A-2

Alpha Draft 6/10/86

Appendix A

Writing Your Own Tool Set

Overview

The Tool Locator System is so flexible that you can write their own tool sets to use in
your applications. The Tool Locator System supports both System Tools and User
Tools. ’

There are some factors which you must consider when writing your own tool set:
8 Tool sets must use Full Native mode.

B Work space must be dynamically assigned. New tool sets should not use any
fixed RAM locations for work space, but must obtain work space from the
Memory Manager. This avoids memory conflicts such as those caused by fixed
usage of "screen holes.” A limited set of exceptions to this rule will be published
in the final release of this manual.

8 A simple interrupt environment must be provided. All new functions must

" either be reentrant or must disable interrupts during execution. Because each
approach has significant costs, the designer must consider this decision very
carefully. Most functions, especially those that execute in less than SO0us, will
probably choose to disable interrupts. More time-consuming functions should
probably also choose to disable interrupts, especially if they are executed
rarely. '

B Routines must restore the caller's execution environment before returning
control to the caller.

B Routines may not assume the presence of any operating system unless the
operating system is directly relevant; for example, a routine that reads or writes
a file, where other considerations demand that the file type be known anyway.

Structure of the Tool Locator

The Tool Locator requires no fixed ROM locations and a few fixed RAM locations.
All functions are accessed through the tool locator via their tool set number and
function number. The Tool Locator uses the tool set number to find an entry in the
Tool Pointer Table (TPT). This table contains pointers to Function Pointer Tables
(FPT). Each tool set has an FPT containing pointers to the individual routines in the
tool. The Tool Locator uses the function number to find the address of the routine
being called.

Each tool in ROM has an FPT in ROM. There is also 2 TPT in ROM pointing to all the
FPT's in ROM. One fixed RAM location is used to point to this TPT in ROM. This
location is initialized at power up and warm boot by the firmware. In this way the
address of the TPT in ROM does not ever have 1o be fixed.

The TPT has the foilowing form:

Writing Your Own Tool Set A-3

Table X-X: Tool Pointer Table Structure

Count (4 bytes) Number of tool sets plus one
Pointer to TS 1 FPT (4 bytes) Pointer 1o Function Pointer Table for TSNum 1

Pointer to TS 2 FPT (4 bytes) Pointer 10 Function Pointer Table for TSNum 2

A Function Pointer Table has the following form:

Table X-X: Funection Pointer Table Structure

Count (4 bytes) Number of routines plus cne

Address of F1 -1 (4 bytes) Pointer to0 Bootlnit routine minus one

Address of F2-1 (4 bytes) Pointer to Startup routine minus one

Address of F3 - 1 (4 bytes) Pointer to Shutdown routine minus one
Address of F4 -1 (4 bytes) Pointer to Version routine minus one

Address of F5 - 1 (4 bytes) Pointer to Reset routine minus one

Address of F6 -1 (4 bytes) Pointer to reserved routine minus one

Address of F7 - 1 (4 bytes) Pointer to reserved routine minus one

Address of F8 - 1 (4 bytes) Pointer to reserved routine minus one

Address of F9 - 1 (4 bytes) Pointer to first non-required routine minus one

Tool Set Numbers and Function Numbers

Each tool is assigned 2 permanent tool number. Assignment starts at one and
continues with each successive integer.

Each function within 2 tool set is assigned a permanent function number. For the
functions within each tool, assignment starts at one and continues with each
successive integer. Thus, each function has a unique, permanent identifier of the
form (TSNum,FuncNum). Both the TSNum and FuncNum are 8-bit numbers.

" The Tool Set numbers assigned to the Apple tools are as follows:

Table X-X: Tool Set Numbers

TSNum Tool Set

1 Tool Locator

2 Memory Manager

3 Miscellaneous. Tools
4 QuickDraw I

A-4 Alpha Dratft 6/10/86

Desk Manager
Event Manager
Scheduier
" Sound Manager
Apple Deskiop Bus Tools
0 SANE

—\D 00~ O

For each tool, certain standard calls must be present. Each tool must have a boot
initialization function that is executed at boot ime by either the ROM startup code or
when the tool is installed in the system. In addition, each tcol has an application
startup function, an application shutdown function to allow an application to um
each tool "on" and "off*, and a version call that retums information about the
version of the tool.

All tools must return version information in the form of a word. The high byte of the
word indicates the major release number (starting with 1). The low byte of the word
indicates the minor release number (starting with 0). The most significant bit of the
word indicates whether the code is an official release or a prototype (no distinction is
made between alpha, beta, or other prototype releases).

The standard calls are summarized in the following table:

Table X<X: Required Tool Calls

FuneNum Deseriptions

Boot initialization function for each tool
Application startup function for each tool
Application shutdown function for each tool
Version - information

Reset

Reserved for future use

Reserved for futre use

Reserved for future use

00 ~§ N B R e

Obtaining Memory

Tools are to obtain any memory they need dynamically (using as little fixed memory
as possible) through the Memory Manager. In order to do that, a tool needs some
way to find out the location of its data structures. The Tool Locator maintains a table
of work area pointers for the individual tools. The Work Area Pointer Table (WAPT)
is a table of pointers to the work areas of individual tools.)

