
%e SourcerorS.9Lpprentice
The Assembly Language Journal of Merlin Programmers Vol. 1 No.6 June, 1989

PEEKing in AuxMem, Switching Banks,
and a Couple Bad Jokes

I hope you enjoyed last month's 24 page
extravaganza. It was very enjoyable (though
a tad expensive) to be able to bring you such a
thick issue. Don Lancaster calls such a deal
"personal value added" - Le. giving the
customer a smidgin more than they expected
and in a manner only you can deliver. I hope
to be able to do stuff like that often. BlW,
Don's book, The Incredible Secret Money
Machine, is a fun and totally hip gUide to
starting your own business. There is a lot of
sage advice within its pages. And it appeals
to the aging hippie within me, too.

Speaking of business, I need to remind those
of you who have charged your subscriptions
that our name will appear as "Teacher's
Software Co." on your bill. Please don't do a
"charge back"; it is really us. We changed our
name with the bank long ago, but the VISA
and MASTERCARD folks are the epitome of
unresponsiveness. Now that we're back in
civilization I'm changing banks - that ought
to get it straightened out (don't anyone ask if
I'm in the main bank or the aux bank,
though ... booo, I know).

Some of my "friends" have been making fun
of my sense of humor lately. That should
teach 'em. Neener neener neener.

Back Issues?

... are three dollars each, including shipping
and handling. We started in January with
Volume I, Number 1. And yes, we've been
slower than break-up in Unalakleet in
getting some of them out to you. However, by
the time you read this everyone should have
their back orders (assuming you ordered
back issues before June 20th). If we've
messed you over, our apologies, and please
let us know. We'll make it right ASAP.

And yes, I agree with those of you who would
like a commented listing of the articles in

the back issues. I'll include a one page insert
every now and again (next month?).

The Quarterly Disk?

...will be out within 10 days or so after you
receive this newsletter. That makes a little
sense if you stop to consider that it includes
the source code and most of the text for this
issue.

A couple people have asked about the "SAPP
DISPLAYER" code and some of the funny
binary files on the disk (like RT.AUX, etc.) I
hope no one shoots me over this, but SAPP
DISPLAYER is a SFGETFILE work-alike
written in ZBASICTM. The funny binary
files are part of the ZBASIC run-time
package. I meant to put that on the title
screen and forgot (Oops, sorry Zedcor!).
B1W, I am chasing down a screwy little bug
that seems to mess up my mouse routines on
a lIc. If you had problems with your SAPP
disk in that regard, it is our problem, not
yours. I hope to have it fixed post haste.

Incidentally, we publish Znews, too, a
ZBASIC programming newsletter. And if
you'll forgive a tiny commercial: we're giving
away ZBASIC at our cost ($42) and we'll
throw in a sample Znews - this because we
believe you'll love the language (we're
hooked) and you'll subscribe to the
newsletter ($29.95 for 1 year).

Where's Mike?

Poor Mike Rochip, he's been left out in the
cold again this month. My source code cup
brimmeth over. so Mike and I both got
elbowed out into next month's issue.

On tap this month: I finally have an
opportunity to print the 16 bit version of
Steven Lepisto's "Vectored Joystick

There is a lot I like about his code,
particularly the clever manner in which he
returned program control to main memory.
I guess I ought to let you see for yourself,
though. Dig in and enjoy!

happens that most of my contract work is 8
bit.) Matt Neuberg's "AUXPEEK" program is
a utility designed to allow us to probe
auxiliary memory in very much the same
manner that the monitor probes main
memory. I wish I had this program months
ago when I was working on some double high
resolution graphics routines. It would have
saved some headaches, I think.

erne Sourceror 55!lpprentice

Programming" code (the article and the first
part of the 8-bit code ran in March. The rest
ofthe 8-bit code ran in April).

If you make use of his subroutine notice that
the responsiveness (Le. the cycles used)
changes depending on your screen position.
If you need a constant number of cycles per
read you'll want to insert some sort of
scaling factor. I'll see what I can do about
that myself in a future issue.

This month's feature presentation is another
8-bit adventure (See? I haven't been
neglecting you 8-bit afficionados! It so

Vol. 1 No.6 Page 2

PEEKing at Auxiliary
a Monitor Utility

by Matthew Neuberg

The Monitor's Blind Spot

MeUlory:

Anyone using the Monitor to snoop around inside a 128K machine (enhanced lIe, lIe, or
Laser 128), has probably encountered an annoying limitation: the Monitor is incapable of
reporting on the contents of aUxiliary memory. In effect we have a 128K computer of which
the Monitor can see only 64K.

If, however, a program which we are trying to develop or investigate uses or partly lives in
auxiliary memory, the ability to peek into the 2nd 64K can be crucial. Since the Monitor
cannot do this for us, we will write a utility of our own: AUXPEEK. The exercise will not
only result in a valuable tool for investigation and development, but will also teach us
something about program interaction across the main/auxiliary RAM boundary.

