu(~)

return

DoContent
call FrontWindow

Appendix D: Sample Program

allocate screen save space for window
used to terminate program

, main loop
* no longer needed in version 2 *

get the next event in event queue
base action on type of event returned

open_apple_drag_event :
we are ignoring these
handle keyboard input from user
handle button down on mouse

end of main loop

end of program

character input is enter here
check for commands
translate into menu command
and execute it

where did button go down ?
base action on where it occurs

menu bar, menu operation
content region, find out more
drag bar, drag the window
growth region, grow the window
close the top window

have toolkit perform selection
execute selection

execute the menu selection

nothing selected

task is done, turn off highlight

button down inside a window
find front window id

Pseudocode Listing Page 177

use local coordinate
find if it occur in control

if button down does not occurs in front window
then call SelectWindow bring that window to front
else do

call ScreenToWindow
call FindControl
case point is in

in_content: depend on application, nothing here
in vertical scroll bar, in horz scroll bar:

call ScrollBar - -; perform-scrolling
in dead zone : do nohing

end case
return

ScrollBar
case where in scroll bar

arrow, page :
scroll 1 or n lines
call UpdateThumb

thumb:
call TrackThumb
if thumb moved then

end case
return

Draglt
call SelectWindow
call DragWindow
return

DoGrow
call GrowWindow
if size_changed do

call SetCtlMax
call ActivateCtl
call WinBlock

return

udpate thumb position

let toolkit track thumb movement
scroll accordingly

bring window to front if it is in back
let toolkit follow the drag

let toolkit follow the growth
if size of windwo changed extra work
thumb position etc may he changed
scroll bar may become active/inactive
window is blank afterwards, update it

Page 178

Page 179

Appendix E

MouseText Characters

The character generator ROM in the Apple lIe includes a set of text
icons in the alternate character set. Apple is planning to make these
icon characters available on the Apple lIe as well. The primary
purpose of the new icon characters is for producing interactive
displays using the Apple Mouse or other pointing devices.

The new icon chara~tersreplace one of the sets of inverse uppercase
letters (and a few special c.haracters) in the alternate character set
(selected by the>AtTCHARSET soft switch). To print the icon cha.racters .
with the MouseText Tool Kit installed, use the ASCII character values
from 128 through 159. ($8~ through $9F) , as shown in Figure E-l.

ASCII Note: The Tool Kit interprets ASCII codes as follows:
~-31: control characters or mouse.text

32-127: normal video
128-159: MouseText characters
16~255: inverse video

In the fut:llre,the range from ~"31 may be used as control
codes only. Therefore, you should use the range from
128-159 for MouseText.

Page 180

Figure E-l The Mouse Text Icon
Characters

Appendix E: MouseText Characters

c <~) 1 {A} ~ (13) :J <c> 4 (Ij> ~ <E) e <F> 7 <G)

• I .. l.tII•••• ••••••• . 111.1

•• •• •• •• • •••••• •• •••••••• ••. 11111. I I. I. I. II••••. I ••••• 111ft

••••••• • • I •. I . II.. •• ••• •• •• ••••••••• • I . •••• •• •• •• •. II .••• •• •••• G••

•••••• •• •• ••tII•. •• •• •• ••••••• In II

•••••• •. I . • ••• •• •• •• •• II_... ••• ••• ••• ••• •• • II•••••• ••••••• •• •••
e <H> ~ {I} 10 <.J> 11 <10 1:2 <I..} 1::3 <M> 14 <N) 1~ (0)

III. I. •• • •••••• •• •
1iI. •• ••••• • ••••••• ••

•• •• •• •• •• •••••••••• •• •• • • ... • a..... ••••••
1iI •• •• • •• ••• III ••••• III.•.•. •• ••••••• ••••••• ••.. • ••••• •••• •• •• · •••••••
1e <p> 17 <Qj 1S<R> . 1'" <$> :zo <1'>- :21<U> ::z. <v> ::l <\oJ>
•• •• • • II. •. Ii.•. • .•. D. I.. •• • •••• •• •• ••••••• • • I.... •• ••••,. •• •••••• I • • •....... ••••••• ••• ••• • • •..... .11•••. ••••••• •• •• •• •• ••• • II... •••• · .. I. . . I . I .•.•.• II.•.•

•• •• • · I. I .. . •• I .•.•. • • •. I.. •••• • . • 1iI I .•.•.• • • •
;:4- {X> == {V} ~b <~'1. 27 (I; > :ze {\> :29. <J> ::30 {"" > .." , :.. .- '-• •• ••••••• •• •• •••••• • •••• • •

•• • • •••••• ••••••• • •• • • ••••••• ••• • I

• I I ••••• '11 . • III.. • I I ••. •••• • •II•••••• ••••••• • I. I. III • •I ••••••• ••

Page 181

Append.i..x F

Tool Kit Error Codes

Table F-1 is a cumulative list of the error codes returned in the
6502's accumulator when a MouseText Tool Kit command encounters an
error condition. The error codes returned by each command are listed
with the commands in Chapter 2.

In addition to the error codes returned by individual commands,
the first three listed here are generic error codes that can be
returned by any command.

Page 182

Table F-l. MouseText Tool Kit Error
Codes

Appendix F: Tool Kit Error Codes

--

1 ($~1)

2 ($~2)

3 ($~3)

4 ($~4)

5 ($~5)

6 ($~6)

7 (S~7)

8 ($~8)

9 ($~9)

Illegal command number

Wrong number of parameters

StartDeskTop hasn't been called

Machine or operating system not supported

Invalid slot number (less than ~ or greater than 7)

Mouse Interface Card not found

Interrupt mode in use (Program specified interrupt
mode in StartDeskTop, so it can't call CheckEvents.)

Menu ID was not found

Item Number is not valid

1~ ($~A) Save area (from InitMenu) is too small

11 ($~B) Tool Kit could not install interrupt handler

12 ($0C) Window with same ID already open

13 ($0D) InitWindowMgr buffer too small for this window

14 ($0E) Bad Winfo -- tried to open window with ID = 0, or
conflicting max and min width or length

15 ($0F) Window ID number not found

16 ($10) There are no windows

17 (SII) Error returned by user hook routine

18 ($12) Bad control ID (not 1 or 2)

19 ($13) Event queue full, event not posted

20 ($14) Illegal event, event not posted

21 (SIS) Illegal UserHook ID numher (not 0 or 1)

22 ($16) Operation cannot be performed

	apple_forumdesdeveloppeurs_01_mousetext_01
	apple_forumdesdeveloppeurs_01_mousetext_02
	apple_forumdesdeveloppeurs_01_mousetext_03
	apple_forumdesdeveloppeurs_01_mousetext_04
	apple_forumdesdeveloppeurs_01_mousetext_05
	apple_forumdesdeveloppeurs_01_mousetext_06
	apple_forumdesdeveloppeurs_01_mousetext_07
	apple_forumdesdeveloppeurs_01_mousetext_08
	apple_forumdesdeveloppeurs_01_mousetext_09
	apple_forumdesdeveloppeurs_01_mousetext_10
	apple_forumdesdeveloppeurs_01_mousetext_11
	apple_forumdesdeveloppeurs_01_mousetext_12