Writing Your Own Tool Set

A-S

Each tool will have an entry in the WAPT for its own use. Entries are assigned by tool
set number (tool four has entry four and so on). A pointer to the WAPT must be kept
in' RAM at a fixed memory location so that space for the table can be allocated

dynarnically, At firmware initialization time, the pointer to the WAPT is set to zero.

The Tool Locator system permanenty reserves some space in bank $E1 for the
following purposes:

Table X-X: Tool Locater Permanent Ram Space (Bank E1)

(4 bytes) Pointer to the active TPT. The pointer is to the ROM-based TPT
if there are no RAM-based tool sets and no RAM-based ROM
patches. Otherwise, it will point to 2 RAM-based TPT.

(4 bytes) Pointer to the active user's TPT. This pointer is zero initially,
indicating that no user tools are present.
(4 bytes) Pointer to the Work Area Pointer Table (WAPT), The WAPT

parallels the TPT. Each WAPT enuy is 2 pointer to a2 work area
assigned to the corresponding tool set. At startup time, each
WAPT entry is set {o zero, indicating no assigned work area.
(4 bytes) Pointer to the user's Work Area Pointer Table CWAPT).
(16 bytes) Entry points to the dispatcher.

This is the only RAM permanently reserved by the tool locator system.

Tool Locator System Initialization

Each tool set must be initialized before use by application programs. Two types of
initialization are needed: boot initialization and application initialization. Boot
initialization occurs at system startup time (boot time); regardless of the applications
1o be executed, the system calls the boot initialization function of every tool set.
Thus, each tool set must have a boot initialization routine (FuncNum = 1), even if it
does nothing. This function has no input or output parameters.

Application initialization occurs during application execution. The application calls
the application startup function (FuneNum=2) of each tool set that it will use. The
application starup function performs the chores needed to start up the tool set so

the application can use it. This function may have inputs and outputs, as defined by
the individual tool set.

The applicadon shutdown funcion (FuncNum=3) should be executed as soon as the
application no longer needs to use the tcol. The shutdown releases the resources
used by the ool. As a precaution against applications that forget to execute the
shutdown function, the startup function should either execute the shutdown function
itself or do something eise to assure 2 reasonable startup state.

A Alpha Draft 6/10/86

The provision of two initialization times reflects the needs of currently envisioned
tools. For example, the Memory Manager requires boot time initialization because it
must operate properly even before any application has been loaded. On the other
hand, SANE needs to be initialized only if the system executes some application or
desk accessory that uses it. Initializing only the tool sets that will be used saves
resources, particularly RAM.

Disk and RAM Structure of Tools

This section will eventually discuss additional details of dynamically loaded, RAM-
based tool sets. The exact form of tools on disk is undecided at this time.

Installing Your Tool Set -

Before you make any calls to your own tool set, you have 1o install your tool into the
system. You do this by calling the tool locator function SetTSPtr. SetTSPir takes
three inputs on the stack as follows:

Stack Before SetTSPir

When SetTSPr is called, your tool is installed in the system and its boot initialization
function call is executed. The following example illustrates the installation:

A Tool Set Instailation Exampie

Wiiting Your Own Tool Set

previous contents
systemoruser Word specifying the tool as either a system ($0000) or user ($8000) tool.
TSNumber Word specifying tool set number of the tool set whose pointer is to be set.
FPTprr Pointer to the Function Pointer Table for the tool.
& SP

A-7

R S e e e R P R PR e = e TR e T R S s e NS R e S T E e RS e a S n e = == -

Install START

cle ; switch to full native mode and
xce ; save initial state

php

rep #3530 ; 16 bit registers

PushWord $8000
PushWord #$23
PushlLong #CallTable
_SetcTSPtr

signal a user tool
Put the tool number on the stack
Point te call table

~ wa v

ple
Xxce
Tts

restore machine state

~

END

o s 0 s s s i i 3 D D) 0 D D D > D T D D T D D S D D R D P TN e D D D D D D D D S e st

CallTable START
long (TheEad=CallTable) /4

long MyBéotIni:-l
long MyStartUp-—l
long MyShutDown-1
long MyVersion-1l
long MyReset-1
long NotImp-1
long NotImp=1
long Notlmp=1

long Firstfunc-~-l
long Last:F_unc-l

TheEND 5

END

A-8 Alpha Draft 6/10/86

MyBootlInit START ; called when installed

lda #0

MyStartlp START user passes me the loc to use in

H
; bank zero as word.