128K Memory Architecture

Even though all 128K of a 128K Apple (or Laser) may in theory be accessed immediately by a
program as it is running, or may be interpreted as a program and executed by the computer's
microprocessor, the fact is that the microprocessor can only think at any given moment
about addresses within a range of 64K, because the Program Counter is only 16 bits.
Therefore the 128K is divided into two 64K groups, called Main and Aux RAM, only one of
which can be an object of the microprocessor's attention at any given moment.

But the situation is in reality more complicated than this. Each 64K of RAM is itself divided
into groups. Memory in the range of addresses $200-$BFFF is treated as a unit, called the
48K memory. On the other hand, the zero-page, the page 1 stack, and the addresses $DOOO
$FFFF are treated as a separate unit, called bank-switched memory. This name derives

Vol. 1 No.6 Page 3 %e Sourcerors.9lpprentice

from the fact that the range of addresses $DOOO-$DFFF actually refers to two 4K groups of
memory, called Bank 1 and Bank 2, though once again the computer cannot think about
both banks simultaneously. (Thus e.g. the address $DOOO can refer to any of four data bytes:
main bank I, main bank 2, auxiliary bank I, or auxiliary bank 2.)

Note: Firmware memory, occupying the region $COOO-$CFFF,is not treated in this article.
Some computers have more than one bank oj memory in this region (""expansion ROM"),
containing important routines, but AUXPEEK will not permit us to examine these.

The purpose of this division into units is to enable the units to be switched between Main
and Aux separately. There are three distinct sections of memory and three questions we
must examine, all of which are answered by setting softswitches, namely: 1) Which 48K
bank should the CPU address? 2) Which bank-switched memory (Main or Aux) should the
CPU address, and 3) Within the Main or Aux banks of question 2, which 4K bank should the
CPU address? A possible setting might thus be: Main 48K RAM ($200-$BFFF), Aux bank
switched RAM (zero-page, page 1 stack, and $DOOO-$FFFF), and Bank 1 ($DOOO-$DFFF).

But the soft-switches do not simply select which regions of memory the computer is to
think about absolutely. Rather, the concept ofthinking about.. is divided into two sorts of
operation: reading and writing. For example, LDA is aread" operation; STA is awrite"
operation. It is important to understand what our options are in this connection.

In the case of 48K memory, the soft-switches allow us to set separately the memory group
(Main or Aux) to which each sort of operation is to apply. A program running entirely
within Main 48K memory has the switches set so as both to read and to write in Main 48K
memory; but we can in fact set the switches, say, so as to read from Main 48K memory and
write to Aux 48K memory. Under such a setting, for example, a sequence of commands LDA

$2000, STA $2000 would transfer the contents of Main $2000 to Aux $2000. (The
Accumulator, to and from which our LDA-tng and STA-ing is performed, is unique and not
a part of memory, which is why it can be used as an intermediary in this transfer.)

In the case of bank-switched memory, the situation is different. First of all, when we select
Main or Aux, we must commit ourselves as part of that selection to using Bank 1 or Bank 2
of the region $DOOO-$DFFF. Secondly, we cannot select one of Main or Aux for reading and
the other for writing, and, even when we select Main or Aux $DOOO-$FFFF for reading only,
we have automatically selected the corresponding (Main or Aux) zero-page and page 1 stack
for both reading and writing.

The Problem

The above facts are important because they have dictated the way in which AUXPEEK
operates. First, let's decide on grounds of convenience to have AUXPEEK live in Main page
3, where it is least likely to interfere with anything. Moreover, we may as well give
AUXPEEK maximum value by enabling it to peek at any part of memory outside Main 48K
(that is, not only Aux 48K, but also Main or Aux bank-SWitched memory, and either Bank 1
or Bank 2).

Now, it will be very easy to peek at any bank-switched memory address: we have only to
select the desired bank and Main or Aux bank-switched memory (which will not affect our
program in page 3, since page 3 is not part of bank-switched memory), and then LDA
directly from the desired address.

%e Sourcerors Ylpprentice Vol. 1 NO.6 Page 4

Figure 1.. - A Simplified 128KAppie II
Memory Map

Aux 48K1Main 48K

Maln AuxlHary
Memory Memory

Mai n Bank Aux Bank

ROM Switched 2 Switched
RAM (12K) RAM (12K)

3 Bank
4K

1~ 2 ~ & 3 re fer to
segments of memory
that can be "swapped
and/or examl ned uSlng
AUXPEEK.

On the other hand, we will have to be very clever in order to read from Aux 48K memory. It
is easy for a program running in Main 48K to poke a value into Aux 48K; we have seen above
how to do this. But a program running in Main 48K can by no means of itself peek at (read
from) Aux 48K. This is because, in a Von Neumann machine (and all modem computers are
Von Neumann machines), programs live in memory as, and are indistinguishable from,
data. This means that if a program running in Main 48K throws the switch commanding
the microprocessor to perform subsequent read operations from Aux 48K, the
microprocessor, having upped the Program Counter appropriately, will look to Aux 48K for
the next program instruction, because fetching a program instruction counts as a read
operation. But if our program lives entirely in Main 48K, it won't find it, and we are heading
for a crash.

