
(J'Ilie Sourceror s5ipprentice
The Assembly Language Journal of Merlin Programmers

Reality is for Non-Programmers

Vol. 1 NO.1 January, 1989

Well, here we are with the first REAL issue of The
Apprentice. Unbeknownst to most of you,
Volume 0 Number 0 was really an advertisement.
Sure, it looked and felt pretty realistic, but it's
true mission was to tell you all about our new
newsletter. With this issue we begin your
subscriptions and commence with the nitty gritty.

By way of announcement: we are going to offer a.
quarterly disk program so you can receive all the
source code we printed in the newsletter already
keyed-in and waiting to go (we'll throw in a few
other ditties and oddities, too). It can save scads
of time and will set you back a mere $20 per year.
Just call or write... our address and other info is
in the boilerplate on the back.

By way of confession: it is a little scary takmg
subscriptions from some of you. Recently I've
received orders from people I've been reading
and admiring for years. In talking with these
members of the "illuminati", though, I discovered
a common thread - they all wan ted to lend their
support to an all-assembly language, all-Apple II
publication like this one. I think there is a place
for The Apprentice in the Apple world, and I am
proud to playa part in making it happen.

I am really only playing a part, though.
Although I consider myself a pretty fair assembly
language programmer, I can't hold a candle to
some of you. On top of that, the playing field has
about quadrupled in size over the last couple of
years. The 65816 has scads of opcodes and
addressing modes the simple little 6502 never
dreamed of (and a precious few programmers
know much about). On top of that, the GS
toolboxes are an entirely new game, not to
mention GS/OS. In short, the days are gone
when one person could be the guru and dispense
all manner of wisdom in all things assembly. We
need each other, and I invite any and all to
consider sharing some of your best "stuff" with
the rest of the Apple II programming community.
I have uploaded our writer's guidelines to
GEnie's A2PRO library so you can download
them or call or write and get 'em straight from
us. Oh yeah, we usually pay between $50 - $75
per article, too.

And by way of correction: in spi te of
monumental effort, Mohawk Man and I let
something slip through the cracks in our "perfect"
GS start-up routine in Volume 0, Number O. If
you check out the error handling routine, it
makes a toolbox call named -Hexit. This little
beastie is a member of the Integer Math toolset,
which we neglected to start up. In my own
defense, I DID spot this error before press time
and fixed it - but then promptly typeset the
wrong version of the source code. Good Lord,
it's hard to get good help these days ...

The error is not really noticeable because the
Integer Toolbox is started automatically when the
Tool Locator starts business. But Apple, Inc. says
to start it up, so we shall. Somewhere in the
midst of the ROM based toolset startups, just add
a line like ti is:

-IMStartUp

That is all there is to it. The call does not affect
the stack nor does it require any direct page
space.

If all our mistakes continue to be that easy to fix,
we'll be in terrific shape.

On a final 8-bit sort of note... I've received LOTS
of mail and phone calls from people who have
asked me not to forget" ... those of us who still
program the 8-bit machines ..." Not to worry. I
haven't and I won't. For one thing, I think the
Apple IIc+ has extended the lifespan of 8-bit
Apples (and increased the quality of that life,
too). For another, I'm not entirely certain 8-bit
computers will die anytime soon, anyway. The
American school system is a LARGE market that
moves slowly. There is and will continue to be a
large demand for quality 8-bit software there and
in other places. I plan to run at least one 8-bit
article every issue, and there will usually be
more.

With all that said, I now humbly request your
attention to this month's feature presentations...
(none of which I wrote - geez, I am one
hardnosed editor!)

%e Sourcerors.9Lpprentice

ACE is the Place...
by Eric Mueller

Vol. 1 No.1 Page 2

I

The ACE toolset, introduced with System Disk 3.2, is a very complete, very convenient way for you
to compress digitized sounds down to half their original size or less. Interestingly enough, the
technical notes released with System Disk 4.0 (GS/OS) did not include the ACE information, even
though it did contain other release notes from the 3.2 package. This article is adapted from those
not-too-well-distributed notes.

The ACE package (toolset $1D) consists of four major calls and several minor calls. The major
functions are ACECompress, ACEExpand, ACECompBegin, and ACEExpBegin. The minor functions
include such toolbox standards as ACEInfo, ACEReset, ACEStartUp, and so on. The heart of the ACE
toolset is the ADPCM compression algorithm, formally known as Adaptive Differential Pulse Code
Modulation. This algorithm can compress data in an 8:4 ratio (exactly one half the size 'of your
original) or an 8:3 ratio. What that boils down to is, ADPCM is a very efficient method of packing
bits, if you don't mind the fact that the expanded data will not be exactly like the original data.

ADPCM works by assuming that the data you're compressing--a sound wave sample--is relatively
smooth, and continuous. Any sudden spikes in the noise, for example, will not compress well with
ADPCM, if at all. ADPCM works by examining the difference between the previous byte of sound
data, and the current byte. Imagine a simple ramp tone, for example. ADPCM will see very little
difference between a sample byte and the previous byte--perhaps one or two units more, at the most.
This data--the difference from one byte to another--is what is stored in the four or three bits that your
sound is compressed to. If your sound has a sudden dropout, for example, where the value drops to
zero for a byte or two, ADPCM can only indicate a rapid drop in its four (or three) bits. As you can
see, four bits (versus three bits) allows greater variation in the changes from one byte to another in
your sound, at the expense of slightly larger output.

