Date:

Jan 31, 1989

Subject: Discovery Monitor ERS

Document Version Number: 00.05

Revision History

Neor Date

Draft !!! April 5, 88
00.01 Sept 21, 88
00.02 Oct 31, 88
00.03 Dec 02 ,88
00.04 Dec 21, 88
00.05 Jan 31, 89
Discovcl;y Monitor ERS

hanges or Additions

Alpha ROM release

Add in new vectors for setting system speed and slot arbitration.
More descriptions for step/trace. Add in 'Go’, display control and
registers display option commands for step/trace.

Error code for memory mover.

Go/Execute/Resume and Control_T commands explanations.

Enhance the stack management for doing single-step and trace in
emulation mode.

Change the step/trace ‘G or g’ option commands to 'J or j' option
commands.

Apple Confidential 1

Introduction
This document only describes the differences between the IIgs and Discovery system Monitor
firmware. See //gs firmware reference for details about the monitor.

DIt : Oigs and Di Moni

L. Enahnce the Monitor memory commands so that it can cross bank automatically.
I, Add in Step/Trace debugging functions.

III. Memory Mover.

IV. Change to NEWBELL routine.

V. More routines and vectors.

VI. Go/Execute/Resume and Control_T commands

VII. Miscellaneous addition and changes.

L s for viewing and modifui

(a) Display single memory location:

Syntax: {bank/address) Return, No change from Ilgs.

(b) Examining consecutive memory locations:

)

(d)

(e)

®

Syntax: (from_address).({to_address)
The difference from Ilgs is that you can specify the next higher bank address. It is not
limited to a specific bank but it is limited to the highest bank of $ff.

01/1000.03/£fff will display the memory contents from $1000 of bank $01 to $£Ff of bank
$03. You can terminate the display with Control-X as in IlIgs.

Terminate memory-range display:
Command: Control-X, No change from Il gs.

Modify consecutive memory:

Syntax: {destination):(val} {val) {"literal ASCII") {'flip ASCII'} {val}

The main difference from IIgs is that you can continue modify memory at the bank
boundary. When you reach the boundary of a bank, it will flip automatically to the
next higher bank and continue on.

01/fffe: 11 22 33 44 55 66 Return
It will modify fffe/ffff of bank $01 with 11 22 and 0000/0003 of bank $02 with 33 44 55
66.

Move data in memory:

Syntax: {destination)<(from_address).{to_address)M

If either the destination or source address crosses the bank boundary, then the firmware
will help to move across the bank and continue with the higher bank. It is assumed that the
source and destination blocks must not overlap.

Case 1. 02/1000<05/0000.ffff, cross bank occurs in destination memory blocks
Case 2. 02/1000<05/f000.06/£fff, cross bank occurs in source memory blocks
In either case, you don't have to worry about the bank crossing stuffs.

Verify memory contents:
Syntax: (destination}<{from_address}.{to_address v

Discovery Monitor ERS Apple Confidential 2

Same to Ilgs except it can verify across the bank.

(g) Fill memory (zap):
Syntax: {destination}<{from_address }.{to_address}Z
Same to IIgs except it can get across to higher bank.

(h) Pattern Search:
Syntax: \{val)\<{from_address).{to_address P
\'123¢')\ <{from_address).{to_address}P
\(listeral ASCII)\<{from_address}.{to_address P
\{val16 J\<{from_address).(to_address)P
Same to IIgs except it can search across the bank.

Discovery Monitor ERS Apple Confidential

IL. Single-Step and Trace Modes (Mini-Debugger)

The TRACEVECTOR, $¢10074-0077, and STEPVECTOR, $¢10078-007b are still availble for
external powerful step/trace routines. When invoking step/trace from the monitor, it will call
these vectors to check if there are any external routines, if the user's routine sets carry, the
monitor step/trace will be started.

You can step through your program one instruction at a time or continuously, with the Monitor
single-step and trace functons. Executing your program in this fashion gives you maximum
control over the process, allowing you to stop at any point and examine the contents of the
registers or your program'’s display.

In single-step mode, you can step through your program one instruction at a time. As each
instruction is executed, the registers, processor status and machine current states are displayed
after the instruction.