Solutions

Most programs which use 128K transfer information between Aux and Main memory
through the use of built-in firmware routines. If the address of data to be transferred is
known absolutely, it is possible to use the routine AuxMove (or MoveAux), which copies a
block of memory from Main 48K to Aux 48K or vice versa. This approach, however, lacks
flexibility: the manual warns us that it works only within 48K memory, and besides, to
prepare a call to AuxMove requires considerable program space, something of which we are
particularly jealous, since we are confining AUXPEEK to page 3.

Vol. 1 No.6 Page 5 %e Sourcerors J2Lpprentice

A more complex solution is to place into Aux memory, in advance, a routine for obtaining
data from Aux memory, and then, at the appropriate moment, transfer control to that
routine via the computer's firmware routine XFer. (This, for example, is the method used by
Glen Bredon's SOURCEROR) This method is especially useful when we must use indirect
addressing to obtain our data: the address of the desired information is stored in the zero
page; then control is passed to the routine in Aux memory, which does an indirect
addressing read from Aux memory and then transfers control back to the appropriate place
in Main memory, carrying the desired value in the accumulator. But this method has the
same drawback as using AuxMove, and besides, it also requires the overwriting of much
Aux memory, so that we might overwrite something we wanted to peek at.

Our solution is to exploit to the fullest the nature of the problem itself. In our main
program, we will go ahead and throw the switch commanding subsequent read operations
to come from Aux memory; but we will in advance have planted some code at the
corresponding next program address in Aux memory _ where the processor will then find
and execute it. This code will simply perform a direct LDA, and then throw the switch
commanding read operations to come from Main memory once again, thus transferring
control back to our main program.

This solution has two great advantages. First, we will still have to overwrite some of Aux
memory, but only 6 bytes. Second, we will copy our code into Aux memory from within our
program in Main memory at exactly the same addresses; this means that, just in case we
are called upon to peek, not at Aux memory, but at Main (bank-switched) memory, we can
bypass the command to read from Aux memory, and the LDA command will be in place
right in our program in Main memory.

But how will the LDA command planted in Aux memory know what address to read from?
We do not want to use indirect addressing, because this will involve modifYing the zero-page
and add other complications. The simplest solution is to have our program modifY itself.
As soon as we know what address we want to read from, we will copy that address into our
program code right after the LDA code. Then when we copy our two lines of code into Aux
memory, the LDA command will already be correct.

(Note: Occasionally one sees a claim that self-modifying code is bad programming
practice. My response is that if you don't like self-modifying code you've no business either
using a Von Neumann machine or writing machine code: this sort oj technique isJust what
they're jor!)

Other Implementation Details

The Monitor includes a user-command facility: the command CTRL-Y, which simply
causes a call to $3F8. We will therefore include in AUXPEEK a header which puts at $3F8 a
JMP to our main routine and then does an RTS; this header will be run only when
AUXPEEK is first loaded, via a BRUN command. Moreover, since the program memory
occupied by the header is then superfluous, it will subsequently be used dUring calls to
AUXPEEK for data storage. .

ObViously AUXPEEK must be able to parse a keyboard command. Since this would be
extremely consumptive of program space, we will have the Monitor do the parsing for us via
the routine GETNUM ($FFA7), which, though not a ""legal" entry point, is reliable for both
128K Apples and the Laser.

rrhe Sourceror SJ2lpprentice Vol. 1 NO.6

----------C>Ol

Page 6

GETNUM expects a Monitor command in the input buffer, starting at $200,Y. A Monitor
command consists of up to 4 hex digits, followed optionally by a (non-hex) upper case
letter. GETNUM halts when it encounters either a (non-hex) letter or a CR. After GETNUM
halts, A2 ($3E/$3F) contains the numeric part of the command: the Accumulator contains
the item that caused the halt, that is, either a letter if one was encountered or a CR if not:
and Y indexes the item within the input buffer after the itemthat caused the halt.

(Editor: During the course ofediting this article, 1 discovered that Professor Neuberg's
asswnptions in the paragraph above were 100% accurate -for the Laser, his machine of
choice. On an Apple 11, the accumulator holds an encoded value after returning from
GETNUM (as opposed to a true ASC11 code). For this reason 1 inserted a DEY , an LDA

$a2 a0, Y , and a quick INY. This loads A with the value of the non-hex character that
bumped us out of GETNUM and properly restores the Y offset, thereby creating the
conditions the good professor needed for the rest of his code to work. I highlighted my
changes with boldfaced comments.)

To make life easier, we will have AUXPEEK show us, each time it is called, 8 bytes starting
at the byte named in the command. We won't make any attempt to arrange these bytes in
mod-8 groups, as the Monitor does. We will, however, imitate the Monitor to this extent:
immediately after one call to AUXPEEK, follOWing the display of 8 bytes, a subsequent
command CTRL-Y, with no address attached, will be sufficient to cause the display of the
next 8 bytes. This will be valuable in case we want to look ata sizeable block of bytes. Every
time AUXPEEK prints a group of 8 bytes, it will precede it with the address of the first byte,
printed in inverse, to distinguish it from output of the Monitor's own memory display
routines.