There is an advantage to this, however. If your sound sample does include a dropout or spike, the
expanded data will show it as being much less than it was, due to the nature of the compression
algorithm. In addition, the ACE toolset boasts extremely fast data compression. This is because the
ADPCM method requires one pass through the sound data, versus two or more passes for other
compression algorithms (such as Huffman, popular with several disk packers). And, with ACE, you
tell the toolset how long you want your compressed data to be--not the other way around!

ACE, however, cannot guarantee that the expanded data will be bit-for-bit the same as the original,
uncompressed sound. As mentioned, this is a double edged sword, occassionally advantageous,
occassionally problematic.

Enough with theory. In order to operate the ACER toolset and successfully compress and expand
sound files, you need to follow several steps. I will present both a compression code fragment and
expansion fragment. Both code fragments were adapted from Joe Jaworski's ACER utility (see details
elsewhere in this issue). To use these fragments, you need to be certain that the host program has the
integer math toolset started up, as wen as the ACE toolset (of course).

When compressing a sound, there are three distinct steps. The first is to compute the buffer space
needed for the compressed data. The second, to request this buffer are from the memory manager.
Finany, the actual _ACECompress call is executed. Before the fragment can do anything, however,
data space must be defined:

* Equates that you should set or fill in:

method
ProgID

dw
dw

o
o

iACE compression method: 1 (8:4) or 2 (8:3)
iprogram's ID from _MMStartup

Vol. 1 NO.1 Page 3 rrhe Sourcerors Ylpprentice

NBlks dw 0
OrigHandle adrl 0

;number of 512 byte blocks in original data
;a handle to the original sound data area

* Data area filled in by compression code

CompSize adrl 0
CompHandle adrl 0

;size of compressed data
;a handle to compressed data area

;push space for NewHandle result now
;push space for Multiply result
;first, subtract-the method from five

Next, the buffer space required for the compressed data must be calculated. According to the ACE
release notes (page 16), the formula is:

Bytes = NBlks * 64 * (5-method)

where NBlks is the number of 512 byte blocks in the original file, and method indicates which ACE
method we're going to compress the data with. If method is one, then the data will be compressed
with an 8:4 ratio, while method set to two indicates to ACE to use an 8:3 ratio. The easiest way to get
the NBlks value is to use the GS/OS _GetFilelnfo call, and take the block size (since a standard
ProDOS disk block is 512 bytes).

PushLong #0
PushLong #0
lda #5
sec
sbc method
asl ;nOI;, multiply (*2)
asl ; (*4)
asl ; (*8)
asl ; (*16)
asl ; (*32)
asl ; (*64)
pha ;stick on the stack for _Multiply
PushWord NBlks ;push the number of 512 byte blocks
_Multiply ;and multiply the two together
PullLong CompSize ;get the size necessary

The next step in the process is to allocate space for this buffer. You may be asking yourself why I
pulled the CompSize value right off the stack and then just pushed it right back on. The reason is not
that this fragment uses CompSize again (it doesn't), but that your host program is going to need
where the compressed data is stored, in order to play it back or save it to disk!

PushLong CompSize ;specify how much space needed
PushWord ProgID ;host program ID (assigned by MMStartup)
PushWord #%1000 0000 0000 0100 ;locked and page aligned
PushLong #0 ; (not used)

NewHandle ;and allocate some memory
; (here's where you do error checking)

PullLong CompHandle ;and get handle to work space

Now that I've got the size of the compressed data area computed and allocated, the compression can
begin. Before setting up for the _ACECompress call, the _ACECompBegin resets internal settings in
the ACE toolset. This call must be made at the beginning of each sequence of _ACECompress calls.
Note that the _ACECompress call can be anywhere from instantaneous to several seconds long,
depending on the size of the sound data, so I suggest you put up a dialog informing the user of the
delay, or issue a conventional _WaitCursor call (changing the cursor to a wristwatch).

%e Sourceror So !2Lpprentice

more ACE-

Vol. 1 No.1 Page 4

I

_ACECompBegin imust be made
PushLong OrigHandle ipush handle to original sound data
PushLong #0 ioffset (past above value) to sound data
PushLong CompHandle ipush handle to compo (target) buffer
PushLong #0 ioffset (past A value) to start storing data
PushWord NBlks ipush the # of 512 byte blocks to compress
PushWord method ipush the compression method to use (lor 2)
_ACECompress iand compress the data

i (handle any kind of ACE error here)

That's all there is to it. In order to work with your data (and save it to disk, for example), CompSize
is the number of bytes of compressed data, and CompHandle is a handle to the area where the
compressed data is stored. Also, should you wish, you can compress the sound data 'on top of itself'
by specifying the CompHandle equal to the OrigHandle. While this will save a few steps, you will
also lose the original, since the compressed data will overwrite it.