In trace mode, it will step through each instruction in succession; other than being free-running,
trace mode is identical to single-step mode. Use the following commands from the monitor
mode to initiate single-step and trace modes:

Command Action

Sors Enter single-step mode at the current instruction. The current instruction is the
last-opened location of K/PC register. The K/PC is updated each time an
instruction is executed in single-step or trace modes.

addressS ors Enter single-step mode at address address. The K/PC is set to address and the
instruction at address appears on the screen; press Space bar to execute it, or
press Return to enter trace mode.

Tort Enter trace mode at the current instruction (as indicated by the last-opened
K/PC location). It will continue to execute instructions until you press ESC
to stop it or until it reaches a BRK instruction.

addressT ort Enter trace mode at address address. The K/PC is set to address and the
instruction at address appears on the scren; it will continue to execute
instruction until you press ESC to stop or until it reaches a BRK instruction.

Once you are in either single-step or trace mode, you can use any of the following keypress
commands.

Command Action

Esc Terminate trace or single-step mode and return to the monitor *.

Space bar Single-step one instruction.

Return Start continuous tracing.

Rorr Trace until the next RTS, RTI, or RTL. This command allows you to trace

through one subroutine at a time.

Xorx If the current instruction (the next to be executed) is a JSR or JSL, execute in
real time until the matching RTS or RTL that returns to the following
instruction. If the next instruction is not JSR or JSL, this command is
ignored.

Discovery Monitor ERS Appic Confidential 4

Jorj Jump to the code at the current K/PC. Before execution, the screen display is
restored is restored depends upon the new display mode byte set by the user.
In default, it is set to text page 1 and if real BRK has occurred, then the display
mode where BRK occurred will be stored to this mode byte and used to restore
if 'J' or 'j' is executed.

Ooro Toggle the registers display on and off following execution of each instruction.

Skip to the next instruction - do not execute current instruction.

<-- Change to the slow trace rate.

-> Change to the fast trace rate.

Tort Change the display to text mode.

Morm Change the display to mixed text and graphics mode.
Lorl Change the display to low-resolution graphics mode.
Horh Change the display to high-resolution graphics mode.
Dord Change the display to double high/low-resolution mode.
Sors Change the display to super higi-resolution graphic mode.

Executing code

Code can be executed in trace and single-step modes. In both modes, the code is displayed in
the disassembly as it is being executed. The current instruction (the one that is about to be
executed) is displayed first and when executed, the results may be shown in the next line
depending upon the option command, O or o, and following the display of the next instruction
to be executed.

If, while in trace or singl-step mode, a BRK is met then it will stay at the BRK and make a beep
and force to display the registers contents. At this point, one can either skip this BRK with
down arrow key or ESC to terminate the trace or single-step.

Both tracing and single-stepping recognize two PRODOS entry points. These are PRODOS 8
Machine Language Interface (MLI) entry point, $00bf00 and the PRODOS 16 entry point at
$¢100a8. Whenever these calls are met, the trace and single-step will adjust the user's
program counter and point to the next opcode following the the PRODOS call and continue on.
It doesn't whether these PRODOS calls are executed in real time (command 'x")or not but it is
suggested to execute in real time since most of these calls are related to device input/output.

While tracing or single-step and it hits the end of the screen, code will continuously scroll up.

CAUTION: (1) Stack Usage
The mini-debugger uses the page 1 stack space and adjusts the user's stack space
to $017f if the user stack space is in the range of $0180 to $O1ff. If the user
stack pointer is below $0110 then the single-step or trace mode would'nt be
invoked and quit back to the monitor. The user can set the stack pointer with the
monitor command, {val}=S.

Discovery Monitor ERS Apple Confidential 5

If the users program run in native mode and having the stack out of the
regular page 1 stack space, then there is no adjustment to the user stack space.