RTL1 equ 1
RTL2 equ RTL1+3
ZPToUse equ RTL2+3

lda ZPToUse,s ; get users value

pea $8000
pea $23
pea 0

pha
_SetWAP

user call 0
tool set number

high word is zero

low word Lls user's value

set it

. we wa we ve

lda #0
cle
rel

END

Writing Your Own Tool Set A-9

MyShutDown START

cnmp #0
beg nevermind

|
1
|
5
l
pea $8000 ; clear out the WAPT entry k
pea $23 !
pea 0 .)
pea 0

_SetWAP w

nevermind lda #0
cle
rel

MyVersion START |
TL1 equ 1 l

RTL2 agqu RTL1l+3

VerNum equ RTL2+3 \

lda #$90 ; version 1,0 prototype
sta VerNum, s

lda #0 |
cle
rel

END

D D 0 Dy D T D D s D D T D D D D D D D D D D D R A P D Y T A O Dt T) Y D D D A D D D) -

A-10 Alpha Dratt 6/10/86

FirstFunc START

Lastfune START

~

;The long directive.deposits a_ 4-byte value in memory low bytes first
;The PushWord macro pushes a word onto the stack (either from a memc:y
location or with a pea instruction if & is used) .
The Pushlong macro pushes a long on the stack (either from memory
or with two pea instructions if ¢ is used).

Function Execution Environment

When your function is called, the machine is in full native mode and the following
three registers are set with specific information to make the function's job easier:

B A-Reg low word of entry in WAPT for tool
8 Y-Reg high word of entry in WAPT for tool
8 X-Reg Function number and Tool number

When the function is called, the stack looks like this:

Writing Your Own Tool Set

previous contents

callrel

rel

€~ SP

A-12 Alpha Oratft 6/10/86

Appendix B

Error Codes

B-2 Alpha Draft 6/10/86

No Errors

$0000 in accumulator and carry flag not set.

System Death Codes

$0001 ProDOS'16 - Unclaimed interrupt

30004 Divide by zero

$000A ProDOS'16 - Volume Control Block unusable
S000B ProDOS'16 - File Control Block unusable
$000C ProDOS'16 - Block zero allocated illegally
$000D ProDOS'16 - Interrupt with /O shadowing off
30015 : Segment Loader error

$0017-24 Can't load a package

$0025 Out of memory

$0026 Segment Loader error

$0027 File map trashed

$0028 Stack overflow error

$0030 Please insert disk (file manager alert)
$0032-53 Memory manager error

$0100 Can't mount system startup volume

Memory Manager Error Codes

$0201 Memory full error.

$0202 Illegal operation on a NIL handle.

$0203 NIL handle expected for this operation.

$0204 lllegal operation on a locked or immovable block.
$0205 Attempt to purge an unpurgeable block.

$0206 Invalid handle given.

$0207 Invalid owner [D given.

Miscellaneous Tool Set Error Codes

50301 Bad Input Parameter.

Eror Codes

$0302
$0303
$0304
$0305

$0306
$0307
$0308
$0309
$030A
. §030B

No Device for [nput Parameter.

Task is already in Heartbeat queue.

No signature in task header was detected during insert or delete.
Damaged queue was detected during insert or delete.

Task was not found during delete.

Firmware task was unsuccessful.

Detected damaged HeartBeat Queue. -
Attemnpted dispatch to a device that is not connected.
Undefined.

D tag not available.

Event Manager Error Codes

$0601
$0602
$0603
$0604
$0605
$0606
$0607

$0681
$0682

Duplicate EMStartUp call

Reset Error.

Event Manager not active.

[llegal event code.

lllegal button number.

Queue size too large.

Not enough memory available for queue.

Fatal system error - event queue damaged.
Fatal system error - queue handle damaged.

Sound Manager Error Codes

50804
$0810
$0812
$0813

50814
$0815
$0817
$0818

DOC address range error.
No DCC chip found

NO SoundStartup call made
Invalid generator number

Synthesizer mode error
Generator busy

Master [RQ not assigned
Sound tools aiready started

Integer Math Tool Set Error Codes

S0BO1

8-4

Bad input parameter

Alpha Draft 6/10/86

S0BO2
$0B0O3
$0B04

Illegal character in string
Integer or Long Integer overflow
String overflow

Text Tool Set Error Codes

$0C01

$0C02
$0C03
$0C04
$0C05
$0C06
$0C07
$0Co8
$0C09

$0C0A
$0COB
$0C0C
$0COD
$OCOE
$OCOF

$0C10
$0C40

lllegal device type.
Note: the following errors should oceur only for Pascal Devices

Illegal device number.

Bad mode: illegal operation.

Undefined hardware error.

Lost device: device is no longer on-line,

Lost file: file is no longer in the diskette directory.
Bad tide: illegal filename.

No room: insufficient space on the specified diskette,
No device: the specified volume is not on-line,

No file: the specified file is not in the directory of the specified
volume.

Duplicate file: attempt to rewrite a file when a file of that name
already exists.

Not closed: atempt to open an already-open file.

Not open: azempt to access 2 closed file.

Bad format: error in reading real or integer.

Ring buffer overflow: characters are arriving faster than the input
buffer can accept them.

Write-protect error: the specified diskette is write-protected.
Device error: failed to complete 2 read or write correctly.

Error Codes