As you can see, data compression with the ACE toolset is pretty elementary. Expanding a
compressed file is just a hair more complex. The same three steps are involved--compute buffer size,
allocate it, and expand--but the first one's a real doozy. Again, before I get started, a data area must
be defined:

* Equates that you should set or fill in:

method dw
ProgID dw
CompHandle adrl
CompSize adrl

o
o
o
o

iACE method: 1 (8:4) or •. 2 (8:3)
iprogram's ID from _MMStartup
ia handle to the compo sound data area
isize of compressed data, in bytes

* Data areai can be left as-is if you prefer:

ExpSize adrl
ExpHandle adrl
Scratch adrl

°°o
isize of expanded data
ia handle to expanded data area
i scratch area

Be certain that you set method equal to what it was when the data was originally compressed, or else
you'll get some strange results (i.e. garbage). Editor: Herein lies the single biggest problem with using
"foreign" data. Who knows how it was saved? As usual, a standard protocol can help. See the ACER
Standards article elsewhere in this issue.

Now my fragment must calculate the size of the buffer necessary for the expanded sound data, by
using this formula: ExpBlocks = CompSize / (64 It (5-method». Again, method is the ACE
compression method, CompSize is the size of the compressed data (in bytes), and ExpBlocks is the
number of 512 byte blocks that the expanded data will occupy.

PushLong
PushLong
PushLong
pea
lda
sec
sbc
asl
asl
asl

#0
#0
CompSize
#0
#5

method

ipush space for _LongDivide remainder
ipush space for _LongDivide quotient
ipush size of compressed data (dividend)
ihigh word of divisor is always zero
ifirst, subtract the method from five

ithen, multiply (*2)
i (* 4)
i (* 8)

Vol. 1 No.1 Page 5 %e Sourceror's J2lpprentice

;amount of memory needed (in bytes)

; (*16)
; (* 32)
; (* 64)
;low word of divisor goes on stack
land do the long divide
;get the quotient off the stack
land forget about the remainder

asl
asl
asl
pha
_LongDivide
PullLong ExpBlocks
pla
pla
PushLong #0 ;push space for _Multiply result
PushWord ExpBlocks ;ExpBlocks * 512 = bytes needed
PushWord #512
_MUltiply
PullLong ExpSize

Allocating space for the expanded data is unsophisticated, as shown by the next step:

PushLong ExpSize ;stick it back on stack for NewHandle
PushWord ProgID ;program ID (assigned by _MMStartup)
PushWord #%1000 0000 0000 0100 ;locked and page aligned
PushLong #0 ; (not used)
_NewHandle ; .'ind allocete some J11'.:lmory

; (here's where you :10 error checking)
PullLong ExpHandle land get handle to the compressed data

And finally, we begin the expansion step. Once again, this can take some time, so I suggest letting
the user know of the delay.

_ACEExpBegin ;must be made at beginning of each series
PushLong CompHandle ;push handle to compressed sound data
PushLong #0 ;offset past above to sound data
PushLong ExpHandle ; push handle to exp. (target) buffer
PushLong #0 ;offset (past A) to start storing data
PushWord ExpBlocks ;the # of 512 byte blocks to expand
PushWord method ;push compression method (lor 2)
_ACEExpand land expand the data out

; (handle any kind of ACE error here)

Upon completion of the above step, the expanded data is stored in memory (a handle to it is stored at
ExpHandle), and the length of the expanded sound data is stored at ExpSize.

The ACE toolset only returns a few errors, as shown by the following table:

error / name

$OOOO/ACENoError
$lD01/ACEIsActive

$lD02/ACEBadDP
$lD03/ACENotActive

$lD04/ACENoSuchParam

comment

no error has occurred (operation successful)
returned after startup call; indicates that

the ACE toolset was already started up
you have passed ACE a bad direct page address
returned after shutdown call; indicates that

the ACE toolset was already shut down
you asked for an out-of-range info parameter

'IFte Sourceror s.9l.pprentice

ACER cont.

Vol. 1 No.1 Page 6

$lD05/ACEBadMethod
$lD06/ACEBadSrc
$lD07/ACEBadDest
$lD08/ACEDataOverlap

$lDFF/ACENotlmplimented

you passed ACE an invalid compression method
you passed ACE a bad source address
you passed ACE a bad destination address
the area of memory you specified for the

expanded data will overlap with the
compressed data

that call does not exist in the ACE toolset

Who Be the Standard Bearer?

by Joe Jaworski and Eric Mueller

The ACE toolset, introduced with System Disk 3.2,
allows you to compress sound data down to at
least half it's original size, if not more. However,
.Apple has not defined a standard for sound files
compressed with the ACE toolset.. since it is
primarily intended for developers to use within
their own commercial products.

With the introduction of Joe Jaworski's ACER
utility, which allows you to compress sounds with
the ACE toolset, we would like to set forth the
following protocols and file standards for
Original, Compressed, and Expanded sound files
as processed by ACER. Certain sections of this
protocol are already being used by several
sound-related applications, and as much testing as
possible has been performed to ensure backward
compatability.

ACER is available on the large on-line services
(GEnie, CompuServe) for just the cost of
downloading. In addition, you may wish to check
with your local user group for a copy. ACER is
freeware.

Proposed File Formats

ORIGINAL sound files

* Original Digitized Sound (ODS Format) files
consists of the binary ($06) filetype.

