
APPLE//e TECHNOTE #1

Revision of notes on the Apple//e Dec 82*
5-July 84

This technote explains the difference between the Apple//e and Apple] [+.
It also provides a quick reference for the softswitches and makes some
programming suggestions.

For further information contact:
PCS Developer Technical Support
M/S 22w. Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is licensed "as is".
The entire risk as to its quality and performance is with the vendor. Should
the programs prove defective folowing their purchase, the vendor (and not
Apple Computer, Inc.~ its distributor, or its retailer) assumes the entire
cost of all necessary servicing, repair, or correction and any incidental or
consequential damages. In no event will Apple Computer, Inc. be liable for
direct, indirect, incidental, or consequential damages resulting from any
defect in the software, even if Apple Computer, Inc. has been advised of the
possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or consequential
damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenu~

Cupertino, CA 95014
Notice

Apple Computer, Inc. reserves the right to make improvements in the product
described in this document at any time and without notice.

TECHNICAL OVERVIEW OF THE APPLE lIe

This document is designed for software developers who have some
familiarity with the Apple II. Its function is to provide a quick overview of
technical information that may affect software design and to a lesser extent
hardware design. It is by no means a complete description of the Apple lIe as
the manuals provided with the product serve this purpose. An effort has been
made to extract from the manuals information that is not obvious. An effort
has also been made to point out potential problems resulting from the new
design and, where appropriate, to give suggestions on how to avoid the problems.

GENERAL:

1. Full ASCII keyboard with auto-repeat feature, alpha lock and Apple
keys.

2. Custom-ICs are used for memory management and I/O control thereby
reducing chip count.

3. The language card and slot a have been replaced by built in (look alike)
RAM called bank-switched memory.

4. An additional slot has been added. It is called the auxiliary slot.
This slot has several functions:
a. It is tlsedfor testing and diagnos ti.cs.
b. It serves as the slot for the ao column card (logically it is mapped

as being in slot 3 - $C300).
c. It serves as the slot for the ao column / 64K ram card.

5. The back panel is designed for .odirect mounting of DB-9, DB--19 and DB-25
connecto.rs •.. This feature allows peripherals to.be attached to the back
of the Apple lIe rather than to the. peripheral cards.

6. It 109ks like an Apple II.

7 • In addition to an introductory booklE!.t ,t;he APPLE. lIe OWNER' S manual,
there is an. APPr.E lIE! ap..COLUMN..TEXT GoARD manual, an EXTENDED ao
CbL1JMN TEXTc.AIID SUPJ?I".EME~T ,an.ci an A1:'rLElIe RE.FERENGE manual. Also new
revisioIUiof.the APPL.ESOFT TU'l'0R:rAI.' DOS. anc.iAPPLESOFT REFERENCE manuals
have been written..Additi.0nal .documentation such as A GUIDE TO THE NEW
FEATURES OF THE APPLE lIe COMPUTER and Technical Support handouts
have been developed.

a. Apples.oft luisnot been changed at all. Integer BASIC can still be used;
it must be loaded into the bank-switched memory (language card).

9. The Autostart ROM has been replaced by a new ROM capable of supporting
80 columns. 'l11e autos tart entry points have been maintained.

10. The Apple lIe with °its auxiliary card functions like an Apple II plus
with a language card, upper and lowercase. capability and an 80 column
card. This means that software and hardware which would operate

TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 3

improperly in 'an Apple II plus equipped with these features will
probably operate improperly in an Apple lIe. NOTE: the Apple lIe will
shift to upper case only if the Alpha Lock key is pressed down.

KEYBOARD:

1. All ASCII code-generating key,s. will start repeating if held down for
more than half a second.
a. If another key is momentarily pressed while a key is repeating, the

new key will begin to repeat.
b. Since the escape key repeats, care must be taken when using it. In a

series of escapes every other escape cancels the effect of the
previous escape.

2. ASCII codes
a. The delete key issues the ASCII code 127 (DEL). In immediate mode a

checkerboard is displayed to signify that this key has been pressed.
b. Up arrow key code is 11, down arrow key code is 10, tab key code is

9.

c. Pascal 1.1 was designed to funcion with the Apple II ~eyboard.

therefore has some keyboard related differences when run on the
lIe. For example, if the up arrow key is pressed while running
Pascal 1.1 without the 80 column firmware active a [will be
displayed. Another such difference results in the user needing
press shift-2 in order to generate the @sign. On the Apple II
@key was obtained by pressing shift-p.

It
Apple

to
the

NOTE: BASIC still adds 128 to its ASCII codes to signify a keypress.

3. Open & Closed Apple keys
a. They do ..not modify·· or. geI1erateASCII .codes.
b. They cannot be detected by looking at.$COOOthe ri6tmal keypress method.
c. They are connected directly to the game push buttons. Their key press

can be detected by looking for a game push buttonbei~g pr~~>sed.

Their presence means there are always game push buttons. This will
cause problems for games. that determine thattherearegam.e
paddles by the presence of push ful.ttons.. If..ajQy>stickisconnected
to the Apple I IE! and it has .away~flocl(ing down .one o~ thE!. fult tons
or tift. is. of thE! Atarittpe, .. whtch ... hasreverse .g~.larity, then when
the computer i.s turned on o.r.c.ontrol-resetis prE!ssed the. 9ompu~er
detects what appears .to .be an Apple key beIng pressed and so goes
through diagnostics each tfme reset is pressed.

d. In combination with control-reset
1. Open Apple does a cold start after scrambling sev~ral bytes of

RAM. This combination of key presse.s replaces the ' give up and
start allover again' key (power switch). It can also substitute
for PRil6 with the added advantage that. if 80 column firmware
is active it will be properly dlsconnected. PRtl6 disconnects
the 80 column firmware but leaves the 80 column hardware enabled
resulting in improper functioning of the text screen.

2. Closed Apple sends the computer through an onboard diagnostics
test used during production testing. ,This is only a partial

TECHNICAL OVERVIEW OF THE APPLE !Ie PAGE 4

diagnos tic.
3. Pressing both Apple keys results in the diagnostic test being

run with output to the speaker.

NOTE: After the diagnostics test has successfully been completed
the rather non-informative message "kernel OK" is given. This
message means that the diagnostics are completed and that no problems
were found. Press reset to reboot the system.

4. The Caps lock key must be down to create the upper case letters
needed for BASIC and DOS commands. BASIC permits lower case letters
within quotes. When 80 column firmware is active a restrict mode may
be selected that will automatically shift anything outsid~ double
quotation marks to upper case. Restrict mode is entered by typing PR#3
then escape~ollowed by R.

5. The ~RROW keys in combination with ESCAPE function in the same way as I,J,
K & M. NOTE:, If you want to use an ARROW key to copy something frolI1 the
screen after' escaping' to that line press. some other key to deactivate
the escape mode prior to using the arrow key otherwise you will just
continue escaping and will not do any copying.

6. The shift key mod may be duplicated by soldering a 500 ohm resister
across the logic board connector at X6 ••
NOTE: the warranty is voided by doing this.

7. Integer BASIC was not designed to recognize the full set of ASCII
characters so some. of the keys on the Appl~ lIe that are not onth~

Apple II plus may do •st:["ange things. Irtt~ger BASIC will reco~niz~ ·rtormal
lower case characters Qut treat them as upper e.ttSe. Integer and
Applesoft BASIC running in bank-switched memory can be made to recognize
lower case as explained below.

8. Pressing reset on an Apple lIe does a full 64K reset where the Apple II
resets only the lower 48K. This is most noticable by Pascal us~rs who
have only one disk drive since they must press reset ~rt of the wa)T..,
through boot-up'which then starts the booting process over again.. In
general a program which runs in the bank-switched or auxiliary m~mory

should set up reset jump vectors which bank in the appropriate memory
before jumping back into the program. These jump vectors need to be in
the lower 48K of main memory.

9. Pressing reset sets the monitor routines to display video in NORMAL
mode. A reset does not inform Applesoft that it should be displaying in
NORMAL mode and so it continues to fiddle with the output characters'
ASCII code. On the ,Apple II plus this situa.tion wa.snot:detect:able.
On an Apple lIe the effects of this can be detected. From immediate
mode type FLASH then press reset. If you then try to print something
to the screen or make a listing some characters are not displayed
correctly - (numbers become lower'case letters). Giving any of the
following commands corrects the situation: NORMAL, INVERSE, FLASH.

VIDEO OUTPUT:

TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 5

1. When you boot the Apple lIe via PR#n, DOS 3.3 does not initialize the 80
column firmware nor turn the card on or off. If the 80 column firmware
was active when the disk was booted then after booting, the 80 column
hardware is still on but the firmware is not. This makes for garbage on
the screen. Using control-Open Apple-Reset rather than PR#6 prevents
this. Programs that use 80 columns should turn 80 columns off (PRINT
CHR$(21» at the end of the program. To ensure that your program will
not be clobbered by this half -in and half out situation your program
needs to completely turn all of the 80 column card on or off. This is
how. First determine the configuration of the computer by using the
identification routines. If the computer is an Apple lIe with an 80
c.olumn card then do a PR#3 to turn the card on and then if you don't
want 80 columns issue the command PRINT CHR$(21) to turn it off.

EQ1!: other .§.Q column cards ~~ Apple 1! or Apple He using ~ will
~ similar problems.

2. To turn the card on from BASIC the command PRtl3 must be typed in or the
program must. issue PRINT CHR$(4);"PR#3". Pascal programs will
automatically turn the card on. Runtime Pascal programs may be designed
to prevent this from,happening. From the monitor type C300G to turn the
card on. Assembly language requires a JMP to $C300. Issuing these
commands when there is no card in slot 3 or the auxiliary slot will
do undetermined things. The Apple lIe will usually reboot the disk drive
rather than hang like in the Apple II plus but anything may happen.
Reminder issuing a PR#3 to turn on the 80 column card is like issuing a
PR#1 to turn on a printer. These commands only set software pointers and
the periperal is not actually initialized until the first character is
sent to the. peripheral. For this reason any screen setting such as
VTAB issued after PR#3. but. before a PRINT command will be ineffective
since it will be changed when the peripheral is initialized

3. Presence of the 80-column card in the videoexpsnsion slot tan be
determined by writing to a screen location on the card and then checking
to see that the value found at that location is the value written. i.e.
RAM exists at that location.

4. The ApplE! lIe can be identified bya six at $FBB3(64435). Licensed
develgpers can. 9btainfull identification routines from Apple's PCS
Technical Support Group.

5. 80 column features are contI:-olled from programs by printing control
characters. For example, PRINT CHR$(21) deactivates the 80 column
card if one exists. It does nothing if there is no card.

6. 80 column features are controlled from immediate mode by using escape
sequences. For example, typing the escape key (don't hold it down)
followed by control-Q deactivates the 80 column card.

7. If 80 column firmware is active it can display either 40 or 80 column
text.

8. The cursor may be used to identify the status of the computer.

TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 6

a. BLINKING CURSOR means autostart ROM is active. This will happen if
an image of autostart ROM has been placed in the bank-switched memory
(language card) and control has been turned over to it.

b. FLASHING CHECKER BOARD CURSOR means the new monitor firmware is
active and that the 80 column features are inactive.

c. SOLID INVERSE SPACE CURSOR (40 or 80 column width) means the 80
column features and the new monitor ROM are both active.

d. INVERSE PLUS SIGN CURSOR (40 or 80 column width) means the 80
column features and the new monitor ROM are both active and the
escape key has been pressed.

9. The 'other half' of the 80 column screen is located in 1K of RAM on
the 80 column or extended 80 column card'. 111e address range of this RAM
is from $400 to ·$7FF (text page one). Data being displayed from this
, other half' is shuffled in with data from text page one on the main
board and shrunk by the I/O control chip to produce the 80 column screen.
Data from the main board is displayed as the odd columns while data
from the 'other half' -the 80 column card- is displayed as the even
columns. Display columns are numbered starting from one.

10. A vertical blanking signal is available at $C019 to help graphics
animators. Vertical blanking takes approximately 4 milliseconds.
Updating of screen characters or switching of pages during vertical
blanking prevents the displaying·of graphics while the graphics is being
updated.

11. The auxiliary slot for the 80 col1.1mn card has the same memory mapping
as slot 3. Therefore, the 80 column card is treated like a peripheral.

12. If the 80 coltIIIlIl firmware is ins.ctive.andresetls.pressed wh:f.l~. running
in autos tart ROM o.n the la.ngua.ge ca.J:'d (eitherIntegeJ:' 8r Applesoft BASIC),
the computer returns control to that language (i.e., the language card)
without change--DOS does it.