If, while in trace or single-step mode, a program causes the stack pointer to be 16
bytes to the end (or say $010f-$0100) of the regular stack (page 1 stack area),
execution of the code will be immediately halted and the mini-debugger returns
back to the monitor. To continue operation, the user must change the value of the
stack pointer so that it is outside of the mini-debugger stack range

If, while in trace or single-step and real time code execution ('X'or 'x' for JSx
routine, 'J' or ‘j' for jumping to the users' k/pc) and a deliberate 'BRK' is
executed. It breaks to the monitor and would like to continue on the trace or
single-step, if the program is using the page 1 stack space and the stack pointer
falls within the ranges described above, then the stack point is not real because it
is being adjusted.

The above limitations only apply to those users who stack space is also in the
regular stack space of the monitor.

(2) Absolute zero page

Since the monitor trace and single-step or mini-debugger uses absolute zero page
extensively, therefore the programs that also use the absolute zero page can
hardly use the mini-debugger to do the debugging, especially those locations
defined for monitor to be used.

Example:
Get to the monitor and say there is a small program resided at 00/300 shown below

00/300: CLC ;Clear carry

00/301: XCE ;Set to native mode
00/302: REP #%30 ;16-bit m/x

00/304: LDA #3%3344 :load 'a' with $3344
00/307: PHA ;save 'a' to stack
00/308: PLY

Then with single-stepping, the screen will display as follow:

*00/300s pping play

Step

00/300: 18 CLC

A=0000 X=0000 Y=0000 S=0173 D=0000 P=30 B=00 K=00 M=0C Q=9E L=1 m=1 x=1 e=1

00/301: FB XCE

A=0000 X=0000 Y=0000 S=0173 D=0000 P=31 B=00 K=00 M=0C Q=9E L=1 m=1 x=1 e=0

00/302: C2 30 REP #30

A=0000 X=0000 Y=0000 S=0173 D=0000 P=01B=00 K=00 M=0C Q=9E L=1 m=0 x=0 e=0

00/304: A944 33 LDA #3344

30=3/3(3);44)§=0000 Y=0000 S=0173 D=0000 P=01 B=00 K=00 M=0C Q=9E L=1 m=0 x=0 e=0
: PHA

OAO=/(3)8207§=0000 Y=0000 S=0171 D=0000 P=01 B=00 K=00 M=0C Q=9E L=1 m=0 x=0 e=0
: PLY

A=0000 X=0000 Y=3344 $=0173 D=0000 P=01 B=00 K=00 M=0C Q=9E L=1 m=0 x=0 e=0

Discovery Monitor ERS Apple Confidentiz! 6

II1. Memory Mover with vector at $E10200-0203

Memory Mover moves a block of data from a source location to a destination location.
The following sequences need to be set up first for using memory mover:

On entry:

1. Place machine in full native mode (e=0, m=0, x=0)
2. Push high order word of source pointer onto stack

3. Push low order word of source pointer

4. Push high order word of destination pointer

5. Push low order word of destination pointer

6. Push high order word of transfer count

7. Push low order word of transfer count

8. Push command byte, explain below

9. Call through memory mover vector, jsl $e¢10200

Memory Mover command byte:

151413 12 11

109876543210

bits 15/14
bits 13/12/11

bits 10/9/8/7
bits 6/5/4
bits 3/2
bits 1/0
On exit:
If no error then a=$0000 and c=0
If error occurred then

a=error code, $ffff, parameters range error

c=1

reserved

move mode

000 => reserved
001 => block move
010-111=> reserved
reserved

reserved

destination incrementer

00 (+0) => constant destination

01 (+1) => increment destination by 1
10(-1) => decrement destination by 1
11 => reserved

source incrementer

00 (+0) => constant source

01 (+1) => increment source by 1

10 (-1) => decrement source by 1

11 => reserved

Data bank and direct register are preserved while x.y are scrambled.

Discovery Monitor ERS

Apple Confidential

IV. Change 1o NEWBELL

If sound volume is set to zero, then the border color would flash instead of bell.

V. More New Vectors

VL

1.

$E10204-0207, TOSETSPEED

This vector points to a routine that sets the system speed in preparation for calling a speed
dependent device driver. Speed settings are in the least significant two bits of the ‘A"
defined as follows:

'‘A' = xxxxxx00 1.0 mhz
xxxxxx01 2.6 mhz
xxxxxx10 >2.6 mhz
xxxxxx11 not speed dependent (no change)

Entry: via a 'JSL' and must be in 16 bit m/x native mode.
Exit: 'A" = speed prior to requested change, no change to processor status, 'p'.