* The Aux field of an ODS file contains the
playback rate per the standard DOC frequency
formula. The value recorded in the auxtype can be
1 ($0001) through 999 ($03E7). If a sound
applications program detects a $0000 value, it
should warn the user that the speed value is
invalid and assume an initial playback rate of 200.
The upper 4 bits (Bits 12-15) of the auxtype must
always be set to zero.

* Optionally, the sound application can give the
user an alternate choice of 427 as a default
playback speed. This is the standard rate
(22Kbits/sec.) used for Macintosh converted
sounds.

* The data within an ODS file contains the raw
8-bit representation of a digitized audio signal,
where $FF represents the most positive sound
peak and $01 represents the most negative sound
peak. $80 represents the zero crossing or null
sound value. ODS files are prohibited from
containing any $00 bytes (per the IIGS Sound
Manager DOC routines).

COMPRESSED sound files

* Compressed Digitized Sound (CDS Format) files
have a filetype of $CD. This filetype is currently
unused.

* The data within CDS files contain the data
generated by an ACECompress toolset call
representin~ the resulting bytes of a compressed

Vol. 1 NO.1 Page 7 rrhe Sourcerors Ylpprentice

original file using any present or future ACE
METHOD value. Currently, only METHOD 1 (8:4)
and METHOD 2 (8:3) values are supported in the
ACE toolset, version 1.0. There is no other
information of any 'i!ld within the data portion of
a CDS file.

* The auxtype of the file contains the playback rate
of the original file (per the standard DOC
frequency formula) AND the compression method
that was used to compress the file. The value
recorded in the auxtype for speed can range from
1 ($0001) through 999 ($03E7). The compression
method is recorded in the most significant bit (bit
15) where a 0 ($Oxxx) represents 8:4 compression
and a 1 ($8xxx) represents 8:3 compression. For
example:

auxtype Description

$0239 8: 4, 569 ($239)
playback speed

$8239 8:3, 569 ($239)
playback speed

$8070 8: 3, 112 ($70)
playback speed

Bits 10-14 in the auxtype are reserved and must be
set to zero.· These bits will be used when new
compression methods and options are introduced
with future versions of the ACE toolset.

EXPANDED sound files

Expanded sound files are identical sounding to
original files in every respect. Because of the
design of the ACE toolset and its compression and
expansion routines, however, the expanded data
will not be a bit-for-bit duplicate of the original
sound file.

Please foreword any questions or comments
regarding this standard to Joe Jaworski (GEnie
JVJAWORSKI, CompuServe 73307,310). Any
questions about the sample code should be
forwarded to Eric Mueller (GEnie A2PRO.ERIC).
Thank you.

The Applesoft Connection - And More
by Jerry Kindall

Part of Applesoft's flexibility comes from an
ability to extend the language with
machine-language subroutines, usually via the
CALL statement or the ampersand vector. One of
the things such subroutines need to be able to do
is to pass data to and from BASIC variables.

When I was developing MicroDot (a compact
ampersand-dri ven replacemen t for
BASIC.SYSTEM), I needed to learn how to make
my machine language routines communicate with
Applesoft. I hope that what I learned can help
you make more effective ampersand routines.

CHRGET & CHRGOT

Two small but extremely important Applesoft
subroutines reside in the Apple zero page.
Actually, it's just one routine with two entry
points. The first routine, CHRGET (address $B1),
advances the Applesoft program counter (known
as TXTPTR, at address $B8) and falls through into
CHRGOT (address $B7), which gets one character
from the program and sets several 6502 status
flags depending on what class the character
belongs to.

%e Sourceror s.9lpprentice

More Applesoft Xface

Vol. 1 No.1 Page 8

I

If the program counter is at the end of an
Applesoft statement (that is, if a colon or
end-of-line character has been read), the 6502's
zero flag will. be set on return from
CHRGETjCHRGOT. If the carry flag is clear, the
character read was a digit (zero through nine);
other characters leave the carry flag set.

Syntax Checks

At a slightly higher level than CHRGET &
CHRGOT are other routines which Applesoft uses
internally to perform syntax checks. One routine
that gets a lot of use in ampersand routines is
CHKCOM, at $DEBE. This routine checks the
current Applesoft program character (the one
pointed to by TXTPTR) and makes sure that it is a
comma. If a comma is not found, a ?SYNTAX
ERROR is issued; if the comma is there, CHRGET
is called to read the next character.

Closely related routines are CHKOPN ($DEBB)
and CHKCLS t$DEB8), which check for opening
and closing parentheses, respectively. CHKCOM,
CHKOPN, and CHKCLS all fall through into a
routine called SYNCHR, at $DECO, which checks
for the character in the Accumulator. Another
useful routine is ISLETC ($E07D) which checks
the character in the accumulator to see if it is a
letter, and returns with the carry set if it is, and
the carry clear if it is not.

Reading Appiesoft's Mind

The routines we've looked at so far are quite
useful in ampersand routines, but they won't help
you get at Applesoft variables. To do that, you
need different Applesoft routines. One of the
most useful is GETBYT, at $E6F8. This routine
evaluates the Applesoft expression at TXTPTR
and returns a byte value from zero to 255 in the X
register. If the value is outside that range, an
?ILLEGAL QUANTITY ERROR will be generated.