13. Reset deactivates the 80 column card firmware and hardware.

14. Using commas to tabwhlle in Applesoft do~s not work with 80 c9lumns.
You can tab with 80 columns by poki118 .36 ,n wilere. n is the column.you want
to tab to. Poking 36 ,n will also.~ork for 40 column display as long as
n is < 40. Poking 36 with a number >39 probably will cause the program
to crash if displaying in 40 columns.

15. If Integer or Applesoft BASICb t'tlnIl.ingiIl. the ba..nk-switched memory
(language card) with the autos tart ROM then th7y will not accept lower
case characters. If you want to be .ableto accept lower case ch.aracters
then type pR#3 to activate the 80 column f1rm~ar.e. .111is ..will replace
the autostart ROM by the new ROM. The card may then be deactivated
with an escape control-Q and the new monitor ROM will continue to accept
lower case.

16. The 80 column display running under the new ROM is markedly slower then
40 columns'under autostart ROM.

17. Scrolling windows can be set up anywhere on the 80 column screen. The

TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 7

width o~ a scrolling window is limited to an even number. If an
attempt is made to set up a odd-numbered window width the width is reduced
by one. Therefore, if an attempt is made to set a window width equal
31 by placing the number 31 in the location $33 the actual window width
will be 30.

18. There are two built in character sets.
a. The standard character set displays uppercase characters in NORMAL,

INVERSE, and FLASH as is the case with the Apple II plus. It will
also display lOwer case NORMAL characters. NOTE: do not use lowercase
normal characters in programs you want to run on an Apple II plus
since it'cannot display lower case characters.

b. The alternate set provides for upper ,and lower case in both normal
and inverse.

c. Atempting to display lower case inverse characters without having
the 80 column firmware switched in will not work. Even if the
alternate character set is banKed in these characters will be
displayed asspecia.l characters.

d.

e.

When the 80 column firmware is activated the alternate character
set is used. This means that software designed to be used with 80
columI1s must be designed for the alternate character set. Attempting
to switch to the standard character set while 80 column firmware is
active will result in some of the ,characters being misinterpreted
by Applesoft. '

Since both character sets~re"designed to display the underline
character and the, descenders of lower ~,se letters" all, the
characters have been moved up one row of dots. This may cause
some visually unpl~~sant Ie tteri~, on, the top row of a text display
wh~ch uses iIl'V'~rse vj,cieo", This ~,11ibe corrected by placing one
row of inverse blanks above tl1e first line, of print.

19. Unlike the Apple II plus the Apple lIe's GETLINE routine is affected by the
INVERSE FLAG (location $32) setting. On,the Apple II plus all BASIC input
or Assembly language input using GETLlNE is displayed in normal mode.
On the ApP.le lIe inp\1t, will be di~played in accordance with, the value
in location $32"'(invers~, normal", flash),. This is most noticable while
in immediate ,>mode •. Typing the BA.SIC command INVERSE, rl!sults in future
keypressesbeing displayed in inverse. HOME and clear--to-the-end-of-line
gives, inverse blanks.

20. When displaying i 11 ,80 columnS, ify'()u look at CH (36) you will find it
- 0 even if the cursor "is not at the left edge of the screen. This
is done to fool BASIC which knows only about 40 columns and to provide
windows. Some other 80, ,column, boards set this location to 40. Placing a
value into 1403 ($57B) performs a.,I1 HTABto that ,value.

21. Some of the I/O ScratchpadRMf Addresses located in the text screen
buffer are used by the 80 column firmware. These are used in accord with
the protocol for their use but some programs may have used these areas
incorrectly and will have problems. The most common abuse of these
protocols is when a lo-res picture is BLOADED into $40o-$7FF. When this
1s done the values 1n the scratchpad area are changed to match what they

TECHNICAL OVERVIEW OF THE APPLE IIe PAGE a

were when the 'picture was saved. In the past the most common result
is that the disk drive 'grinds' since the read head gets lost. A similar
'loss of control' will happen to any peripheral including the 80 column
card. Since slot 3 in the Apple IIe is dedicated to the 80 column
firmware it uses one scratchpad area dedicated to slot 3 even if there
is no 80 column card. Therefore, any BLOADing into the area $400 to
$7FF will affect the operation of the output routines, possibly crashing
the program. The solution is to BLOAD the picture into a buffer and then
move all but the scratchpad area into the screen buffer. A simpler
solution, but one that may crash the program if an interrupt occurs
during loading, is to save the scratchpad data then restore it after
loading the picture. From machine language you could disable interrupts
during this operation.

VIDEO SOFT SWITCHES:

1. ALT. CHAR SET - This switch sets up the alternate character set. This
switch should be used with care by BASIC programmers as preViously
pointed out.

Z. 80 STORE - If 80 store is active then the PAGEZ/NOt PAGEZ switch serves as
a bank switching switch rather then video display switch. This is true
of the hi res pages also if the extended 8D-column card is present. This
switch should be used only by experienced programmers.

3. 80 COLUMNS - This switch is designed to assist assembly language
programmers who are using their own screen writing routines. This switch
turns only the disply hardware on and not the firmware. Programs which
use the monitor I/Ototiti~escotrT.... & ~1{EY cann()t use thiEJ~itchalone
but must use it in cOIl1bination with PR#3. 'This is true for both BASIC
and the Monitor.

4. TEXT/GRAPHICS, MIXED/NOT.M!X~,PAGE2/NOT PAGE2 and H:r~ES/NOT HIRES
s.erve the same function as in ~.h7 ApJ?.le II. plus. The. PAGE2/NOT PAGEZ
switch serves the additional function of bank switcher. as mentioned above.
The state of these switches may be found by reading status bytes.

5. VERTICAL BLANKING can be read to determine correct display timing for
animated graphics.

6. Two soft switches affect the input/output memory space ($CI00 to $C7FF).
a. The SLOTC3ROM switch is us7dt()se.lec:t between th~ space alocated to

slot 3 and built in ROM alocated to controling Apple's 80-column
cards.
1. When the computer is reset or turned on it checks for a card in

the atixiliarysldt. If it finds one the SLOte3ROM switch is
turned off. This banks in the built in C3xx ROM. NOTE: this
does not turn on the aO-colUmn card. It simply provides the
card with the ROM it will need if a PR#3 or equivalent command is
given.

2. This switch may be turned off -built in ROM banked in- and the
aD-column ROM used even if there is no 80-column card. To get
into this mode tUrn off the switch (POKE 4916Z,O) and give the

TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 9

PRINT 'chr$(4); "PRD3" command. Without a card, ao columns cannot
be displayed but features such as upercase restrict are
available.

b., The SLOTCXROM switch is used to select between the space alocated to
slots 1 through 7 and built in ROM alocated to controling Apple's
ao-column card and the built in diagnostics.
1. If the SLOTCXROM switch is on then the ao column firmware is

mapped in even if the SLOTCHROM switch is off.
2. The SLOTCXROM is tUrned on when one or both of the Apple keys is

pressed during reset.

7. The state of the soft switches may be found by reading the appropriate,
memory locations. With the exception of the SLOTCXROM switch if the value
read is >127 then the switch is on.

a. When Pascal 1.1 is initialized it turns on the following softswi tches:
HIRES, TEXT, NOT-MIXED & NOT-PAGE2. If the ao-column firmware is turned
on then 80 STORE is turned on. Since it is not intuitive that the
HIRES swi tch is on even when the program does not use hires and •that
ao STORE is on even when not storing things in memory some unexpected
things may happen. The unexpected events have most impact on programs
directly writing to the text screen and programs using the auxiliary
memory. Note that if your program turns off the ao STORE switch it must
turn it back on before it' tries to use the aO-columnfirmware to display
SO-column text.

MEMORY MAPPING & ADDRESSING:

1. The mE!morymappin~oftheApplE!}Ie matches theApple II plus with a
language card•.. Soft Sliitches and the new monitor firmware. may<be used to
bank in addi tiona! ROM and RAM.

2. Like the 6502 in the Apple II plus, the 6502A used.in the Apple IIe
activates the addreSs bUs twice }ur:f.n~ successiv-e clock cycles during an
indexed s to re. operation. This may call.se a device. that toggles each time
it is addressed to end up back where it started. In these cases read
operations should be used rather tha.n stores.

3. The $DOOO to $FFFF memory space functions in a method identical to the
language card on the Apple II plus but since it is built in it is
referred to as bank-switched memory.

4. Pressing reset switche.soutba.nk"'swftched memory. If 0pE!rating under
DOS 3.3, DOS will switch back to bank-switched memory.

5. While in SO colWl1t1sthe. lK()fauxiliary....RAM peing us.ed is from $400 to
$7FF. The ao column text card Wi.th lK of RAM uses sparsE! memory mapping.
this means that writing to the location $CaO or $aOO on the. card is the
same as writing to the. location $400.

AUXILIARY RAM:

1. 1K of additional RAM exists on the standard SO-column card in address

TECHNICAL OVERVIEW OF THE APPLE rIe PAGE 10

2.

3.

4.

5.

6.

space $40o-$7FF. 64K of additional RAM exists on the extended
ao-column card in address space $0000 - $FFFF. This additional RAM is
banked in by addressing (writing to) soft switches. To determine if
main memory or auxiliary memory is banked in look at the appropriate
status bytes.

The following softswitch pairs switch between main RAM and auxiliary RAM
in the specified ways:
a. RAMRD - The setting of this switch affects which bank of memory is

being read if the read operation is between memory locations $200
and $BFFF.

b. RAMWRT - The setting of this switch affects which bank of memory is
being written to if the write operation is between $200 and $BFFF.

c. ALTZP - The setting of this switch pair affects which bank of memory
is being written to and read from if the read or write operation is
to a memory location between $0 and $lFF or between $0000 and $FFFF.

d. aOSTORE - This switch pair in combination with the PAGE2, HIRES and
TEXT switch pairs determine in a complex way what display memory is
being written to and read from. In general it changes the other
switch pairs' functions from screen switching to bank selection.
The memory being affected is the same as would be affected by the
screen switching.

Switching auxiliary memory does not affect the bank-switched memory
(language card)$DOOO - $F1"FF settings. If main board ROM is banked in
and then auxiliary memory is switched in, the main board ROM is still
active. If bank-switched memory is active and aux mem is switched in
then the bank-switched memory in the auxiliary memory will be active.

The auxiliary ml:!mory provides storage and. program expansion
c~pabi~.~ties for. BASIC.,. PASCAL and Machine language programs. Machine
lang\1agl:! prograJIls can. very ~fe5tivIY' use the extra memqrysince the
prog;a.mitself can. run fn the extra. memory if need be. BASICcanuse
the. extra meme>ry.to store machine. language routines and pictures. Pascal
can use the extra memory to store machine. language procedures. Both
BASIC and Pascal programs are limited to using the standard memory areas
since they are unaware of the extra memory. With care BASIC programs
could be CHAINED usillg t~e.extra memory rather than a disk. AlSO,i'

several programs could be.in~he computer at once with the posibility of
one being in BASIC and the other in Pascal.

Programs using DOS would need to do all their input and output from
either the main memory or the auxiliary memory but not from both unless
a copy of. DOS were placed ill both banks and then both were kept informed
of such events as switching the. output device. If programs· in auxiliary
Dlemory need to produce. input or output which is not a DOS command theY'
may use the routines COUTI and KEYINwhich do not go through DOS. Great
care should be used since aOSTORE may need to be used to affect where
the oUtput goes.

If you write data into the $400 to $7FF space in auxiliary memory and the
computer is displaying ao columns then your data will appear on the
screen.

TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 11

7. The routine AUXMOVE moves a block of data from anywhere in the memory
area $200 to $BFFF. nata may be moved from auxiliary memory to main
memory or from main memory to aUXiliary memory. .

8. The routine XFER transfers program control from a machine language
program in main memory to one in auxiliary memory or the other way around.

INPUT /OUTPUT:

1. Sending control to a slot which does not have any device connected to it
constitutes a NO-NO. In the Apple II plus this NO-NO usually resulted in
the computer stopping dead. In the Apple lIe this NO-NO usually results
in the disk booting.

2. The SLOTC3ROM soft switch pair selects between internal ROM at $C300
(the 80 column firmware) and slot three.

3. The SLOTCXROM soft switch pair selects between internal ROM from $C100
to $C7FF used by the built in diagnostics and 80 column firmware, and
slots one through seven.

4. Very large peripheral cards which stick out the back of the computer
will not be able to do so because of the new back panel.