Installation and Command Syntax

As stated above, installation consists of BRUNning AUXPEEK from BASIC. It will then be
installed into page 3 memory, with the CTRL-Yvector pointing at it.

You can then enter the Monitor via CALL -151. For safety's sake, you should probably put
yourself into 40-column mode (using ESC CTRL-Q) before issuing any commands to
AUXPEEK.

Subsequent to installation, calls to AUXPEEK may be given to the Monitor, in response to
the Monitor's asterisk-prompt. A legal command consists of CTRL-Y (which will not appear
on the screen, alas) followed immediately, as part of the same line and without spaces, by
up to 4 hex digits denoting the starting address to be peeked at. (A CR, of course, terminates
the command.)

For example, the command [CTRL-Y]AlOO will cause the display of 8 bytes starting at Aux
$AlOO. Moreover, we will have AUXPEEK select by default the Aux bank-switched RAM, so
commands for the Aux zero-page and stack will have the same syntax, e.g. [CTRL-Y] ,

On the other hand, if the address to be examined lies in the range $EOOO-$FFFF, we will give
the user the option of specifying either Main or Aux bank-switched RAM, by 'the addition of
the letter M (Main) or X (auX) to the command. Thus [CTRL-YjFOOOM will cause the display
of 8 bytes starting at $FOOO of Main bank-switched RAM. And, if the address to be examined
lies within the 4K range $DOOO-$DFFF, the user should specify, in addition to Main or Aux,
Bank 1 or 2, by the addition of 1 or 2 to the command: e.g. [CTRL-YjDlOOM1 shows 8 bytes
starting at $DlOO of Bank 1 of Main bank-switched RAM.

Vol. 1 No.6 Page 7 %e Sourceror5J2Lpprentice

Finally, as stated above, the command [CTRL-YJ, if given directly after another AUXPEEK
command, will cause the display of the next 8 bytes.

AUXPEEK In Detail

When a command line is gathered by the Monitor, using GETLNZ, it is placed into the input
buffer at $200. The Monitor then calls GETNUM to parse the command. As soon as the first
character, CTRL-Y, is encountered, GETNUM halts, and the Monitor passes control to
AUXPEEK.

AUXPEEK sets Y to I, just to be on the safe side, so that in the upcoming call to GETNUM the
CTRL-Y at $200 will not be encountered. GETNUM is then called, and it parses the contents
of the input buffer, starting at $201, loading up to 4 hex digits of the command into A2.

Now if, after calling GETNUM, the accumulator holds a CR, we know that the command
consisted at most of hex digits. Moreover, if the accumulator holds a CR and Y is 3, then the
command must have consisted of just 2 bytes, namely, CTRL-Y and a CR, and no hex
address. Finally, if the accumulator does not hold a CR, then it holds either M or X (unless
the command is illegal), and Y indexes either a 1 or a 2, or something we can ignore (such as
a CR or something illegal). If an illegal item is encountered, we jump back into the monitor
with a beep.

A variable MAINAUX is maintained, with the options for bank-switched memory X-or-M,
2-or-l encoded in bits 6 and 7 respectively, where they can be easily checked by a BIT
operation. If the user command is just [CTRL-Y], MAINAUX is left unchanged from the last
time AUXPEEK was called, and the address to be read is fetched from within the program,
where it was stored after that last call. Otherwise, MAINAUX is zeroed, which is interpreted
as the default optionAux Bank 2, and then if the user's command consists of more thanjust
hex digits, bits are rolled into MAINAUX to set it appropriately.

We then print in inverse the first address to be shown, also transferring that address into
the LDA command within the program.

Next we copy the LDA command, and the following read-from·Main-48K command, into
Aux memory. It is then a simple matter to use MAINAUX to select the correct soft-switches
and read a byte of data. The byte is stored in the workspace that used to be occupied by the
header. We then increment the address within the LDA command. We loop so as to perform
the operations described in this paragraph 8 times; when we are done, the 8 bytes of data are
in our workspace.

The 8 bytes of data stored in the workspace are now printed, and we are done, so we jump
back into the Monitor with no beep. The Monitor prints a prompt and waits for the next
command.

Voila!

1
2
3
4
5

* AUXPEEK
* a control-Y monitor utility to display AUX memory
* and bank-switched RAM
* Matt Neuburg -- 3/20/89

----~

rrhe Sourceror S.9Lpprentice Vol. 1 No.6 Page 8

* monitor routines

command

=003E
=0200

=FE80
=FE84
=FDED
=FDDA
=F9-41
=FFA7
=FF65

6
7
8
9
10
11
12
13
14
15
16
17

A2
IN

SETINV
SETNORM
COUT
PRBYTE
PRTAX
GETNUM
MON

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU

$3E
$200

$FE80
$FE84
$FDED
$FDDA
$F941
$FFA7
$FF65

iand $3F, set by GETNUM
ithe input buffer

iprint in inverse
iprint normal
iprint char in acc
iprint byte in acc
iprint bytes in acc, X
iparse monitor command
iprint *, await monitor