COMBYT, an almost identical routine, is at $E74C.
COMBYT calls CHKCOM first and then jumps to
GETBYT. It is functionally equivalent to JSR
CHKCOM followed by JSR GETBYT, but it saves a
statement. It is used quite frequently in
ampersand routines.

If you're working with hi-res graphics, you might
find HFNS ($F6B9) useful. This routine is used by
Applesoft's HPLOT command to parse an X-Y
coordinate pair. Upon return from this routine,
the Accumulator contains the Y coordinate, and
the X and Y registers contain the low and high
bytes of the X coordinate, respectively. HFNS will
automatically issue an ?ILLEGAL QUANTITY
error if the coordinates are ou·t of range, and it
also checks for the comma between the numbers.

It is worth mentioning, just in case it's not
obvious, that these routines evaluate not just
numbers or variables, but expressions, such as X +
2, SIN (Y), and so on. These routines will accept
any legal Applesoft numeric expression as long as
it evaluates to a legal value (such as 0-255 for
GETBYT).

FRMNUM and GETADR

FRMNUM ($DD67) is Applesoft's main numeric
expression parser. It evaluates the expression
pointed to by TXTPTR and leaves the result in
floating-point format in the FAC, the
Floating-point ACcumulator, at $9D-$A3. Unlike
the 6502's Accumulator, the FAC is operated on
not by hardware but by the floating-point math
routines built into Applesoft.

For assembly-language programmers, the
floating-point format is a little awkward to work
with, unless you are planning to use Applesoft's
math routines in your program. In any case, that's
quite another subject and an article all its own.
GETADR ($E752) is a rou tine that converts the
FAC to a two-byte integer value stored in
LINNUM ($50-$51), in the usual low-high format.
GETADR accepts signed and unsigned integers
from -65535 to 65535. (Other values will produce
an ?ILLEGAL QUANTITY ERROR.)

Use FRMNUM and GETADR as a team. First call
FRMNUM to get the value, then call GETADR to
convert it to a form you can work with easily.

Mind Control

How do we go the opposite way, passing values
back to an Applesoft program's variables? It's a
little more complicated than what we've looked at

Vol. 1 No.1 Page 9 rrhe Sourceror s!2Lpprentice

so far. To simplify things a little at first, we will
assume that you want to pass a value back into an
Applesoft floating-point (real) variable.

Passing a value back to a real variable is a
three-step process. First, find the memory
location of the variable. Then convert the number
to floating-point format. Finally, move the
variable to its proper place as determined in step
1. Here are some Applesoft routines you will find
helpful.

PTRGET ($DFE3): finds an Applesoft variable's
memory address and puts a pointer to the variable
in VARPNT ($83-$84). The variable's name is left
in VARNAM ($81-$82). It will work with any type
of variable, from an integer to an array element to
a string. > If the variable does not already exist,
PTRGET will create it for you.

CHKNUM ($DD6A): verifies that the most recent
variable found by PTRGET was a numeric
variable. Since PTRGET can find a string variable,
you should use CHKNUM to verify tha t the
ampersand command has a legitimate numeric
variable where one was supposed to be.

SNGFLT ($E301): converts the byte in the Y
register to an unsigned floating-point number in
the FAC

FLOAT ($EB93): converts the byte in the
Accumulator to a signed floating-point number in
the FAG. (Negative numbers should be in
two's-complement format.)

GIVAYF ($E2F2): converts the two-byte signed
integer in the Accumulator (low byte) and the Y
register (high byte) to its floating-point equivalent
in the FAG. (As with FLOAT, negative numbers
should be in two's-complement format.)

MOVMF ($EB2B): copy the floating-point number
in the FAC to the address pointed to by the X
register (low byte) and the Y register (high byte).

Integer Variables

Passing values back to integer variables is actually
simpler than working with real values. All you
need to do is find the variable, then move the
value into the variable. There's just one pitfall:
Applesoft integer variables are stored high-byte

first, while 6502 integers are typically stored
low-byte first. This means that you must reverse
the order of the bytes if you're passing back a
two-byte value. Remeber, also, that integer values
have a range of -32768 to 32767, so if you put a
large positive number into an integer variable, the
value will turn out negative.

Unsigned Two-Byte Values?

You may have noticed that Applesoft does not
have a built-in subroutine for converting an
unsigned two-byte value to an equivalent value in
the FAC This turned out to be a major stumper
when I was writing MicroDot, since I wanted to
pass a file's auxtype value (which is two bytes in
length) back to an Applesoft variable. If I used
GIVAYF, any numbers over $7FFF hex would be
returned as negative integers! I overcame this
tricky spot after careful study of the Applesoft
routines mentioned above.

To convel't an unsigned two-byte value to
floating-point format, you must first store the
desired value at FAC+1 and FAC+2 ($9E and $9F),
in the same backward order used with integer
variables (high byte first). Then you must set the
carry flag, load the X register with the number
$90, and call FL02 at $EBAO. This odd string of
events will lead to the desired floating-point value
being deposited in the FAC, ready to be moved
out to a real variable.

Here's how it would look as a section of
assembly-language code. The input parameters
are the same as used with GIYAYF, and, in fact,
this routine can be used as a direct substitute for
GIVAYF.