5. Gards which depend on 'piggy backing' to IC sockets to obtain additional
signals will probably no longer function properly since the main board
is re-designed.

6. The Apple lIe's 80 column card is a peripheral. As is the cas.e with
the Apple II plus , two peripherals cannot receive input or send 0lltput
at the same t:f.ine. Thismeattit. that the 80 coltunrl firm'iJar.e must be made
inactive before using an output device such as a printer or MODEM and
will need to be reactivated when returning to 80 columns. Some software
such as the Pascal BIOS does· this automatically.

7. There are two locations on the Apple lIe designed for. plugging in game
paddles. One is a DB-9 connector on the . back panel! and the other is
the same as on the Apple II plus. A game paddle or joy stic~may be
connected to one or the other location but not to both at the same time.

PASCAL 1.1

As explained earlier the Pascal system and the 80 colt1lIlIl.firm'iJare when running
under Pascal set several soft switches which may create unexpected
situations. because their settings are not intuitive.. Namely, pa.scal turns
on .the HIRES switch during initialization.>andthe80collJIl1I1.fit"lI1l>7at'e turns
on the 80STORE soft switch. As a result of these settings the following
unexpected situations may occur.

1. If an Assembly language Pascal procedure is designed to store and
retrieve data and it tries to do so from locations $2000 to $4000 in
the auxiliary memory it will not do so properly. This is because the
HIRES switch is on along with 80STORE and it overrides the RAMRD and

TECHNICAL OVERVIEW OF THE APPLE !Ie PAGE 12

RAMWRT switches. If HIRES is switched off then this area may be used.

2. If a program turns on the PAGE2 soft ~itch the program may self
destruct. If HIRES and 80STORE are still on when PAGE2 is
turned on, any data being sent to or retrieved from the $2000 to
$4000 memory space will be sending and retrieving from the auxiliary
memory space rather than the expected main RAM. If the 80 column
card does not have auxiliary memory then the data is coming from and
going to thin air. Since the Pascal. heap in larger programs will
grow into this space the program self destructs. If you must have the
PAGE2 switch on then turn off one of the other two switches. NOTE:
Pascal does not use the PAGE2 switch to display text or graphics but
through trickery it can be turned on.

BACX PANEL:

1. The back panel is designed to support the mounting of DB9, DB19 and
DB25 connectors. Cables from peripheral cards run to these connectors.
External cables then run from these connectors to the peripheral.

2. The four DB19 mounting holes are reserved for disk drive connections.

3. The Apple lIe's accessory kit contains materials for attaching cabl~s

designed for the Apple II plus.

4. Peripherals which use more than 25 lines will need to use two or more
of the DB connectors to route their wires through the back panel.

HARDWARE:

1. The Apple IIe uses the 6502A but· it still runs at one MHz.

2. There is a 470 ohm resistor on both the open apple and closed apple key.
These resistors are on the keyboard.

3. The Apple IIe's data bus is now buffered and may cause tlmming differences
in connection with using the DMA line.

4. The shift-key mod- used in the Apple II+ to simulate upper case can be
simulated in the Apple//e by soldering the solder blob found on the
main board at location X-6.

INTERRUPTS:

When an interrupt occurs the Apple IIe saves the status of the text page
(pagel or 2) and SLOTCXROM switches, then sets the page to page 1 and
SLOTCXROM to Slot ROM. After the interrupt has been handled these two
switch settings are restored.

DOCUMENTATION ERRATA:

TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 13

1. To connect the game input switches (push buttons) to other hardware use
aprox. sao ohm pull-down resistor connected to ground and a momentary
contact switch to +5V.

2. The MOVE routine in the Apple lIe is the same as in the Apple II plus
and therefor the 'y' register should be set to a before calling it.

3. The SLOTCXROM switches are reversed. _ The slot ROM is selected by
writing to 49158 ($CO06). The internal ROM is selected by writing to
49159 ($CO07).

ADDENDUM TO TECHNICAL OVERVIEW OF THE APPLE//e

1. An unusual condition appears on the text screen using an Apple//e when a
text display is switched from inverse to normal or normal to inverse.
This only takes place if the change is being made while printing to the
bottom line of. a scrolling window. If going from normal to inverse the
text appears in in.verse but the right end •of the line- is black 'Nhich is
just like on the AppleJ[+. If going from inverse to normal the text
appears in normal but the right end of the line is white. This condition
happens because when the screen is scrolled after the printing of the
las t line, the n~w bot tom line. is filled with blanks in the current mode
(inverse or normal). This cleans off the old text on that line in
preperation for printing text on the line. The screen display is then
switched to the new mode and the last line is printed. This condition
can be corrected if you must change text modes on a scrolling window.
To do this end the last print statement with a semicolon to suppress the
scrolling. Follow this by the change of mode and a print statement
without any text.

2. If the HOME command is given on an Apple//e while the text mode is in
inverse the whole screen becomes white. On the AppleJ[+ the screen
would clear to black••

TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 14

3. The following is a list of all the special use locations in memory locations
SCOOO through SCOFF. Note that in some cases different switches are
activated depending upon if they are read from (PEEK, LDA) or written to
(POKE, STA). If reading a value can indicate the state of a soft switch,
the state having the symbol (*) is the state which will return a value
greater than 128 (S7F).

LOCATION EFFECT OF. READING EFFECT OF WRITTING

49152 (SCOOO)
49153 (SCOO!)
49154 (SC002)
49155 (SC003)
49156 (SC004)
49157 (SC005)
49158 (SCO06)
49159 (SCOO?)
49160 (SC008)
49161 (SC009)
49162 (SCOOA)
49163 (SCOOB)
49164 (SCOOC)
49165 (SCOOD)
49166 (SCOOE)
49167 (SCOOF)
49168 (SCOI0)
49169 (SCOll)
49170 (SC012)
49171 (SC013)
49172 (SC014)
49173 (SC015)
49174 (SC016)
49175 (SC017)
49176 (SC018)
49177 (SC019)
49178 (SCOlA)
49179 (SC01B)
49180 (SCOIC)
49181 (SCOlD)
49182 (SC01E)

. 49183 (SC01F)
49184 (SC020)

•
•..

49200 (SC030)
•

49216 (SC040)

get keyboard input pgl&2 sw show diff txt & gr buff
pg1&2 aw bank swich Ott & gr buff
read from main memory .
read from auxiliary memory
wri te to main memo ry
write to auxiliary memory
select card ROM all slots
select internal ROM SC10o-SCFFF
read & write main stack,z-pg. ,LC
read & write alt. stack,z-pg.,LC
select internal ROM SC30o-SC3FF
select card ROM slot three
turn 80-column display off
turn 80-column display 011
select Apple] [char. set
select new full upper & lower char. set

clear the keyboard strobe clear the keyboard strobe
indicates if LC first 4K bank one or (*)banktrWo is in
indicates if Autostart ROM or (*)LC is banked in
indicates if main or (*)auxRAM is being read from (S20o-SBFFF)
indicates if main or (*)aux RAM is being written to (S20o-SBFFF)
indicates if card. or (*)internal ROM being read (SClO<FSCFFF)
indicates if main stack, z-pg. ,LC or (*)aux stack, z-pg.,LC
indicates if internal or (*)card ROM being read (SC30()-oo$C3FF)
indicates if stot'ing. to main or (*)auxtext & graphics buffers
indicates if vertical blanking or (*)not vertical blanking
indicates if displaying graphics or (*)te:xt
indicates if displaying full page graphics or (*)mixed txt & gr
indicates if displaying page 1 or (*)page 2
indicates if displaying in la-res or (*)hi-res
indicates if using Apple] [char set or (*)alterpate char set
indicates if displaying in 40 columns or (*)80-columns
toggle cassette output awi tch

toggle speaker

utili ty strobe single pulse

TECHNICAL OVERVIEW OF THE APPLE Ire PAGE 15

•
49232 (SCOSO)
49233 (SCOS!)
49234 ($COS2)
49235 (SCOS3)
49236 ($COS4)
49237 (SCOSS)
49238 (SCOS6)
49239 (SCOS7)
49240 (SCOS8)
49241 (SCOS9)
49242 (SC05A)
49243 (SCOSB)
49244 (SCOSC)
49245 (SCOSD)
49246 (SCOSE)
49247 (SCOSF)
49248 (SC060)
49249 (SC06J)
49250 ($C062)
49251 (SC063)
49252 (SC064)
49253 ($C065)
49254 (SC066)
49255 ($C067)

•

turns graphics mode on turns graphics mode on
turns text mode on turns text mode on
turns mixed mode off turns mixed mode off
turns mixed mode on turns mixed mode on
display from page 1 buffer display from page 1 buffer
display from page 2 buffer display from page 2 buffer
display graphics ~s .. le-res . display graphics a.s Ie-res
display graphics as hi-res display graphics as hi-res
turn annunciator 0 off turn annuncia.tor 0 off
turn annunciator 0 on turn annunciator 0 on
turn annunciator 1 off turn annunciator 1 off
turn annunciator 1 on turn annunciator 1 on
turn annunciator 2 off turn annunciator 2 off
turn annunciator 2 on turn annunciator 2 on
turn annunciator 3 off turn annunciator 3 off
turn annunciator 3 on turn annunciator 3 on
indicates if cassette input toggle has no bit or (*)has a bit
indilcates if game push button 0 (open apple) is up or {*)down
indicates if game push button 1 (closed apple) is up or (*)down
indicates if game push button 2 is up or (*)down
indicates if game controller 0 has timed out or (*)not
indicates if game controller 1 has timed out or (*)not
indicates if game controller 2 has timed out or (*)not
indicates if game controller 3 has timed out or (*)not

•
49264 (SC070)

•
•

game controller strobe game controller strobe

•
49280 (SCOSO)
49281 (SC08l)
49282 ($C082)
49283 (SC083)
49284 (SC084)
49285 (SC085)
49286 (SC086)
49287 (SC087)
49288 ($C088)
49289 (SC089)
49290 (SCOBA)
49291 (SC08B)
49292 (SC08C)
49293 (SC08D)
49294 (SC08E)
49295 (SC08F)
49296 (SC090)
49312 ($COAO)
49328 ($COBO)
49344 ($COCO)
49360 ($CODO)
49376 ($COEO)

select RAM. read bank 2. Wri te-protect RAM.
select ROM read. Two or more successi"'1ereads write-enables RAM. bank 2
select ROM read. Write protect RAM
select RAM read bank 2. Two or mo re succes sive reads wri te-enables RAM ba
select RAM read bank 2. Wri te-protect RAM.
select ROM read. Two. or more successive reads write-enables RAM. bank 2
select ROM read. Write protect RAM
select RAM read bank 2. Two or more successive reads write-enables p. ba

Iselect RAM read bank 1. Write-protect' RAM.
select ROM read. Two o·r more successive reads write-enables RMf. bank 1
select ROM read. Write protect RAM
select RAM read bank 1. Two· or more successive· reads wri te-enables RAM ba
select RAM read bank 1. Write-protect RAM.
select ROM read. Two or more successive reads write-enables RAM. bank 1
select ROM read. Write protect RAM
select RAM read bank 1. Two or more successive reads write-enables RAM ba

- 49311 ($C09F) slot 1 device select
- 49327 (SCOAF) slot 2 device select
- 49343 ($COBF) slot 3 device select
- 49359 (SCOeF) slot 4·device select
- 49376 ($CODF) slot 5 device select
- 49391 ($COEF) slot 6 device select

TECHNICAL OVERVIEW OF THE APPLE !Ie

49392 (SCOFO) - 49407 (SCOFF) slot 7 device select

APPLE//e HARDWARE AND SOFTWARE GUIDE LINES

The following are some suggestions for writing programs for the Apple lIe.

ffiRAL :

PAGE 16

l. Apple has developed interface routines which are designed to help
profesional and amateur programmers write 'friendly' interfaces for their
programs. These routines also help the programmer avoid some pitfalls
associated with using aO-columns. These routines are part of the Applesoft
Extens.ion Package. It can be found on the disk supplied with the Apple//e
Applesoft Tutorial and Reference Manual. Appendix E of the new Applesoft
Tutorial explains how to use this and other supplied routines. A 6502
Machine Language version of these routines will be available soon.

~. Apple has made every effort to maintain the subroutine entry points in
the Autostart ROM when the Apple//e ROM was written and will continue to
do so in future revisions. This implies that if you use only the entry
points supported in the Apple II or Apple//e Reference Manuals your
programs should not need to be modified for future revisions. It also
implies that if you enter ~t other locations or if you do such activities
as check-summing the ROM, your product may need to be reved when the ROM
is reved.