$E10208-020B, SLTARBITER

This vector points to a routine that checks that a requested slot selection is valid. If so, the
requested slot is selected and the appropriate screen holes are copied in prior to passing
control back to the calling routine.

Entry:
via a 'JSL' and must be in 16 bit m/x native mode.
'A' = requested slot

Exit:
If no error then a=$0000 and c=0, slot was granted
If error then a=error code, $0010, slot not found and c=1

Note: No dynamic slot selection at this time but could be in future.

Go/Execute/Resume and Control_T commands

The monitor G/X/R commands are fully working no matter interrupt is on or off.

During a G/X command and a deliberate 'BRK' is hit, it can be resumed with the resume
command, R.

During the 'BRK, the screen display 1/0 soft switches are stored and force to text page 1
display mode. When a resume is made, the screen display I/O switches are restored to the
modes where 'BRK' occurred.

The Control _T command in original //gs is modified to flip between the text page 1 and the
display where '‘BRK' occurred. In //gs, it always force to text page 1 mode.

Discovery Monitor ERS Apple Confidential 8

VII. Miscellaneous addition and changes.
1. Boot code and initialization, init vectors, set up AppleTalk
Mouse Firmware, include $c400 and bank $ff mouse firmware
Alternate Text Page2 shadowing, hardware for Discovery and software for //gs.
Interrupt handler changes for hardware text page2 shadowing bit, Midi interrupt polling

More batteryram parameters checking

(Bsngzgx: return of 6502 instruction length ($f88¢), clear screen and display Applellgs logo
).

- A new option flag, d, for disassembly has been added, when d=1 then the disassembly will
not change the mode even though there is a mode change (m/x) with the instruction,
REP/SEP. When d=0, then the disassembly will change mode in accordance with the new
mode being set by the REP/SEP in the program.

S v AL

~3

00

. Change Video Display mode, V
Changes video display mode 1/O soft switches to {val} for Resume/Step or Trace 'J/ }
commands.
If any ‘BRK' occurred, then the video display mode or screen display mode /O soft
switches is saved to this value and therefore it provides a good way to resume to the
previous mode. Normally, it is not necessary for the users to set this value if there is a
deliberate BRK in the program for debugging. But in some cases, a BRK has been
occurred before but the pre-stored screen display mode is not the one going to be used for
the current RESUME/Step or Trace 'J'/j' commnads.

During power up or reset, it sets to default as text page 1 mode which is $40.
(val}=V

where val = bit7 - bit0 and defined as follows:
bit7: 1/0 = super high resolution on/off

bit6: 1/0 = text/graphic

bit5: 1/0 = mixed mode on/off

bit4: 1/0 = high resolution/low resolution

bit3: 1/0 = text page 2/text page 0

bit2: reserved, fill with 0

bitl: reserved, fill with 0

bit0: reserved, fill with 0

Examples: setting text page 1, then $40=V
setting super hi-res then $80=V

9. 'BRK' execution: When a BRK is executed, it not only services this software BRK
interrupt but also preserves the screen display i/o soft switches states (but not the screen
image itself) and also the user's stack pointer (display on the screen at s=xxxx) before the
BRK occurred. Then, it forces to text page 1 and displays the registers and machine states.
In doing this, the user will always get to the text mode when BRK occurred and if a
RESUME command, R, is executed, it will also switch back the user'’s screen display
mode.

Also, the display of the stack pointer on the screen is the user's actual stack pointer before
the BRK occurred.
After the BRK, the user can also continue debugging the program with the mini-debugger

Discovery Monitor ERS Apple Confidential 9

single-step and trace. If a'J'or 'j' is invoked during single-step or trace, then it will also

resume the screen display mode.
The screen display mode can also be set deliberately by the monitor new command, val=V

where V stands for video mode and must be uppercase.

Discovery Monitor ERS Apple Confidential 10