1 FAC $90
2 FL02 $EBAO
3
4 GIVAYF2 STY FAC+l
5 STA FAC+2
6 SEC
7 LOX #$90
8 JMP FL02

Error Handling

All of the routines mentioned so far, since they are
routines within Applesoft, can issue errors such as
?ILLEGAL QUANTITY ERROR or ?SYNTAX
ERROR. In other words, Applesoft handles the

rrhe Sourcerors .9Lpprentice

~ore j\pplesoft

Vol. 1 NO.1 Page 10

errors for you. You do not have to deal with these
errors because Applesoft will not return control to
your program if one of these errors occurs. (The
error will be printed on the screen, or passed to
the ONERR GOTO routine, as appropriate.)

You can also voluntarily give up control to
Applesoft's error handling if you discover
something wrong with the command syntax by
jumping to SYNERR ($DEC9) or ILQERR ($E199),
which issue SYNTAX and ILLEGAL QUANTITY
errors, respectively. If another error code wo~ld

be more useful, you can load the X register wIth
an Applesoft error code and jump to ERROR
($D412). Applesoft will take care of all the dirty
work for you.

Putting It All Together

Here are a couple of routines similar to ones I
used in MicroDot. GETNUM gets a number from
an Applesoft expression; PUTNUM and PUTBYT

return values to Applesoft variables. (PUTBYT
returns a single byte while PUTNUM returns an
unsigned two-byte value.)

There's a tricky part in lines 65 and 66. The
PUTNUM/PUTBYT routine is designed to work
with integer variables (if the number is greater
than 32767, it will be negative when returned to
an integer variable) or real variables (the number
will come through unsigned).

Lines 65 and 66 take advantage of the fact that
PTRGET puts the name of the variable into
VARNAM. It is an Applesoft convention to use
the high-order bits of the two-character variable
name to denote the variable's type. If the variable
is real, the high bits are both off (positive); if the
variable is integer, the high bits are both on
(negative). Since we have already established that
the variable is numeric with a call to CHKNUM,
we can simply test the first character of the
variable name. If it's positive, we know it's real
and so we bypass the integer-variable routine and
go to the real-variable routine.

** Routines by Jerry Kindall

* Gets a number into Acc (low) and X reg (high)
* If at end of Applesoft statement, r8turn zero

icheck current character

iFAC converted to integer

ivariab1e name
ivariable pointer
ifloating point accumulator

iget last character
iget numeric formula
i syntax check for comma
iget variable pointer
iconvert FAC to integer
imove FAC to variable
iconvert integer to real

$50

$81
$83
$9D

$B7
$DD67
$DEBE
$DFE3
$E752
$EB2B
$EBAO

JSR CHRGOTGETNUM

* The Applesoft Connection
* Passing Data Between BASIC & Machine Language

*

* Zero page locations:

* GETNUM routine

* Applesoft routines:

CHRGOT
FRMNUM
CHKCOM
PTRGET
GETADR
MOVMF
FL02

LINNUM

VARNAM
VARPNT
FAC

1
2
3
4
5
6
7
8

9
10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Vol. 1 No.1 Page 11 erne Sourcerors!Jlpprentice

*

*

i make sure we have a coinrna

iwe are at end of stat0ment

iget the number into ?AC

iconvert FAC to integer

iget the low byte into Acc
iand the high byte into X

iget the zero into Acc
iand to X also

icheck for required comma

iif first letter of name
i is postive, it's real

iget address of variable
imake sure it's numeric

istore high byte in FAC

: ZERO

FRMNUM
GETADR

LINNUM

LINNUM+1

CHKCOM

CHKCOM

PTRGET
CHKNUM

VARNAM
: REAL

BEQ

LDX #0

RTS

LDA
LDX

JSR

JSR

RTS

JSR
JSR

LDA #0
TAX

LDA
BPL

JSR
JSR

RTS

PLA
STA FAC+1

INY i store low byte in variable
PLA
STA (VARPNT),Y

* BYTPUT I NUMPUT routines

* On entry: X reg = high byte, Acc = low byte
* BYTPUT zeroes X register before proceeding

BYTPUT

* BYTPUT puts a single-byte value into a variable
* NUMPUT puts a two-byte unsigned integer into a variable

NUMPUT PHA
TXA
PHA

: ZERO

:INTEGER LDY #0 istore high byte in variable
PLA
STA (VARPNT) ,Y

: REAL

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65

66
67
68
69
70
71
72

73
74
75
76
77
78
79
80

%e Sourceror S.f2Lpprentice

Applesoft . ..

Vol. 1 No.1 Page 12 1
i~

81 PLA istore low byte in FAC
82 STA FAC+2
83
84 SEC iconvert it to floating
85 LDX #$90
86 JSR FL02
87
88 LDX VARPNT imove FAC to variable
89 LDY VARPNT+1
90 JMP MOVMF imove it out & return

Programming with Class 1

by Mohawk Man

Warning! Warning! The program associated with
the following article is not pretty! It is not user
friendly! And if you don't follow instructions, it
could FORMAT or ERASE your hard drive! Phew,
glad I got that off my chest.