'ogrammers be forwarned
•.pple gives no assurance that any locations wi thin the aO-column firmware
(SC10Q--SCFFF) will be maintained. Therefore, programmers should not
attempt to 'patch into' any of these routines. The aQ--Columtlfirmware also
uses several 'scratch pad' locations. At this time the only such
location which will be maintained between revisions is. location 1403
(S57B) which gives the current horizontal cursor location for ao columns.

3. Use the procedures outlined in the. IDENTIFICATION R0T!TINES document to
recognise the hardware that is available. These r.outinesare available
to licensed software developers from PCS Marketing Technical Support.

i'TWARE SPECIFIC:

l. Bef()r'e. using a peripheral for output be sure the ao. column firmware is
inactive.

~. Do not require the use of the reset. key during program operation unless
you are not concerned that the bank-switched' RAM will be switched out.

3. If your software turned on the ao column firmware be sure it turns it
off before ending.

PAGE 17

~. Do not check for the absence of game control paddles by having your
program 'look' to see if both game buttona have been pressed. An
alternate method is to timeout the paddles for, say, twice as long as
the normal count of 256; if the 558 timer chip still doesn't timeout,
there must not be any paddles.

). Make sure that an 80 column card exists prior to trying to turn it on
since not doing this will lead to unpredictable results.

). If your program requires DOS or BASIC commands to be typed be sure to
instruct the end user to use upper case letters or better still use
your program to shift input to upper case.

7. Applesoft BASIC was designed to produce flashing characters. Because of
this, incorrect characters appear when lowercase iI1V'erse or flashing
characters are displayed by an Applesoft program using the standard 40
column display. If an Applesoft program first determines that the 80
column card is there it may correctly display the lowercase inverse
characters by turning on the card. A full set of lowercase flashing
characters is not available.

8. If your program expects certain string input design it to accept both
upper and lower case ..

9. Never have your program issue the PR#O or INdO commands while the 80
column card is active.

Lo. A program running t.lllde r DOS should turn the 80 column ca rd on by the
command PRINT OIR$ (4); "pR/i3" ..

L1. If your program is generating animated graphics you might want to use
the vertical blanking signal to prevent 'blinking'.

L2. The 80 COL soft switch$COOD (49165) should not be used if monitor input
I output routines are used.

L3. If your BASIC I Assembly Language software boots to run, include in your
documentation the need to boot by pressing control - open apple - re~et
rather than by entering a PR#. This 'is to ensure that the hardware ~rid

firmware are in sync. An alternative if you are willing to put up with
a momentaryflashaccross the screen is to have your greeting progtatn's
first actions be the following. First, it should determine if an 80
column card is in the system. If ,one is, then turn the firmware on
using the pR# 3 command • Finally, if you do not want the card on you
may turn it off with aPrirttCFIR$(2l) cbmmand.

L4. If your program is a BASIC program and it uses 80 columns then do not
use commas to do tabbing. Ins tead use POKES ~o 1403. For· example
POKE 1403,10 TABS to the 10th. column.

15. If your program has 80 column firmware active (either 80 or 40 columns'
displayed) and you want to send output to a printer or'other output
device you must turn off the 80 column firmware before you turn on

TECHNICAL OVERVIEW OF THE APPLE !Ie PAGE 18

the other device. The following is an example: Use Home to clear the
screen. Turn off the 80 column firmware by issuing a control character
to the screen(PRINT CHR$'(21) -eontrol-U). Turn on the printer. When'
orinting is completed or you want an intermediate message on the screen
urn the printer off with a PRINT CHR$(4)"PRII0" & PRINT CHR$(4)"INII0".

Then turn the 80 column firmwar.e. back.on with a PRINT CHR$(4)j"PRtI3".
If you must have a message on the screen durning printing then place the
message on the screen (40 columns) after the 80 column firmware is turned
off but before turning on the printer. NOTE: the PR#O and INdO is not
required by Apple's card but may be by other cards.

l6. If the 80 column firmware is active the BASIC GET command and the monitor
KEYIN routine will immediatly execute the escape keypress and so escape
codes are not available. Therefore t do not use these 'GET' commands when
escape sequences are required and the 80 column firmware is active.An
Assembly Language or BASIC routine which properly get input by looking at
49152 ($COOO) can be used to detect an escape key being pressed.

l7. If your program uses a reset trap or in some way is designed to recover
from a reset and it uses the bank-switched memory (language card) it must
turn the bank-switched memory back on. This would be done, by having your
reset jump vector point to a reset routine placed somewhere in the the
lower 48K of memory. This routine would need to turn the bank-switched
memory back on before jumping back into the program•

.mWARE:

t. Don't use any of the four DB19 slots in .theback panel since these a.re
\eserved for disk drives.

2. cables should connect to the card at the keyboard end of the card since
this gives the user more freedom in selecting the slot into which the card
is to be installed. It also prevents cable cramping.

3. cables should use DB9 or DB25 connectors.

~. cards which require 'piggy backing' into IC sockets may become obsoleted
by this and future revisions of the main board.

5. Do not require cards to be placed in slot three if they are intended to
be used in systems having the 80 column card.

). cables using DB-25 connectors for parallel I/O devices should block
pin seven. This convention should be followed to- prevent damage
should the connector be accidently pluged into a serial device. Serial
devices use this pin for ground.

7. cards should be identifiable according to the protocol outlined in Pascal's
ATTACH document which is excerpt here.

Pascal 1.1 uses four firmware bytes to identify the peripheral card.
Both the identifying bytes and the branch table are near the
beginning of the $CsOO ROM space. The identifiers are listed in

TECHNICAL OVERVIEW OF THE APPLE lIe PAGE 19

Table 1.
Address
$Ca05
$Cs07
$CsOB
$CsOC

Table 1.

Value
$38
$18
$01 (the Generic Signature of new FW cards)
$ci (the Device Signature; see below)

Bytes Used for Device Identification

The first digit, c, of the Device Signature byte identifies the device
class as listed in Table 2.

Digit
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$A
$B-F

Class
reserved
printer
joystick or other X-Y input device
serial or parallel I/O <:ard
modem
sound or speech device
clock
mass storage device
80-column card
network or bus interface
special purpose (none of the above)
reserved for future expansion

Table 2. DeVice Class Digit

The second digit, i, of the Device Signature byte is a unique
identifier for the card, assigned by Apple Technical Support.

NOTE: Our 80 column card identifier is $88

APPLE //. TECHNOTE ~3

Original V.rsion
Publ isn.d by SoftalK Magazine

S.p t. 1983

This article d.scrib.s tn. double hi-rtsolution display mod. which is
available in the Apple Ilc and th. Apple lie (with the Extend.d
SO-column card). Doubl. Hi-r.s graphics provid.s twice the horizontal
r.solution and more colors than th. standard high-r.solution modI. an a
monochrom. monitor doubl. hi-res displays 560 horizontal by 192 vertical
pixels, while on a color monitor, 16 colors aI" available.

For furth.r information contact:
PCS Dev.'op.r Technical Support
HIS 22-W. Phone (40S) 996-1010

Disclaim.r oT all Warranties and Liabil ities

Apple Compuhr, Inc. malUs no warranti.s, .ithtr upress or implied,
with r.sp.ct to this docW'IItntation or with respect to th. soHwart
d.scribed in this docum.ntation, its qual i ty, performance,
merchantabil ity, or fitnts5 for any particular purpose. Apple Computer,
Inc. soTtware is lictns.d ·as is·. Th., entire risk as to its quality
and performanct is with the v.ndor. Should the programs prove defective
folowing th.ir purcnan, th. v.ndor (and not Apple Computer, Inc., its
distributor, or its r,tailtr) assumts th. entir, cost of all necessary
urvicing, repair, or corrtction and any incid.nhl or cons.,quential
damag.s. In no ,v.nt will Appl. Computer, Inc. b. liable for direct,
indirect, incid.ntal, or cons.qutntial damag.s resulting from any defect
in th. software, even if Apple Compuhr, Inc. has bten advised of the
possibil ity of such damag.s. Scm. stat.s do not allow th. exclusion or
I imi tition aT impl ied warranties or 1 jabi I i ty for incidental or
consequ.ntial damag~s, s~ the abov•. ' imitation may not apply to you.

This documentation is copyrignhd. All rights are reserved. This
docunu.nt may not, in whol. or part, b. copied, photocopied, reproduced,
translated or rtduced to any electronic m.dium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 19S4 by Apple Computer, Inc.
20525 Hariani Avenue
Cup.rtino, CA 95014

Not j c l"

Apple Computer, Inc. reserves the right to make improvements in the
product d'5cribed in this document at any time and wi thout notice.

PB

DOUBLE HI-RES ON THE APPLE //e

, Wh at is It?

The double high-resolution display mode that is avai lable
~or the Apple //e provides twice the horizontal resolution
of the standard high-resolution mode. On a standard
bl ack-and-.wh i te video mon i tor, standard hi -r.s d.i sp lays 280
columns and 192 rows of picture elements (pixels); the
double hi-r.s mod. displays ~60x192 pixels. On a color
monitor, th. standard hi-res. mode displays up to 140 columns
o~ colors, each color being selected ~rom the group o~ six
colors avai lable, wi th certain 1 imi tations. Double hi-res
displays 140 columns of color, ~or which all 16 of the
low-resolution colors are available.

--------------~---------------------------------~----------

Table 1. Comparison of Standard and Double Hi-Res Graphics

Blat:k/White Color

Standard 280 x 192 pixels 140 columns
Hi-Res' 6 colors

Double 560 x 192 pixels 140 col umns
Hi-Reos 16 colors

------~---~-~~--~-~~-~--~~~~-~-~-~--------~------------~---

How po I Insfall I1:'?

Installation of th. double hi-... eos mode. on your Apple //e
depends on the ~ollowing threoe conditions, discussed in
d. t a i I be I OCN :

2. Installation of an exttnded 80"'cc:110mn text car.d
wi thjumper

3. A video monitor wi th a bandwidth of at least 14 MHz

First, your Apple //e must have a Revision S ("Rev-S")
motherboard. To find outwh.ther your //e~s motherboard is
a Rev-S board, check the part numbe~ on the edge o~ the
board nearest the backpanel, above the slots. If the board
is a Rev-S' board, the part number wi I I be 820-0064-8.
(Double hi-res does not worl< on systems containinCl a Rev-A
motherboard.) If your //e~s motherboard is not a -Rev~8
board, and if yOU want to obtain one, contact your local
Apple dealer.

The second condition for installing double hi-res on your
//e is that your //e must have an extended eO-column text
card instal led. This card must be instal led wi th a jumper
connecting the two Molex-type pins on the board.
--
WARNING: If your //e is a ·Rev-A machine, do NOT insert into
it an extended eO-col umncard wi th th. jumper connection
mentioned above. Th.sY5tem will not worK at all if yOU do.

--
The last requ iremen tfo.r operation in double hi-res mod. is
that your video monitor must have a bandwid.th of at least 14
MHz. This·bandwidth is neClPssary because. a tlPlevision set
that requires a modulator will not rlPproduce scmlP characters
or graphic lPlements clearlY, due to the high speed at which
the computer sends out dots in this mode. Because most of
the video monitors having a bandwidth of up to 14 MHz are
black-and-white, the worKing lPxamples in this article do not
apply to color monitors. If you have a video monitor,
please use it -- instead o~ a television set -- to display
the following examples.

Your Turn to be Creative -- or. Volunteers. Anyone?

At this wri ting, no programs exist that support double
hi-res graphics. Moreover, none o~ the standard hi-res
commands (5uch as HPLOT) worK properly in double hi-res
mode. Until such routin~s are available, users must wri te
the i I'" own. I f you" ve got han th is far, and wan t to con t i nue,
YOU" 1 I probably already have used the .system mon i tor, and
you"l I probably need v.ry~f~wexplanations. If not, please
re~er to the- iApple_//e..J~eference_Manuali and then return to
double hi-res o~erations.

Before going into the subtleties of double hi-res, you
shou 1d be acqua in ted with sta.ndard hi-res funct ions. I f you
aren"t, obtain the Apple //e Reference Manual (Part Number
A21.2005) or the Apple Jr Reference Manual (whicn, however,
is out ofprint>,andplltaie read the sections on
high-resolution graphics before proceeding wi th the hands-on
practice explained below.

You can find another good explanation of these features in
the ADDIE!' JC Graphics column by Ken .. Wi II iams, in Softl ine
magaz i ne. We sU9ges t tha t yOU star t with Vo 1ume 1, Number
(Septemb.r 1981), ava; lable from SoftalK Publ ishing, Inc.
The early columns are .special ly useful.