18
19
20
21
22
23

*-------------------------------

*-------------------------------

ORG $300

... to main routine

ierr, return to Monitor with

iinitialise ~Y vector:

icommand was just addr:
i so zero MAINAUX (= aux bank

i==> done parsing

ithere's more (M, M1, etc.):
i so check syntax, must be M

i==> done parsing

iignore the CTRL-Y
istick addr into A2

i redundant for Laser but
i necessary on A2 - RWL
i bump Y back
iis that all there is?
i=>no
iyes, is it just ~Y CR?
i=>no
iyes, don't alter MAINAUX,

and set A2 ourselves
i using last inc'd value

IN,Y

#"M"
VALIDMX

PRINT

#1
GETNUM

$3F8
#<START
$3F9
#>START
$3FA

MON

#$4C

#0
MAINAUX

#$8D
CHEKSYN
#3
DEFAULT
READ1+1
A2
READ1+2
A2+1
PRINT

LDA

JMP

JMP

* start of ~Y routine: parse command

* header to initialise ~Y-vector, & variable storage

START LDY
JSR
DEY
LDA
INY
CMP
BNE
CPY
BGE
LDA
STA
LDA
STA
JMP

CHEKSYN CMP
BEQ

TEMP

NOGOOD

STA
LDA
STA
LDA
STA

MAINAUX RTS

DEFAULT LDA
STA

000300: A9 4C
"JMP" ...
000302: 8D F8 03 24
000305: A9 13 25
000307: 8D F9 03 26
00030A: A9 03 27
00030C: 8D FA 03 28
00030F: 60 29

30
31

000310: 4C 65 FF 32
Beep

33
34
35
36

000313: AO 01 37
000315: 20 A7 FF 38
000318: 88 39
000319: B9 00 02 40
00031C: C8 41
00031D: C9 8D 42
00031F: DO 19 =033A 43
000321: CO 03 44
000323: BO OD =0332 45
000325: AD A2 03 46
000328: 85 3E 47
00032A: AD A3 03 48
00032D: 85 3F 49
00032F: 4C 5B 03 50

51
000332: A9 00 52
000334: 8D OF 03 53
2)
000337: 4C 5B 03 54

55
00033A: C9 CD 56
00033C: FO 04 =0342 57
or X

Vol. 1 NO.6 Page 9 %e Sourcerors .9Lpprentice

* all roads lead here: print starting addr in inverse

BLT NOGOOD
VALID12 LSR

ROR MAINAUX

CMP #"X"
BNE NOGOOD

VALIDMX LSR
ROR MAINAUX

JSR PRTAX
JSR SETNORM
LDA #":"
JSR COUT

;initialise for indexing TEMP
; and to loop what follows 8

what "bank" bit we roll in)
;this bit is 2=0, 1=1
;put in bit 7

;also, copy starting addr ...
; into prog for direct LDA

;or else addr must >= $EOOO
(and in that case, won't

;{Y has been incd by GETNUM)
;continue checking syntax,
; must either be 1 or 2 ...

;this bit is auX=O, Main=l
;put in bit 7 (will be 6

#7

SETINV
A2+1
A2
READ 1+2
READ 1+1

IN,Y
#"1"
VALID12
#"2"
VALID 12
A2+1
#$EO

LDY

JSR
LDA
LDX
STA
STX

LDA
CMP
BEQ
CMP
BEQ
LDA
CMP

PRINT

times

00033E: C9 D8 58
000340: DO CE =0310 59
000342: 4A 60
000343: 6E OF 03 61
later)
000346: B9 00 02 62
000349: C9 B1 63
00034B: FO OA =0357 64
00034D: C9 B2 65
00034F: FO 06 =0357 66
000351: A5 3F 67
000353: C9 EO 68
matter
000355: 90 B9 =0310 69
000357: 4A 70
000358: 6E OF 03 71

72
73
74

00035B: 20 80 FE 75
00035E: A5 3F 76
000360: A6 3E 77
000362: 8D A3 03 78
000365: 8E A2 03 79
later
000368: 20 41 F9 80
00036B: 20 84 FE 81
00036E: A9 BA 82
000370: 20 ED FD 83

84
000373: AO 07 85

86

* copy the LDA addr command into AUX mem

PICKRAM BVS
STA

PICKBANK LDA
BIT
BMI
LDA

#XEND-READ1-1 ;index bytes to copy
$C005 ;write to AUX mem
READ1,X iCOPY one byte from MAIN to