When Apple released GS/OS last September, they
made sure the ProDOS 16 programs in use would
still work. There are two classes of MLI (Machine
Language Interface) calls in GS/OS. The first are
Class 0 calls, or the old ProDOS 16 calls. The new
ones are strictly for use with GS/OS and are
called Class 1, or GS/OS calls.

One of the nifty features of Class 1 calls is the way
that some of them "take over" your system when
you call them. By this, I mean they draw their own
dialog boxes, complete with menus, buttons, etc.
All you have to do is call them. This holds true
whether you're using a text screen or a SHR
screen. They adjust themselves accordingly.

We're going to program three different Class 1
calls this month. The first is transparent and the
other two will pop up and 'take over'. We'll be
using the text sceen for this to save on the amount
of source code we need to type. Our objective is to
erase or format a disk using GS/OS.

The first thing our program does is to start the
needed tools. And the only reason these tools are
started is to make Apple happy. And so that this

program will run should they ever change the GS
(don't hold your breath). Then the current text
screen globals are saved and init'ed anew. And
then we're into the program.

Shades of the lI+! Yes, press your CAPS LOCK
key down. To save on code (what? 3, 4 lines???) I
just check for capital letters at the keypress place.
When the program starts it looks for device
number one and prints the device name to the
screen if it finds it. Pressing the space bar will
toggle through all the devices on line.

Time for a knowledge break, boys and girls. A
device is a physical piece of equipment that
transfers information to or from the Apple lIGS.
This includes disk drives, printers, mice, the
keyboard, the screen, and more. Instead of
communicating with a device by slot and drive as
in the days of old, GS/OS just deals with device
names. It really doesn't care where the device is
located. A GS/OS device name begins with a
period and is 2 to 32 characters long.

Back to the program. While toggling through the
devices, you can hit F to format the current device
or E to erase it. Don't worry too much about
erasing your hard drive without knowing it.
When you hit E (or F) GS/OS takes over and puts
a dialog box on your screen. At this point you
have the option of specifying which FST (File
System Translator) you want the disk erased (or

Vol. 1 No.1 Page 13 erne Sourcerors !2tpprentice

formatted) with. You then press RETURN to
proceed with the operation or hit ESCAPE to
cancel. If you are using the Format option, you
also get the chance to specify which interleave you
want on your disk.

Just to be on the safe side, you may want to turn
off your hard drive while you play with the
program. (Editor: or use someone else's computer.)

lf you try to Erase or Format a non-block device,
the program will return an error. After all, if you
Format your printer today, you may regret it
tomorrow.

The program is fully commented, but I want to go
over a couple things that had me stumped.

First, if you pop a disk out of a drive and then try
to format or erase it, you'll get error $2F returned.
You'll never find that error code in any book
unless you have the "GS/OS Reference, Volume 1
Beta Draft" from APDA. This error translates to
"device off-line or no media present".

Second, I had a tough time getting the DInfo call
working because of preconceived notions about
parameter blocks. GS/OS parameter blocks all
start with a parameter count. This makes it easy to

add parameters to GS/OS calls should Apple
decide to do so in the future. All existing calls will
continue to work as they should and new
applications will be able to take advantage of any
new features.

Starting the parameter block with a parameter
count was not the stumbling block, though. The
second parameter (after the count parameter) of
DInfo is a long pointer to a result buffer where
GS/OS returns the device name. This buffer is not
just space for the name, as I first thought.

A GS/OS result buffer has three parts. First, a
buffer length word that tells the total length of the
buffer, including the buffer length word. Next is
the string length word that specifies the total
length of the string that follows. There are certain
situations when GS/OS will return an error telling
you that you have not set aside enough space for
the string you want returned. You need to get the
GS/OS Reference manual and read this section
very carefully! I worked literally for hours
without getting anywhere because I skimmed that
part of the manual and didn't stop to understand
it fully.

So, type in the program, run Macgen, and tryout
GS/OS Class 1 calls for yourself. Then go write
some 16-bit code!

;full 16-bit mode, thank you

;and now turn assembly back on

; turn off the assembly for a sec ...
;define this macro

o

%00

$EIOOA8
]1
]2

CLASSl.L
off
off
class1.macs

xc
xc
mx
rel
dsk
1st
exp
use

do
mac
jsl
da
adrl
eom
fin

1 ********************************
2 * PunkWare *
3 * Presents *
4 * *
5 * GS/OS Class 1 Call Examples *
6 * *
7 * Another Mohawk Man Creation *
8 * Written for *
9 * The Sourceror's Apprentice *

10 ********************************
11
12
13
14
15
16
17
18
19
20
21
22 GSOS
23
24
25
26
27

'The Sourcerors!2Lpprentice

Programming With Class 1

Vol. 1 NO.1 Page 14 (

*---

RadCode -TextWriteBlock #HipVerbage;#O;#HVEnd-HipVerbage

format

;number of parameters
idevice name to format
;new name for disk to be formatted
;result shows which FST was used to

;make the program bank = data bank
;start this for nothing except Apple's

;init the text input
;init the text output

;and this one, too
;save this for no good reason
;yeah, and this one <grumble grumble>
;gee, another???
;save globals on the stack
;we'll pull them off when we're done