The tutorial that occupies the rest of this article assumes
yoU are worKing at your Apple //e as yOU read. The second
part of the lesson 'demonst,..ates the double hi-res mode;
therefore, before embarKing on the second part, you should

in~tal I a jumpered ext~nded aO-column card in your Rev-B
·App Ie //e.

Hands-On Practic~ with Standard Hi-Res

The Apple //e hi-res graphics display is bi t-mapped. In
other words, each dot on the screen corresponds to a bi t in
the Apple //e~s memory. For a real-l ife example of
bi t-mapping, perform the fol lowing procedure, according to
the in~tructions given below. (The symbol "<cr>" indicates
a carriage return.)

1. Boot the sy~tem, using the DOS system master disKette.

2. When the prompt (II J") appears, press the RESET Key.

3. Engage the CAPS LOCK key, and type HGR<cr). (This

in~truction should clear the top of the screen.)

4. Type CALL -151 <cr>. (The system is now in the monitor
mode, and the promp t shou I d appear as an as ter i sK (*).)

5. Type 2100:1 <cr>. One single dot should appear in the
upper left-hand corner of the screen.

Congratulations! You have just plotted your fi~~t hi-res
pixel. (Not an astonishing feat, but yoU have to start
somewhere .••)

With a blacK-and-tAJhit~ monitor, the bits in memory have a
simple correspondence with the dots (pixels) on the screen.
A dot of 1 ight appears if the corre~ponding bit is set (has
a value of 1), but remains invisible if the b~t soff (has
a value of zero). (The dot appears whi te 00 a
bl acK-and-wh i te. .mcm.i t.or, .and green on a green-screen
mon j tor ,such . a~ Apple ~ s.Monj tor ///. For simp I ici ty, we
shall refer to an i.nvi.sible. dot as a "blacKlldot or pixel.)
Two visible dots located next to each other appear as a
single wide dot, and many adjacent dots appear ~s aline.
To obtain a display of another dot and a line, follow Hie
step~ 1 isted below:

1. Type 20aO:40 <cr>. A dot should appear above and to the
right of the dot YOU produc~d in the last exercise.

2. Typ. 2180 :7F <cr>. A sma 1 I hor i zon ta I line shou I d
appear b~IOW th. first dot YOU produced.

From Bits and Bytes to Pixels
The seven low~o~der bi ts in each display byte control seven
adjacpnt dots in a rOW. A group of 40 consecutive bytes in

mttmory controls a roW of 280 dots (7 dots per byte,
multiplied by 40 bytes). In the screen display, the
least-significant bit of each byte appears as the leftmost
pixel in a group of 7 pixels. The second-least-significant
bi t corresponds to the pixel di~ectly to the ~ight of the
pixel previously displayed, and so on. To watch this
p~ocedure in action, fol low the steps 1 isted below. The
dots wi 1 I appear in the middle of your sc~een.

1. Type 2028:1 <c~>.

2. Type 2828:2 <cr>.

3. Type 3028:4 <cr>.

Th~ thr.e bits you specified in this exercise cor~espond to
thr~. pixels that are displayed one afte~ anothe~, from left
to right.

The most-significant bi t in each byte does not cor~espond to
a pixel. Instead, th is bi tis used to sh i ft the posit, ons
of the other seven bits in the byte. Fora demonst~atjon of
this feature, fol low the steps 1 isted below:

1. Type 2050:8 <cr>.

2. Type 2830:8 <cr>.

3. Type 3030:8 <cr> •

. You'll notice that the dots al ign them<!elves vertically.
Now:

4. Type 2450,88 <cr>.

The new do t etha tis, the one tha t.cor~es.ponds to he bit
YOU just spec i.fied) does not lineup wi th tht-.. dots yOU
displayed earUer. Instead, it appears' to be shifted one
'"balf-dot .. to .theright.

5. To demonstrate that this dot~eally is a Iinewn dot, and
not just the Kold M dot shifted by one dot posi tion, type
2050:18 <cr>, 2830:18 <cr>.

You'll notice that the dot mttntioned under Step 4 above (the
dot that was not al ignttd with the other seven dots) is
straddJ ed bY the dots above and be low it. (The use of
magnifying lenses is permitted.)

Shifting the pixel one Mhalf-dot M, by setting the high.
most-significant bit is most often used for e61~t displays.
When the high bit of a byte is set, to gene~ate this shifted

dot (which ;$ al~o call@d the uhalf-dot shift"), then al I
th~ dot$ for that byte wil I be shifted one half dot. The
half-dot shift does not exist in the double hi-~es mode for
the Apple //e.

The following figure shows the memory map for the standard
h i -~es graph i cs mod.:

"-
"- HORIZONTAL OFFSET

BASE'\

"- SOO I SOl S02 S03 I ·.. $24 I S25 $26 $27
$20001 , I I
$20801 I I I
$21001 I I ·.. I
$21801 I , I
$22001 , I ·.. I
$22801 1 I ·.. I
$23001 1 1 ·.. ,
$23801 , I I
$20281 I 1 ·.. ,
S20A81 I I I
$21281 I I ·.. I
$21A81 I I I
$22281 I I I
S22A8 1 I I I
$23281 , I ,
$23A8 I I I I
$20501 I I I
$20001 I I I
$21501 I I ·... ,
$21001 1 I ... I
$22501 I I I
$22001 I I I
$23501 I I I
$23001 I , ·... I

Standard Hi-res M@mory Map

The following f.igure shows the box subdi 'J isions fol" the
memory map shown in the figur. attove:

(OFFSET I
(FROM I 6
(SASE I
(+CSOOOO I
(+~0400 I
(+$0800 I
(+$OCOO I
(+$1000 I
(+$1400 I
(+$1800 I
(+$lCOO I
(

5
SIT

432

I

)

o)
LSS)

I)
I)
I)
I)
I)
I)
I)
I)

)

For example, th. first m.mory address oot each screen I in~
for the first f~w I ines is as shown below:

$2000
$2400
$2800
$2COO
$3000
$3400
$3800
$3COO
$2080
$2480, etc.

Each o~ the 24 'box*ls' co.,tai ns 8 screen Ii ne.s. for
of 192 ver tic al I i n~s per screen. Each o~, the 40' box

. line contains 7 pixels for a total o~ 280 pixels
horizontally across .ach 1 ine.

The Intricacies o~ Doubt. Hi-Rfl*s

Because the doubl. hi-resolu.tion graphics mode provides
twice the horizontal dot density as standard hi-res graphics
does, double h -res re'qui.res twice ~s much memory as
st<1nda.rd hi-res does. I f you spent many hoursmemor i z i n'9
the standard hi-res memory map, don't despair. Double
hi-res sti I I uses the hi-res graphics page (but only to
represe.n t ha I f the pic ture, so to speaK). I n the doub J e
hi-res mode, the hi-res graphics page is compressed to fi t
into half of the display. The other half of the display is
stored in memory (called the "auxiliary" or "aux" memory) on
the Extended 80-Column card. (This article refers to the
standard hi-res graphics page, which resides in main memory,
as the "motherboard" or "HS" memory.)

The auxil iary memory uses the same addresses used by the
standard hi-res g~aphics page (Page 1, $20QO through $3~FF).

The hi -r.s graph i cs page stored in aux j I i ary memory j s known
as "hi-res page lX." The graphics pages in auxi I iary memory

are bank-switch.d m.mory, which YOU can swi tch in bY
ac t i va t i ng scm. o-f the so-f t sw itches. (Adven turous readers
may want to skip ah.ad to ·Using the Auxi I iary Memory,"
which appears later in this article.)

The m.mory mapping for the hi-res graphics display is
analogous to the technique USQd for the eO-column display.
The double hi-res display interleaves bytes from the two
dif-ferent m.mory pages (auxi I iary and motherboard). Seven
bi ts from a byte in the auxil iary memory bank are displayed
first, follow.d by s.ven bits -from the corresponding byte on
the moth.rboard. The bits are' sh i f ted out the same way as
in standard hi-res (least-significant bi t first). In double
hi-res, the most significant bit of each byte is ignored;
thus, no half-dot shift can occur. (This feature is
important, as you/ll see when w. examine double hi-res in
co lor.)

I $0

IAUXI
$20001
$20801
$21001
$21801
$22001
$22BOI
$23001
$23801
$20281
$20A81
$21281
$21A81
$22281
$22A8 1
$232BI
$23A8 1
$20501
$20001
$21501
$21001
$22501
$22001
$23501
$23001

I $1

MBIAUXI

I $2 I
I I

MSI AUXI MBI
I I I
I I I
I I I
I I I
1 I I
I 1 I
I I I
I I I
I I I
I , I
I I I
I I ,
I 1 I
I , I
I I I
I I I
I I I
I 1 I
I I I
I I I
/ I I
I I I
I I ,
, I I

$3 I

AUXI MBI
I I
I I
I I
I I
I I
I 1
I 1
, I
I I
I I
I I
I 1
I I
I ,

I I
I 1
I ,
I. I
I I
I I
I I
, I
I I
1 I

.••••• I
•••••• I

AUXI MBI
• •• ,. I
• • • •• I
• • • •...• I
• • • •• I
.. , ••• I
• •••• I
••• •• I
• • • •• f
• •• •• I
•...• ,.,. I
••••• f·.... ,
• • • •• I
••••• I

II • •• I

·.... ,
· •••• I

• •• II t

• • • •• f

AUXI MBI
I I
I I
I I
I I
I I
I I
I 1
I ,
I I
I I
I I
I I
I I
I i
, I
I I
I I
I I
I I
I I
I I
I I
I I
I I

$26 I

AUXI MBI
I I
I I
I I
I I
, I

I I
I I
I I
I I
I I
I I
I I
II
I I
I I
1 I
I I
I I
I I
I I
I I
I I
I I
I I

$27 I

AUXI MBI
I I
I I
, I

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
1 I
I I
I I
I I
I I
I I
I I

Where each box is subdivided exactly the same way it is In
the standard hi-res mode.

Obtaining a Doubl@-Hi-R'$ DisplaY
To display the doubl. hl-r-es mode, S9 t the following so-f t
swi tC:hes:

In Mon i tor- In Appleso-ft
Read PEEK

HI-RES $C057 49239

GR $C050 49232

AN3 $C05E 49246

HIXED $C053 49235

In Hon i tor- In Apple-soft
Wr-ii:e POKE

80COL $COOD 49165,0

Annunc:lator- 3 (AN3) must be tur-ned off to get i.nto d.ouble
hi -r-es mode. You .tur-n i t off br r-.ad I ng I oc: a ti on 49246
($C05E h.x). Not. that wh.nev.r- rou pr-ess CTRL-RESET, AN3
is tur-ned on;". ther-efor-., .ach time you pr-\?SS CTRL-RESET, YOU
must tur-n AN3 off again.

I f you are us I ngHIX§l?"'0c.1-, then th. bot tom four- lines on
the '3cr- ••n wi 1.1 d i ~j)1 ay t.• x to .1 f you have not tur-ned on<the
80-c 0 1umn car-d, th.~ .•.lJ;r-r s.c onc:l.char ac t er- in th.bo t teen.
four lines of' text wi 11. b! a r-a."c:lClll\ .. cha,...act.r-. (The r-eas6"
is that al though t~ •..har-dwar-. dlspl ays 80 columns of
character-s, the fir-""&I<1.l"'e. 9nlyupda.t.s the 40-column scr-eel"l,
wh i ch cons i sts of th •. 5ha.rac t.r-~ in the odd...number-ed
co I umns. Th. cha,..~cter-~ in even-n..umber-ed co I umns then
consist of·r-andom char-act.r-s taKen from text page IX In the
aux i 1 i ar-y mtlmor-y.)

To. r-emove the II even" ·C::ha.l"'ac t.r-s fr-om the bot tom four- I i ne.s
on the scr- ••n, •• type PR*3<CR> fr-om bas I c (type 3 4 P fr-om the
mon I tor). Th i s procedure c I .ars the' memory Io~ ions on
page IX.