idone, restore write to MAIN

iselect MAIN zp and bank-RAM
i ... or ...
iselect AUX zp and bank-RAM

ianother?
i=>yes, loop

iselect bank 1 bank-RAM read

;will we read from MAIN or

;if MAIN, =>do nothing
;if AUX, read from AUX ram

; ... or ...
iselect bank 2 bank-RAM read

$C004

READ1
$C003

SEND1

READ1,X

MAINAUX

$C008
PICKBANK
$C009

$C088
MAINAUX
PICKRAM
$C080

BIT

STA

STA
BVS
STA

LDX
STA
LDA

STA
DEX
BPL

XFER

SEND1

87
88
89

000375: A2 05 90
000377: 8D 05 CO 91
00037A: BD A1 03 92
AUX
00037D: 9D A1 03 93
000380: CA 94
000381: 10 F7 =037A 95

96
000383: 8D 04 CO 97

98
000386: 2C OF 03 99
AUX?
000389: 8D 08 CO 100
00038C: 70 03 =0391 101
00038E: 8D 09 CO 102

103
000391: AD 88 CO 104
000394: 2C OF 03 105
000397: 30 03 =039C 106
000399: AD 80 CO 107

108
00039C: 70 03 =03A1 109
00039E: 8D 03 CO 110

111

rrhe SourcerorsYLpprentice Vol. 1 NO.6 Page 10

* these are the two lines to be copied into AUX

* restore everything, print 8 bytes collected

SHOWBYTE LDA
JSR
LDA
JSR
DEY
BPL

0003A1: AD FF FF
0003A4: 8D 02 co

0003A7: 99 00 03

0003AA: EE A2 03
0003AD: DO 03 =03B2
0003AF: EE A3 03
0003B2: 88
0003B3: 10 co =0375

0003B5: 8D 08 co
0003B8: AD 81 co
0003BB: AD 81 co

0003BE: AO 07

0003CO: B9 00 03
0003C3: 20 DA FD
0003C6: A9 AO
0003C8: 20 ED FD
0003CB: 88
0003CC: 10 F2 =03CO

0003CE: 4C 69 FF

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

READ 1

XEND

NOTHI

LDA
STA

STA

INC
BNE
INC
DEY
BPL

STA
LDA
LDA

LDY

JMP

$FFFF
$C002

TEMP,Y

READ1+1
NOTHI
READ1+2

XFER

$C008
$C081
$C081

#7

TEMP,Y
PRBYTE
if" "
COUT

SHOWBYTE

MON+4

i"FFFF" modified by program
irestore read from MAIN ram

inow we have obtained a byte

ialways inc addr

idec TEMP index and count
ido all that 8 times

irestore MAIN zp
irestore read ROM, write RAM 2
i (again)

i8 bytes to index and print

iobtain a byte
iand print it

idec TEMP index and count
iloop 8 times

iback to Monitor, no beep

End Merlin-16 assembly, 209 bytes, errors: 0 , symbol table: $1800-$1911

Vectored Joystick Programming
IIGS Version

by Steven Lepisto

(Editor: Steven's article appeared in the March issue and the bulk of
the 8-bit code ran in the April issue. This version is GS specific.)

1 1st off
2 rel
3 dsk joystick16.1
4

5 xc
~

6 xc
7 lUX %00
8

Vol. 1 NO.6 Page 11 %e Sourcerors ftLpprentice

%00

%00

#%00010000
mx&%10
%10

#%00110000

up
still down

2 = button
3 = button
0, +1.
0, +1.

71 rep
72 if
73 mx
74 else
75 mx
76 fin
77 fin
78 else
79 rep
80 mx
81 fin
82. «<
83
84

2

2

2

%11

%01

#%00110000

mx&%10
%11

#%00010000

%10

] 0

a=]1
#%00100000
mx&%OI
%11

(These should be word values)
if button is down
state of button(s).
o = no button pressed
1 = button down

direction of x coordinate: -1,
direction of y coordinate: -1,

mx %00
fin
else

do]0

if a=] 1
rep #%00100000
if mx&%OI
mx %01
else

mx
else
mx
fin
fin
else

sep
if

sep
if

sep
mx
fin
«<

mx
else

do
if

mx
fin
else

LONG mac

SHORT mac

*
* trigger
* button state

*
*
* joyvectx
* joyvecty

*
* These variables are defined here arbitrarily so the file can be assembled.
* See documentation on ways to deal with these variables,

trigger ent
ds

button state ent
ds

joyvectx ent
ds

joyvecty ent
ds 2

* Macros used by these routines.

* SHORT and LONG use the following conventions:
* SHORT sets 8-bit A and X,Y regs.
* SHORT a_reg sets 8-bit A.reg
* SHORT x_reg sets 8-bit X,Y regs (actually, anything
* that doesn't start with 'a' will work).

9 * Requires the following labels external to this file (preferably direct
page) :

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58'
59
60
61
62
63
64
65
66
67
68
69
70

%e SourcerorS.9Lpprentice Vol. 1 No.6 Page 12

Returns values that
Also reads the buttons

both buttons into one.