3
devName+2
NewName
2

$202C
$2025
$2024

#FormatDisk;FormatParms
:rts ;Mr User pressed ESC from the dialog box
:rts i if the carry is set and A = 0
Error
RadCode

GSOS
bcc
beq
jsr
brl

-TextWriteBlock #devName;#4;devName+2

inc devNum ;point to the next device
jsr DeviceInfo; and get the device name

-MMStartUp
PullWord UserID
_TextStartUp
_IMStartUp
-GetInGlobals
-GetOutGlobals
-GetErrGlobals
-InitTextDev #0
-InitTextDev #1

phk
plb
_TLStartUp

*===
* format the current device

GetChar -ReadChar #0 ;get a char from the keyboard
pIa
and #$OOff ;strip off the useless high byte
cmp #" " ;was the space bar pressed?
beq RadCode ;ii so, look at the next device
cmp #"F" ;was the F key pressed?
beq Format ;ii so, Format the current device
cmp #"E" ;was the E key pressed?
beq Erase ;ii so, erase the current device
cmp #$9B ;was ESCAPE pressed?
bne GetChar ;if not, get another key from Mr User

:Quit jmp WeBeDone iESC was pressed so we're outta here!

: rts

FormatParms da
adrl
adrl
ds

Format

28
29 DInfo
30 EraseDisk =
31 FormatDisk =
32
33
34
35

say-so
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

Vol. 1 No.1 Page 15 %e SourcerorsYlpprentice

*---

*===

*===

* some hip verbage for people who read such stuff

list?

in erasure

to quit."

the dialog box
A = 0

"

itotal buffer length (weird GS/OS stuff!)
ispace for length word + device name

ilet's just go for the minimum parms
iwhich device to get info on
iPointer to result space for device name

ihave we hit the end of the device
iif not, check for another error
iif so, start over with device #1

and
i do the Dlnfo call again

inumber of parameters
iname of device to erase
inew name for disk after erasure
iresult shows which FST was used

"

35
33

Error
RadCode

2
o
devName

"GS/OS Class 1 Calls"
8d,8a,8a
"Hit spacebar to toggle the device. "
"Hit F to format, E to Erase, and ESC
8d,8a,8a
"Current device: "

, /BLANKDISK' ivery original new name for the disk

3
devName+2
NewName
2

#EraseDiskiEraseParms
:rts iMr User pressed ESC from
:rts i if the carry is set and
Error
RadCode

jsr
brl

da
ds

da
da
adrl

GSOS
bcc
beq
jsr
brl

strl

* erase the current device

* get device info

NewName

devName

:Not11

EraseParms da
adrl
adrl
ds

HipVerbage hex 8c
asc
asc
hex
asc
asc
hex
asc

HVEnd

Erase

:rts

DIParms
devNum

Devicelnfo GSOS #DlnfoiDIParms
bcc : 1
cmp #$11
bne :Not11
lda #1
sta devNum
bra Devicelnfo
rts

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109 : 1
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

%e Sourcerors .f2lpprentice

Class 1

Vol. 1 No.1 Page 16

*===

*===

All programs in THE APPRENTICE are in the public domain and
may be freely copied and distributed. Apple User Groups and
other important folks may reprint articles upon request. Just
gimme a call at 907/624-3161 or drop me a line at the address
below.

Copyright (C) 1988 by Ross W. Lambert
and Ariel Publishing, Inc.
All Rights Reserved

,.....----------------------()
'}>

irestore everything we messed up
iand then get outta here

Press any key to continue ... "

2

"

8d, 8a, 8a, 8a
"Error number #$"
4

SetErrGlobals
SetOutGlobals
SetInGlobals

ds

IMShutDown
TextShutDown

-MMShutDown Use rID
TLShutDown

_QUIT QuitParms

asc

ds

hex
asc
ds

sta TempA
-HexIt TempA iturn the error number into an integer
Pull Long ErrNum
-TextWriteBlock #ErrMsgi#Oi#ErrEnd-ErrMsg
-TextWriteBlock #ErrMsg2i#Oi#ErrEnd2-ErrMsg2
-ReadChar #0
pla
rts

QuitParms adrl $0
ds 2

UserID

ErrMsg

Error

ErrNum
ErrEnd
ErrMsg2
ErrEnd2
TempA

WeBeDone

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

Worldwide prices in US dollars effective January 1, 1989:
1 year...$28, 2 years ...$52, 3 years ...$72

Back issues are available at $3.00 each.

WARRANTY AND LIMITATION OF LIABILITY

I warrant that the information in THE APPRENTICE is correct and
useful to somebody somewhere. Any subscriber may ask for a full
refund of their last subscription payment at any time. MY
LIABILITY FOR ERRORS AND OMISSIONS IS LIMITED TOTHIS
PUBLICATION'S PURCHASE PRICE. In no case shall I or my
contributors be liable for any incidental or consequential
damages, nor for ANY damages in excess of the fees paid by a
subscriber.

Please direct all correspondence to:

...

__~_~~_:_;a_~0_~~_~~_~~_~~_:g_I~_sl_:a_c·_99_6_8_4_U_S_A \'_~j'/)THE APPRENTICE;, a pcod"" pf~,Uolt,ds..to, pi Am,'".