Us i ng the AOX i Ii a.rt Hemory
Th. auxiliary rn~mC)ry.con..~Is,ts ofse",er-al different sections,
which YOU can s.lect bY using the soft swltchlfs listed
b.low. A pair of memory locations Is dedicated to each
swi tch. (One I ocat I on turn'3 the sw i tc:h on; the other turns
it off.) You activate a switch by writing to the
appropriate memory location. The WRITE instr-uction itself
is what ac:tivates th. swi tch; therefore, it doesn.! t matter
what data YOU write to the memory loca.tion. The soft
swi tehes are:

From Mon i tor
WI' i t~

80STORE o-f -f : "COOO
on: $COOl

RAMRD of-f: $COO2
on: $COO3

RAMWRT o-ff: $C004
on: $C005

PAGE2 o-f-f: $C054
on: $COS5

HIRES o-ff: $C056
on: $C057

From Appl~so-ft

POKE

49152,0
49153,0

49154,0
49155,0

49156,0
49157,0

49236,0
49237,0

49238,0
49239,0

A routin. caJJ~d AUXMOVE, located in th~ moni tor ROM of the
App 1e //@, is also v~ry handy, as w~,/ 11 s~@ b@ Jow. AUXMOVE
rs located at addr~ss C311.

Accessi ng memory on the aux iIi ary card wi th th~ soft
switches has the following characteristics. Memory maps,
which heJp clarify the descriptions, ar@ on the next page.

1). To activat@ the PAGE2 and HIRES switches, you need only
read (PEEK) from the corresponding memory locations
(instead of writing to them, as you do for the other
three SIN itches) •

"2). Th. PAG.E2 switch norm... Jly sl!tlec.ts th~<displa>, page, in
@i ther.graph i csor. tex t mode, from .i ther Page 1 01'" Page
2 of the mothlPrboar-d memory. ... HoweVttr i t does so on I y
when the 80STORE SWitch is OFF.

3). If the 80STORE switch is ON, then the function of the
PAGE2 5W i·"tch cha.nges. ·"When 80STO"RE is ON, then PAGE2
swi tches in the .textpage, locations $400-7FF, from
aux i 1 j ary memory (text page 1X), j nstead of swi tchlhg
the display scre.n to theal ternate video page <Page 2
on the moth~rboard)••. When.~OST9~E: is<ON,. the<pAGE2
sw i t9~ 9. term i ne S;i.wh reM. memor)'i b<1n k. (auxiI ia... >'. 01'"

moth.I"'.9C)~ ... d) ••..• i.s.usedc:luriin9anyaccessto .. addresses $400
through.7FF ..W~.nthe 80~ORE swi te is ON, it has
pI'" i 01'" i ty over aJ I other sw itches.

4). 1fth e 80 STORE sw i t chi sON, thenth e PAGE2 sw i t chon I y
swi tch@s in thegr-aphi cs page 1X.from the aux iii ary
memor y i f the HI RES sw i t chis a 1so ON. (No t e t hat t his
circumstance is sligh"tly different from that described
in Item 3 above.) 'When 80STORE "is dN, and if the HIRES
swi tch is also ON, then the PAGE2 swi tch sel~cts the

L

I
I
I
I
I

I All BTACKI
I • i

AUX I U ARY ~. ,JRY

t .
I
I
I

I,

TEXT ,
fAGE I I

TEXT ,
PAGE 2 ,

HI-RES I
GRAPHICS I

PAGE I I

t-V\ IN tiEHORY

IFF

IFF

BFFF

5FFF I HI~REI I
• GRAPHICS •
I PAGE 2 I

FFFF

I
I

•I
I
I

•,
I-I: ,

• TOO II PAR 2)(I

• TEXT, I
I MOl IX •

I
I

, HI-REI ,
, GRAPHICS I
I MSI 2)(•

• HI-REI I
I IMPHICI •
I PAR IX •

AUXILIAR't' HaiOR¥~l"" t1aiOR't'

FFFF

1111081 ,Off, 0,) I I
eell a ,X: I 0 f f I I
IUBII , x, l,>c' ,
fWfBQ/RmfflI '0 (- F 'Q ff I _ I

I A c. T\J (.

Mt=.yhOrt

InIOBE "Off I au I ,
mil I' I -(I or.' I I
lUBES ,x., X, I
RANBPlRftl.IRJ ,(}rJ 'PrJ I I

AUXILIARY lORY

HI-RES I
BRAPHICS I

PADE 2 I

~IN HEMORY

SFF I TEXT ,
1 PADE 2 1

SFFF ,
I,
I

SFFF

I
I
I-
I I
I ,

AUXILIARY HENORY

I
1

I
I

•I

I HI-REI 1
I eMPHlci I
1 MOl! I I

n·B J'i n t:f1utn
('
t

i

IFF 1 TEXT 1
I. Me! I 1

SFFF I HI-REI 1
I 9RAPHICI 1
, PAGE! 1

SFFF I
I
I
I

IVUWE I QN I
0011 z. I 0((I I I
BIBII I off, I I I
1Vt1801MMJI I y tl I I I mA c.i,,,(

W\~lho~y

IUIOBE , o,..) I· I I
filii I ,OFf I I I
HI BEl I QrJ' I I
RAHRD/~RI I o~, I I

miN HEMORY AUXILIARY HEMORY
WtlN MEMORY AUXIliARY HEHORY

I {

HI-RES
GMPHICS f
fAOE2X I

I' TEXT I
I PAGE 2X I

I
f

I
I

I
I

HI-REI I
I eRAPHICS I
I PAn IX I

I TOO I
I Mn 2)(I

I HI-RES I
I eRAPHICS I
I Me! 2)(I

I,,,

7FF

.IIIOB! IQtl I I I
rail Z· l~tJ I I I
UI811 I off I I I
fYttRD/fW1fRJ'· Of F' '_-1

b ACTt\l\::

llq t\1 t 1\10 t,'j

IIIlOHE, I 0,1 ,. I I
r.a~E 2 I QrJ" I I
DIRED 'V#J' , ,
Bltnu)/D~RI , Pf f' , ,

m.mory bank (auxi I iary or mothe~boa~d) fo~ ac~~sses to a
memory location within the ~ange $2000 th~ough 3FFF. If
the HIRES ~it~h is OFF, then any ac~ess to an memo~y

location within the range $2000 th~ough 3FFF uses the
motherboa~d memo~y, ~ega~dless of the state of the PAGE2
swit~h.

5. If the 80STORE swi t~h is OFF, and if the ~RD and
RAMWRT switches are ON, then any ~eading o~ w~i ting to
add~ess space $200-$8FFF gai ns ac~.ss to the aux i.li at"Y
memo~y. If only one of the switches, fo~ example RAMRD,
is set the!" only the app~op~iate ope~ation, in this ~ase

a ~~ad, wi 11 be pe~fo~m.d on the auxil iary m.mo~y, while
a writ. ope~ation wi II access only the mQthe~board

m.mory. If only RAMWRT is set then al I write ope~ations

atcess the auxil iary memo~y. When The SOSTORE swi t~h is
ON i t has higher p~ i o~ i ty than the RAMRO and RAMWRT
switches.

Sho~tcuts: W~itin9 to Auxil ia~y Memo~y f~om the Keyboard
Fi~st, p~ess CTRL-RESET. Next, typ. <CALL-1St> (to get
into the monitor). Then type the fol lowing hexadecimal
addresses to turn on the double hi-~es mode:

COS7 (for Hi-res)

COSO (for Graph i cs)

~ (for Mixed mode)

~ Turns off AN3 for double hi-~es

COOO:O Tu~ns on the 80COL· sw itch

This p~ocedut"e usdally causes the
patt.~n at. the top of the screen,
lines on HI. screen con ta in tex t.
fol low the ~teps I ist.d b.low:

1). Type 3DOG to return to BASIC.

display of a t"andom-do
while the bottom fou"'"

To clea~ the screen,

2). Type HGR to clear half of the sc~een. (The ~haracte,...s

yOU type will prObably appear in al ternating columns.
This is n-ot a ~ause for alarm; as noted above, the
fi~mware simply thinks yOU are wo~King wi th a 40-column
di$play.) R.membe~ that hi-~es graphics commands don~t

know a.bout the half of the screen sto~ed on page IX in
the au~i I iary m.mory. The~efore, only page 1 (that is,
the first half) of the graphics page on the motherboard
is clea~ed. As a I"'esult, in the the screen display,
only alternate 7-bi t columns appear cleared.

On the othe~ nand, if all of the sc~••n columns w.~e clea~~d

aftQ~ the HGR command, then chances a~e good that you;~e not
in double hi-~es mode. If yoU~ sc~e.n was clea~ed tnen to
dete~mine' which mode you;~e in, type the folloWing
ins t ~ uc t i on s :

CALL -151

2000:FF

2001 <2000. 2027M

bacK into moni to~

I-f a sol id 1 ine appea~s ac~oss the top of the scre>en, you;~e

not in double hi-~es mode. (The I ine that appears should be>
a dashed ,or int.~mitt.nt 1 ine: - - - - - - - - across the
scre.n.) If yoU~~. not in double hi~~es mode, then make
sure> that you' do have a Rev. B mothC!'rboard, and that the two
Mol ex-type pins on. the ExtC!'ndlld SO-Col umncard a~e sho~ted

togethe~ with the jumpe~ block. Then ~e>-type the
instructions I iste>d above.

If YOO''''e 'staring at. a half-cleared sc~een,you c.a.n clear
the non-blanK columns by writing zeros to add~eS5es $2000
through 3FFF on graphics page IX of auxil iarY memo~y. To do
so, simply turn on the SO STORE swi tch, turn on the PAGE2
switch, and then w~i t. to locations $2000, $2001, $2002, and
so on up th~ough 3FFF. HoweYe~: this p~ocedure wi II not
work if you try it from the monitor! The ~eason is that
each time you invoKe a monitor ~outin., th~routine sets the
PAGE2 switch bacK to page 1 so that it ca.n dispJa.Y the most
~ecen t command tha t yOU en te~ed. Whet'r yOU try to w~ i te to
$2000, !pte. on the aux iIi a~y card, instead it wi II w~ i te.to
the motherboard memo~y.

Another way to obtain the desi~ed ~esul t is to use the
moni to~~s USER command, which fo~ces a jump to memC)ry
location $3F8. You ean place a JHP instruction. starting at
th is memory I oca t ion, so tha. t the p~ogram IN ill jump to a
~ou tine tha t WI'" i tes in to h i -~ .. s .pag. IX. Fo~ tuna te 1y, the
moni to~ al~eady contains such a ~outine: AUXMOVE.

Us i n9 AUXMOVE
You use the AUXMOVE routine to move data blocKs between main
and auxi 1 iary memory. But the tasK sti II~ema.ins of setting
up the rou t i nC!' so that i t Knows ..tlJh i eh ..da ta to WI'" Lfe, and
whe~e to wri te it. To use this ~outine, some byte pai~s in
the z.~o pageo must b. set up wi th the data b1.ock .ad.dresses,
and th. ca~~y bit must b. -fixed to indi~ate the di~ection of
the mov.. You may not be surpr i sed to 1earn that the byte
pairs in the z.ro page used by AUXMOVE are also the
scratch-pad ~e9iste~s used by the moni tor during inst~uction

execution. The ~esult is that whi Ie YOU type the addresses
for the mon; tor;s move command, those add~esses are being
stored in the byte pairs used by AUXMOVE. Thereafter. YOU

can call the AUXMOVE command directly, using the USER
(CTRL-Y) command.

In practice, then, ~ntel" the fol lowing instructions:

COOA:O

COOO:o

3F8: 4C 11 C3

2000<2000.3FFF Ay

(turns on the 80-Column ROM,
which contains the AUXMOVE
rou tine)

(reason explained below)

(the jump to AUXMOVE)

(where NAy" indicates that yOU
should type CTRL-Y.)

The syntax for this USER (CTRL-Y) command is:

Copies the values in the
I"'ange M8star t to MBend in the
motherboard memory into the
aux i I .i ary memory beg inn i ng at
AUXdest. Th i s command is
an ell ogous to the MOVE
command.

You can use this prOcEPdure to transfer any blocl< of data
from the motherboardmfmorY to h i-~espage lX. > Work i ng
d i rec t 1y from the keyboard, you.can<lJ.sCP a data .bl ocl<
transferred this way to f i 1 i.nanypar t <C)-t .a~oubl e h i"'l"es
screen. image. The imagllf to be stored in hi -res page 1X
(that is, the image that wi I I be displayed in the
even-numbllfred columns of the double hi-res picture) must
first be stored in the motherboard memory. You .can then use
the CTRL-Y command to trans-terthe image to hi-res page1X.

The AUXMO'v'E I"OU tine uses .the RAM~D and RAMWRT sw itches
transfer the data blocks. Because the 80STORE swi tch
overr i des the RAMRD and RAMWRT sw itches, the 80STORE. sw i tc:h
must be turned off -- otherWi sei t woOl d keep .the transfer
from occurring properly (hence the wri te to $COOO above).