;- if valid key press present
;access to clear keypress
;speed register of IIgs
;reset paddle timers
;timer for paddle 0 (+ when done)
;timer for paddle 1 (+ when done)

- if button 0 pushed
; - if button 1 pushed

;last state of stick
;positive if it's really there

1
1

1
1

$eOcOOO
$eOc010
$eOC036
$eOc070
$eOc064
$eOc065
$eOc061
$eOc062

ds
ds
ds
ds

stick last
stick live
stick_temp
stickstate

keypress equ
keystrobe equ
gs_speed equ
resetstick equ
rdstickx equ
rdsticky equ
buttonO equ
button1 equ

85 *---
86 * Joystick read routine (16 bit version) for Apple IIgs.
87 * by Stephen P. Lepisto
88 * Date: 1/3/88
89 * Assembler: Merlin 16 v3.50+.
90 *
91 * Reads a standard analog joystick in a custom way.
92 * are 0-127 which is useful for vector-type motio~.

93 * and sets a global variable accordingly. Combines
94 *
95 * Note that these routines assume that there will be one call to dojoystick
96 * for every call to updatejoystick. Updatejoystick adds to the state of the
97 * stick until dojoystick clears it so you can call updatejoystick more than
98 * once before you call dojoystick.
99 *

100 * Dokeystick: returns 0 if no joystick equivalent keys are pressed else
101 * returns a byte that looks like stickstate (see updatejoystick for
102 * specifics).
103 *
104 * NOTE: GS-specific in locations and in CPU instructions!
105 *
106 *---
107 *
108 * To use these routines:
109 * 1) call initjoystick to intialize the routines and determine if there is a
110 * joystick present. Only has to be done once.
111 * 2) at top of main loop, call updatejoystick to get current state of stick.
112' * 3) sometime after calling updatejoystick, call dojoystick to process state
113 * of stick and return vector and trigger values.
114 *
115 * If stick isn't present, updatejoystick and dojoystick only process button
116 * presses (a la the apple keys). If you wish, you can allow for installing a
117 * joystick on the fly by having the user press a key then based on that key,
118 * call initjoystick again. If the stick is ever unplugged on the fly,
119 * update joystick and dojoystick will fall back to reading only buttons,
120 * leaving the stick itself in a centered state.
121 *----------------------~--------------------------

122
123 * Hardware locations.
124
125
126
127
128
129
130
131
132
133
134 *---
135
136 * Variables.
137
138
139
140
141
142
143 *---
144

Vol. 1 NO.6 Page 13 rrhe SourcerorsJ2Lpprentice

and #$7f
cmp #'P'
bne :Oa
stal keystrobe

Idal keypress
bpI :waitkey
stal keystrobe
bra :x

cmp #$Oa ; ctrl-J
bne : 1
jsr initjoystick
bra :x

sta dokey_char
Idy #-1

iny
Ida key_table,y
beq :x
cmp dokey_char
bne : 2
Ida joyxlate_tbl,y
stal keystrobe
rts

Ida #0
rts

set if no keypress processed or recognized else clear.
if zero flag set, holds a 0 else holds stick state byte.

: 0

: 0
#$df

%11

#"a"

#"z"+l

keypress
:x

stick live
#$££

cmp
bcs
and

Ida
and
xba
rts

mx
dokeystick

Idal
bpI
cmp
bcc

159
160
161
162
163
164
165
166" * Read keyboard looking for joystick equivalent keys.
167 *
168 * Output:
169 * zero flag
170 * A.reg
171 *
172 * Note that only if a key is recognized is the keyboard strobe cleared. This
173 * allows another routine outside of this one to see if the keypress was meant
174 * for it.
175 *
176 * Currently supports eight motions, a fire button, and a combination fire
177 * and motion button (to show how it can be done).
178 * Also supports P for pause (waits for another keypress), and ctrl-J for
179 * reinitializing the joystick (if it has been reconnected after first running
180 * the initialization routine) .
181
182
183
184
185
186
187
188
189
190
191 : 0
192
193
194
195
196 :waitkey
197
198
199
200
201 :Oa
202
203
204
205
206 : 1
207
208
209 : 2
210
211
212
213
214
215
216
217
218 :x
219
220
221

%e Sourcerors.9Lpprentice Vol. 1 NO.6 Page 14

joyvectx
joyvecty
x_reg

stx
sty
short

ror
bcc : 3
iny ; down

ror
bcc : 4
dex ;left

ror
bcc :5
inx

284
285
286
287 : 3
288
289
290
291 : 4
292
293
294
295 :5
296
297
298

button press
button press and down motion

F
Mup

left
right

downX
E
S

D

;has the state changed?
;branch if not

;read and interpret keys as joystick
;branch if key equivalent pressed
;button equivalent key not pressed
;else clear motion vectors

;yes - which way?