If the 80STORE and HIRES swi tche.'S are·ON and PAGE2 is off,
when yoU execute AUXMOVE, then any acce~s to an address
located within the l"angefrorTl$2000 to·$3FFF inclusive would
use the motherboard memory, regardless of how RAMRD and
RAMWRT are set. Entering the command COOO:O turn'S off
80STORE, thus letting ·the RAMRD and RAMWRT swi tches control
the memory banking.

The CTRL-Y trick described above only works for transferring
data blocks from the main (motherboard) memory to auxi I iary
memory (because the moni tor always enters the AUXMOVE
routine with the carry bi t set). To move data blocKs from

the auxil ia~y memo~y to the main memo~y, YOU must enter
'AUXMOVE with th~ c:a~~y .bit cl~a~. You can USQ the routine
I isted below to t~an5fer data blocKs in either direction:

301 :AD 0 3

304: 2A

305:40 11 C3

3F8:4C 1 3

(loads the contents of add~ess $300into
the accumulator)

(rota tlf'.5 -the m05t--s i gn i of i can t bit into the
ca~rY flag)

(jump to $C311 (AUXMOVE»

(sets the CNTRL-Y command to jump to
add~ess $301)

Befo~e using this routine, you mU5t modify memo~y location
$300, depending on the di~ection in which YO'u want to
t~ansfer the data blocKs; If the t~ansfe~ is from the
aux;l ia~y memo~y to the motherboa~d, YOU must c)ea~ location
$300 to %.~o. I f the t~ansfcpr~ i s f~om the mothe~boa~d to
the auxil ia~y m_moI'Y, YOU must set location $300 to $FF.

Two Double Hi~Res Pages
So fa~, w_~ve only discussed using g~aphics pages 1 and 1X
to display double hi-l'es pictu~es. But -- analogous to the
standa~d hi-~e5 pages 1 and 2 -- two double hi-~es pages
ex is t: page5 1 and lX, at. 1oca t ions. $2000 th~ough 3FFF, and
page<s 2 .. and 2X, at>locations S4000thl'ough 5FFF.Theo onlY
tr i cl< i nd i~p lay ing the Sctc.ond doub.le. h i -~.s page i s that
yOU must tu~.n oft. th~. 80 STORE sw itch. I f the 80STORE $Wi fch
is ON, then only the f i~s.tpag .. (1 and .1X) is displayed. Go
ahe ad and· try· it:

COOOrO to tu~n off the SOSTORE SIAIi tch

to tu~n on the PAGE2 swi tch

The screen will f.ill up with anothe~ display of random bits.
Clea~the sCl'e~1"l using th•..inst~uctions listed above (in the
section entitled ·Using AUXMOVE II

). However, this time, use
addresses $4000th~ou9h SFFF instead. (Don~t be alarmed by
the fact that the figu~es you~re typing aren~t displa.Yed on
the scraa.n. TheY~r. be i ng • d i. sp I ayed" on tex t Page 1.)

4000:0

4001 <4000. SFFFH

4000<4000.5FFF 'Y

You'l I be del ighted to learn tha~ YOU can also use this
trick to display two eO-column text screens. The only
problem here is that the SO-column firmware continually
turns on the SOSTORE swi tch, which prevents the display of
the second SO-column screen. However, if yoU wri te your own
eO-column display driver, then you can use both of the
SO-column screens.

Color Madness
It should come as no surprise that color-display techniques
in double hi-res are different from color-display techniques
in standard hi-res. This is because the -half-dot shift u

doesn't exist in double hi-res mode.

Instead of going into a disquisition on how a TV set decodes
and displays a color signal, I'll simply explain how to
generate color in dOUble hi-res mode. In the fol lowing
examples, the term -color monitor- refers to either an NTSC
monitor or a color television set. Both work; however, the
displays will be much harder to see on the color TV.The
generation of color in double hj-res~demands sacrifices. A
560x192-dot displaY is not possible in colo~. Instead, the
horizontal reSOlution decr-eases by a factor of four (to 140
dots across the. screen) • Just as wi th a black-and-wh i te
monitor, a simple correspondttnce exists b.tween memory and
the pixels on thescreE'n. The difference isttlat four bits
are requireod to det.rmine.each color pixel. These four bi ts
represen t 16. d.i fferen t comb ina t ions: one for eoach ... of the
colors availableo in double hi-res. (These are the same
colors that are available in the low-reosolution mode.)

LePs start bY exploring the pattern that mustbestor-~d in
memory to dr~ a single colored 1 ine across the screen.
Start bY pressing RESET; then load the program-COLOR/TEST"
from theo DOS 3.3 sample programs disk (with theoldiAppH~

)(+ DOS syst.m master use the program ·COLOR DEMOSOFT-
Use thjs program to adjust the colors displayeod by yoU
monitor. After you've adjusteod the colors, exi t from the
color-deomo program.

The instructions that appear below are divided into groups
separateod by blank "I ines. Beocause it's very difficul t (and,
on a TV set, almost impossible) to read theo characters
you're typing in as they appear on the screen, face it: you
will make typing err-ors. If the instructions appeoar not to
work, then start again from the bE'ginning of a gr-oup of
instructions.

CALL -151
QL§Q
C057
C05E
COOD:O

(to geot into theo Moni tor routine/program)
(This set of instructions puts the
computer into double hi-res mode.)

2000:0
ZOOI<ZOOO.3FFFM
3F8: 4C 11 C3
2000<2000.3FFF"Y

2100:11 4
2102<2100.2126M

2150:8 22
2152(2150.2175M

2100<2150.2177"Y

(This set 0+ inst~uctions clea~s fi~st

one half 0+ the sc~een, and then the
othe~ half of the sc~een.)

(2 ~ed dots appea~ on top left of sc~een)

(A dashed ~ed I ine appea~s ac~oss sc~een)

(Two g~een dots app.a~ nea~ bottom left)
(Dashed g~een I ine appea~s ac~oss sc~een)

(Fi I Is in the ~ed line)

In cont~ast to conditions in standa~d hi-res, no hal~-dot

shift occu~s, and the most-significant bi t of each byte is
not used •.

As noted above, fou~ bits dete~mine a coIO~. You can
·paint· a sin91e-colo~ I ine ac~oss the sc~een simply by
~epeatin9 a fou~-blt patt.~n ac~oss the sc~een. Buti t is
much e&5.ie~ to w~ite a whole bytlP ~ather than just change
fou.r bi ts at a tim.. 5i nce only 7 bi ts of each byte are
displayed (as noted'ea~l ier in our discussion of
bl acl<-and-wh i te. double hi -1".5) and the pat te~n is four bits
wide, it repeats itself ttVtt~Y 28 bits o~ fou~ bytes. Use
the inst~uctions I Lsted below to d~aw a I Lne of any color
ac~oss the sc~e.n by~ep.atin9a fou~ byte pattern fo"" the
coloI"' as shown in Table III below.

2200: mbl mb2
2202<Z200.2226M

2250: ayx 1 aux2
2250<2250.2276M

2200<2250.2276"Y

(Colo~ed dots appear at the left edge)
(A dashed, colored 1i ne appears)

. (Fi lis in I ine, using the sele<:ted color)

[see Table IlIon next pagel

TABLE I I 1. The Sixteen Colors

REPEATED BINARY

COLOR auxl mbl aux2 mb2 PATTERN

BLACK 00 00 00 00 0000
MAGENTA as 11 22 44 0001
BROWN 44 as 11 22 0010
ORANGE 4C 19 33 66 00 11
DARK GREEN 22 44 as 11 0100
GREYl 2A 53 2A 53 0101
GREEN 66 4C 19 33 0110
YELLOW 6E 50 ~8 77 0111
DARK' BLUE 1 1 22 44 as 10.00
VIOLET 19 33 66 '4C 1001
GREY2 53 2A 55 2A 1010
PINK 50 38 77 6E 1011
MEDIUM BLUE 33 66 4C 19 1100
LIGHT BLUE 3B 77 6E 50 1101
AQUA 77 6E 50 38 11 10
WHITE 7F 7F 7F 7F 1 1 1 1

---------------~---~-----~---------------------------------

In this table, "auxP indi.c:ate~.. the fir~t, fifth, ninth,
thirtt'enth, etc. 'bytt' of each I int'(i.e., everyfour-thbyte,
star-ting with the fir-st byte). The heading "mb1· indicates
the second, sixth, tenth, four-t ••nth, etc. byte of. each line
(i • e ., 8' V t' I" Y f ou r- t h by t e, •star- tin 9 wit h t.h t' se c on d by t e) •
The "aux2" and ·mb2". head i ng.sind i co. t. 8'')eI''Y four- th byte,
star-ting with tht' thir-d andfour-th bytes of each line,
rt'spectivt'ly. ·AuxP and"aux2"a.l"e always stor-ed in
auxiliary mftmor-y, whil. ·mb1· and It mb2. are always stol"ed in
the mother-boar-d mftmor-y.

A~ you;ll infer from Table III, the absolute'position of a
byte a 150 dfttfr-min~ the color- d i sp I ayed. 1f you wr- ite an
·8" into the fir-st byte at the far- left side .of the screen
(i.e., in the "aux1" column), then a red dot< is displayed.
But if yOU wr-i teo an "S"into the third byte at the left side
of the screen (the .. aux2" co I umn >, th en a dar-k gr-een do tis
displaYt'd. Rememb.r- -- thecolor-<moni tor- decides which
color to display based on the rt'latiue position of the bits
on each I in. (i .e., on how far- the bits ar-e from the left
edge of the screen).

So far, so good. But suppose yOU want to display mor-e than
one color- on a single line. It;s easy: Just change the
f ou I" -b i t pat tel"nthat iss t or- edin memor- y . For e x amp 1e, i of
yoU want the left half of the line to be red. and the riaht
half to be pur-pIe, then store the "red" pattern (8,11.22.
44) in the first 40 bytes of the lIne, and then stor-e the

·purple M pattern (l9,33,66,4C) in the second 40 bytes of the
1 i ne. Table I I lis a u54Pfu I /""eference tool for sw itch i ng
f/""om one color to another, p/""ovided YOU maKe the change on a
byte bounda/""y. In othe/"" words, YOU must start a new colo/""
at the same point in the pattern at which the old colo/""
ended. For example, if the old color stops afte/"" yOU w/""i te
a byte f/""om the Mmbl" column, then yOU should start the new
colo/"" by storing the next byte in memory wi th a byte f/""om
the "aux2 1t column. This procedure is i 1 lust/""ated below:

2028:11 44'11 44 11 44 11 77 SD 77 50 77 5D
(creates a dashed 1 i ne that. is /""ed, then yellow)

2128: 8 22 8 22 8 22 8 22 6E3B 6E 3B 6E

(f ill sin the /"" est of the color'" s)

Sw; tehing Colors in Mid-Byte
If youwa.nt aline to change color in the middle of a byte,
you"l I have to /""e-calculatethe column, based on the
information in Table III. Suppose yOU want to divide the
screen into three vertical sections, each a different color.
The left-hand thi/""d of the sc/""een ends in the middle of the
27th chal"'ac te/"" from the I ef t . edge -- tha tis, in an "aux2"
column of the color table. (Dividing 27 by 4 gives a
/""emainder of 3, which indicates the thi/""d column, O/""

lt aux 2 1t .) You/"" patte/""n should change f/""om the fi/""st colo/"" to
the second color after the 5th bit of the 27th byte. You
can change the color in the middl.e of a byte by s.lecting
th. appropriatE!' bytes from the It<i.yx21t cglumn of Table III,
and concatenating two bits for the second color wi~h five
bits for the first color.

However, because the bits fr-Orn ~ach byte ar.e sh i f tE!'d ou tin
o/""de/"" f/""om I east sign if i cant to mos.. t s Lgn i of i can t, the two
mos t sign i of jean t bit s (i nth i s case 1 me an bit s 5 an d 6,
because bi t 7 is unused) for ..the second cljlo/"" a/""e
concatenated~wi th the ftve "least signiftcant bits fo/"" the
fi/""st color. For instance, if yOU want the colo/"" to change
f/""om orange <the fi/""st color) to green (the second colo/"") ,
then you must append the two most si gni of ic.ant. bits (5 and 6)
of Itgreen· to the five ·least. si.Clnifi.cant bi ts (0-4) of
"o/""ange." In Table III, the "aux2" column byte fo/"" g/""een is
19, and the two most significant b.its are both clear. The
"aux2 1t column by.t.e for. 0,..ange.is33, and the five lea.st
significant bi tsare equal to 1001.1. The new byte
calculated fr-om appendinggr.en (00) to orang. (10011)
yields 13 (00·10011>. The/""t'fo/""e, the fi/""st 26 byte of the
line com. f/""om the tabl e val ues for orange; the 27th byte is
13, and th. next 26 bytes come f/""om the table values fo/""
green.