;up

;end of table

: 2

: 6

:a

stickstate
stickstate

o

stickstate

#0
joyvectx
joyvectx+1
joyvecty
joyvecty+1
stick live

dokeystick
: 1

stick_temp
: 6
stick_temp
x_reg
#0
#0

'W', 'R', 'Z', 'e'
'X', fE',' S' ,'D'
'F', 'M'

%00

-1, 0, +1 depending on x position of stick.
-1, 0, +1 depending on y position of stick.
- if button event occured else +.

before next updatejoystick, current state of stick. Bit 4
reflects current position of button, set if button down.

dfb %00101,%01001,%00110,%01010
%00010,%00001,%00100,%01000
%10000,%10010

brl

ror
bcc
dey

sta
sta
sta
sta
bit

mx

cmp
beq
sta
long
Idx
Idy

sta
Ida

jsr
bne
bpl
Ida

Ida

joyxlate_tbl
dfb
dfb

key_table dfb
dfb
dfb
dfb

222 dokey_char ds 1
223
224 * Key equivalent table:
225 *
226 * Current order is:
227 * W diagonal up left
228 * R diagonal up right
229 * Z diagonal down left
230 * C diagonal down right
231
232
233
234
235
236
237 * Values in this table correspond in position with the keys in key_table.
238
239
240
241
242
243
244
245 * Processes last joystick read or current keyboard read (if any) and returns
246 * information about the joystick.
247 *
248 * Output:
249 * joyvectx
250 * joyvecty
251 * trigger
252 * stickstate
253 *
254 *
255
256 dojoystick ent
257 short
258
259
260
261
262
263
264
265
266

267
268 : a
269
270 : 1
271
272
273
274
275
276
277
278
279
280
281
282
283 :2

Vol. 1 No.6 Page 15 %e SourcerorsJZLpprentice

299 : 6 362 bne : 1
300 Ida stickstate 363 Ida #-1
301 asl 364 bmi :1a
302 asl 365 :1
303 eor stickstate 366 Ida #0

304 and #%11000000 367 :1a
305 beq :nochange 368 sta stick live

306 Idy #2 369 Ida stickstate

307 Ida stickstate 370 and #%00110000

308 and #%00110000 371 asl

309 beq :skipchange 372 asl
310 Idy #1 373 bit stick live-
311 bra :skipchange 374 bmi : 5

312 :nochange 375 cpy #16 ;up
313 Idy #0 376 bcs : 2
314 Ida stickstate 377 ora #%00000001
315 and #%00110000 378 : 2
316 beq :skipchange 379 cpy #100 idown
317 Idy #3 380 bee :3
318 :skipchange 381 ora #%00000010
319 sty button state 382 : 3
320 stz button state+1 383 cpx #16 ileft
321 tya 384 bcs : 4
322 lsr 385 ora #%00000100
323 bee : 8 ibutton not down 386 : 4
324 : 7 387 cpx #100 i right
325 Ida #-1 388 bee :5
326 bra : 9 389 ora #%00001000
327 : 8 390 : 5
328 Ida #0 391 tax
329 : 9 392 Idal buttonO
330 sta trigger 393 bpI : 6
331 sta trigger+1 394 txa
332 Ida stickstate 395 ora #%00010000
333 and #%00110000 396 tax
334 sta stickstate 397 : 6
335 long 398 Idal button1
336 rts 399 bpI : 7
337 400 txa
338
339 * Get values from joystick and convert to bit positions
340 * in ' stickstate' .
341 *
342 * The "dead space" around center is about 65%.
343 *
344 * Output:
345 * 'stickstate'
346 * bit 0 1 if stick is up
347 * bit 1 1 if stick is down
348 * bit 2 1 if stick is left
349 * bit 3 1 if stick is right
350 * bit 4 1 if button pushed
351 * bit 4 1 if button o pushed
352' * bit 5 1 if button 1 pushed
353 * bit 6 previous state of button 0
354 * bit 7 previous state of button 1
355
356 updatejoystick ent
357 short
358 bit stick live
359 bmi :5
360 jsr readstick
361 cpx #255

%e SourcerorSJ2lpprentice Vol. 1 NO.6 Page 16

value for horizontal movement (0-127)
255 if no stick is attached.
value for vertical movement (0-127)

;branch if still reading

;always branches (it had better!)

;branch if done reading

;compensation for not doing the iny/beq :5

;branch if done reading

;delay tactics to compensate for
;the inx/bne :2

;escape hatch if stick not plugged in

;reset timers on all paddles

: 1

: 2

stickstate

1

oldspeed
#$80
gs_speed
gs speed

rdstickx
: 3

: 5
rdstickx

rdsticky
: 4

#0
#0

%00

#%00100000

%11

gs_speed
oldspeed
#$7f
gs_speed
resetstick

inx
bne

mx

ldal
bpi
iny
beq
ldal
bpi

ida
and
oral
stal
pip
rts

stx
long
rts

nop
nop
nop
ldal
bmi

nop
nop
nop

ora
tax

sei
ldal
sta
and
stal
ldal
ldx
ldy

mx
readstick

php

401
402
403 : 7
404
405
406
407
408
409 * Read apple joystick, returning values for left/right, up/down directions.
410 *
411 * Output:
412 * x.reg
413 *
414 * y.reg
415 *
416 * Timing: minimum (both x,y read 0) = approx. 83 cycles
417 * maximum (both read 127) approx. 3023 cycles
418 * If no stick plugged in = approx. 5935 cycles
419
420
421
422
423
424
425
426
427
428
429
430
431 : 1
432
433
434
435 :2
436
437
438
439
440
441
442 : 3
443
444
445 : 4
446
447
448
449
450
451 :5
452
453
454
455
456
457
458
459 oldspeed ds
460
461