2300: 19 66
2302<2300.2310M

(pu ts o/""ange 1 i neo on screen)

The double hi~~~ sc~een h~s 140 columns, numb~~~d 0 th~ou9h

139, and 192 ~ows, numbe~l)d 0 to 191. Just I ike the standa~d

hi-~~s 5c~~en, the o~i9jn is in the uppe~ le~t co~n.~, whi Ie
the point 139,191 is in the bottom ~i9ht co~ne~.

O:blacK
1 :m~genta
2:da~k blue
3:violet
4:da~k g~een

S:g~ey1

6:m.dium blue
7 : I i gh t b I ue
S:b~own

9:0~ange

10:g~ey2

11:pinl<
12:gr.en
13: ye I low
14:aqua
15 :wh i te

Some.exe~cises yoU may want to t~y include painting the le~t

half of the screen with grey1 and the ~ight half wi th grey2
to see if they ar. diffe~~nt or moving a colored baIt on
diff~~ent color~d bacl<g~ound. For the advente~ous type, you
may want to ~ewrj te b~ickout <supe~ bricKout).

Th~ following p~og~am shows off double hi-~~s. It starts
with the colo~ bar demo, except in this case the colo~ ba~s

can be much nar~owe~ than was possible in low ~esolution

graphics. The next sc~e.n shows a simple pictu~e of an
orange I ine drawn diagonally on a g~een bacKg~ound. These
two colo~s a~e also available in standa~d hi-~es, but a~

you'll se.· in the next pictu~e the~e a~e ce~tain

lim ita t i on s •

r r RUN DEMOJ J

In double hj-~es the most significant bi t is not used, and
any colo~ can appea~ next to any othe~ colo~, anywhe~e on
the sc~een <though Mf~ingin9" can occu~ whe~e the colors
join). In standard hi-~es the most significant bi t of each
byte I imits that byte to fou~ o~ the six colo~s. If the MSB
is set than than the only colo~s displayed by that byte a~e

white, blacK, blue, and o~ange. The~efo~e since g~e~n and
orange can't be displayed in the same byte, the whole byte
becomes o~ange, and the stair step I ine appea~s.

8y the way, if Annunc i a to~ 3 <AN3) i s tu~ned off when a
jumpe~ed extended SO-column ca~d is p~esent, then the most
significant bi t of standa~d hi-~es isn't used ei ther. ThIS

means that any standard hi-r~s pictu~~ will display only
black, whit~, viol~t or gr~.n. If the pictur~ contains blue
or orange, then thos. colors wi I I be convert~d to vi"olet or
green. Go ahead and try it: "pu II ou t a game tha t uses all
four colors, turn the AN3 off wi th PEEK (49246), and then,
wi thout pressing RESET <since that sets AN3 on), run the
program (RUN HELLO sometimes worKs).

Now you~ve got the tools and the rules to the doubl~ hi-res
mode. As you can see double hi-res has more color wi th
higher resolution than standard hi-res. You can ~ven develop
games that do fancy animation or scrol I orange objects
across green backgrounds. In black and whi te, word
processing programs that use different fonts or proportional
character sets can be developed. Have fun playing wi th the
this new mode and I hope I~11 see some of your programs
soon.

((I~ve got two more demo programs if there is room:JJ
RUN DOUBLENET <Remember Brians~s theme)
BRUN QIX

APPLE //. TECHNOTE ~4

Revision of ROY TECHNOTE l-Ap~il 83*
i-July 84

This al'ticle describes an input signal into the 6502 micropl'ocessol'
call.d the ROY 1 ine. The ROY 1 ine allows a pel'iphel'al card to hal t the
mi cropl'ocessor with the ou tpu t address 1i nes ref 1ec t i ng the curren t
address bting fetched. IT a pel'ipheral device can not get data on the
bus fast enough to meet the set up time of the 6502 then the pel'iphel'al
card can pull the ROY line'low and tell the 6502 to wait. This allows
the pel'ipheral device enough time to get the pl'oper data on the bus.
This al'ticle describes the timing for as event such as this.

Fol' further infol'mation contact:
PCS Developer Technical Support
HIS 22-W. Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

App 1e Compu tel', Inc. makes no wal'ran ties, e i thel' express or imp 1 jed,
with I'espect to th i s docum.n ta t i on 01' with I'espec t to the soHwal'e
descl'ibed in this documentation, its quality, pel'fol'mance,
mel'chantabil ity, 01' fitness fol' any particulal' pUl'pose. Apple Computel',
Inc. soHware is 1icensed las is·, The entil'e I'isk as to its qual ity
and pel'Tormance is with the vendol'. Should the pl'ogl'&ms pl'ove defective
folOolling their purchase, the vendor (and not Apple Compuhr, Inc., its
distributor, or its retailer) aS5Umts the entire cost of all necessary
servicing, repair, or cOl'rection and any incidental or consequential
damages, In no ev.nt will Appl. Computer, Inc. be liable for direct,
indirect, incidental, or conuquential darnages resulting from any deTect
in tht sOT twar., even if App 1e Compu tel', Inc. has been adv i sed of the
possibil ity of such damages. Some states do not allow the .xclusion or
limitation. of implied warranties or liability for incidental or
consequential damag.s, so the above 1 imitation may not apply to you,

This documentation is copYl'ighted. All I'ights al'e I'eserved. This
document may not, in whole 01' pal't, be copied, photocopied, repl'oduced,
translated or reduced to any .lectronic medium or machine readable form
without pl'ior consent, in wl'iting, from Apple ComputeI', Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mal'iani Avenue
Cupertino, CA 95014

Not i ce

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB

Peter Baum
20525 Mariani Ave
Cupertino, Ca. 95014

Apple Computer
M.S. 22-W

Ju 1y 1, 1984
Copyr i gh t 1982

Using the ROY Line on the Apple //e and Apple)(+

Though the 6502 was one of the first commercial ly successful
microprocessors sold, the designers had forsight to include
some very u$eful functions. Because many early peripherals
products were very slow devices a microprocessor could not
read from the device directly. To connect these slow devices
onto the Apple peripheral bus, so that the 6502 can read
data from them, requires ei ther buffering the device or
slowing down the processor. Though most people would try to
buffer the device, sometimes it is not feasible. For
example, the ~ ms. access time 'of a l-megabit CMOS ROM maKes
buffering a nightmare, since both the address and data bus
have to be bUffered. When buffering isn~t possible then a
peripheral device can pull the ROY 1 ine to slow down the
processor 16ng enough to read a byte. This technique can be
used by slew devices to communicate with the 6502.

The ROY line allOWs a peripheral ca,..d to halt the
microproces50rwi ..th the output address I ines reflecting the
current address being fetched. If a peripheral device can
not ge t da ta on the bus f.as.t enough to mee.t the se t up time
of the 6502 then the peripheoralca,..d can pull the ROY line
low and ttll ...the 6502 to 1,a,!/a.iL This cann.ot be done during a
6502 write cycle because the 6502 will not hold up.

In order for the 6~02 t.o re.ada. vaJ i d<data byte from a
pel"" i pheralcard,. th.ecard has about 800 ns. fromthe time
the addresses. ar.e val idto put t/'le.data on the bus. The data
must be set up on the bus within approximately 400 ns. from
the time that the I/O STROBE, I/O SELECT, 01"" DEVICE SELECT
signal on the peripheral slot goes true. If a device pulls
the ROY 1 ine low for one cycle then the device will have 1.4
usee., instead of the 400 ns., to put out, val id data. The
ROY 1 ine can be pulled low for more than one cycle; in fact,
there is no 1 imit. A device that taKes 100 us. to send data
can just hold the ROY 1 ine low for 100 cycles. Hence, this
technique will allow any slower device to get on the bus and
send data to the 6502.

The ROY line is typically pulled low du'ring 01, but the
specification sheets for the 6502 show that it can be pulled
anytime before the last 200 ns. of 02. The 02 line is not
used by the Apple, but is an unused output from the 6502. It
is basically the same as the 00 line with a little delay.
Before I explain when to use (01"" not use in some cases) the
ROY I ine, let us first look at some timing diagrams of the
Apple system.

The timing diagram on the next page shows the relationship
b~tween the 6502 and Apple //e and Apple J(+. The timing
specifications have been adjusted to reflect the signals as
they are seen from the peripheral slots. For example the
6502 (1 MHZ.) specification guarantees that the address bus
wi 11 be val id wi thin 225 ns. from 02 out. But the peripheral
slots do not see these address lines d i rec t I y j I nstead the
address lines go thru a' buffer' and then ou t to the
peripheral slots. This adds a maximum delay of 13 ns. in the
Apple Hand 18 ns. in the Apple //e. The timing diagrams
wi II show, in the case of an Apple J[, that the address bus
wi) 1 be val id to the peripheral slots within 238 ns.
(225+ 13) of 02 f a I lin g edge.

The major differences in timing between the Apple J[+ and
the Apple //e are due to the processor. The Apple J(uses a
1 MHZ. 6502, while the Apple //e uses a 6502A, which is a 2
MHZ. part. This does not mean that the System clock in the
Apple//e runs any faster, only that the 6502Ais capable of
running faster. This results in better timingrnargins. For
example, the address and data busses are setup faster in
the Apple //e bY the 6502A than the 6502 sets them up in the
App Ie H. <Th i s was done because the custC).rn ch ips in the
Apple //~ are slower than the discret.e logic .in.. the Apple H
and the 6502A was needed to compensate for this).

A per i phl!'ra 1 card which uses the ROY 1 ine can.6nly be used
under certain cil"'cumstanc:l!'s. Because pUl.Jin<;;j. the. ROY linE!'
low halts the processor, any pro~rarn~it.h a.softl.l.lare.timing
loop wi 11. not work proper lYe These programs assume that each
instruction will taKe a. fixed amount o.f\t..imeLw~ich s not
true when the processor stops in the mi.ddleof .an
instruction. An Apple HdisK is an eXamPle of .a peripheral
which requires timing loops and won"t run properlY i.f the
ROY line is used.

TIHING SIGNALS AS SEEN FROM PERIPHERAL SLOTS

ITrwhl

IT02-1

cpu phase

val id Addrt'slOes

IT02+1

,,/
----------------------_./,,-

Apple 00

Apple- 01 video ph.se

03

IT02-1

02 ou t
of 6502 *

Ta.ds

R/W & ADDR V
.s seen from slots A

ITd"vsi'I-1 ITdevsel+1

DEVICE SELECT
as seen from slots

ITiost'I-1 ITio~t"I+1

I/O SELECT
as s •• n ~rom slots

ITiostb-1 ITiostb+1

I/O STROBE
as set'n from slots

TdsUIThrl

DATA
from slots

/ val i d ,,_------------------_......_------,,_..............................._/

Trs

RDY V don't changt" stateV
________------------,A A __

* - 02 iS,An outputsign&l from th. 6502 which is not ust'd by the
Appl •• It is, a delay.d 00.

FIGURE 1

TIMING SPECIFICATIONS FOR FIGURE 1
(a I I time sin ns .)

Srmbo I

T02- ..
T02+ ..

Tads
Tl"wh

Tdevsel
Tiosel
Tiostb-

Tdevsel+
Tiosel+
Tiostb+

Tdsu
Thl"

Tl"s *

Apple H Apple //e
1 MHZ. 6502 2 MHZ. 6502A

min. max. mi n. max.

15 50+20 (LS08) 15 50+5 (802)
30 80+15 (LS08) 30 80+5 (S02)

225+13 (8T97) 140+18 (L8244)
30 30

96 (3 x LS138) 65 (LS154+LSI38)
64 (2 x LS138) 38 (LS138)
32 (LSI38) 15 (LS10)

18 (LS138) 30 <LSI54)
36 (2 x LS138) 18 (LS138)
18 (LS138) 15 (LSI0)

100+17 (8T28) A 50+12 (LS245)
10 10

200 200

* - The ROY I ine must nevel" change states within Tl"s to end of 02 .

.. - load = 100 pf.

The RFI vel"sions of the Apple)[+, I"evisions A thl"ough D
mothel"boal"ds, use an 8304 instead an 8T28.

Th~l"~ al"e thl"ee diffel"ent typ~S of numbel"s I isted above. If a numbel"
is standing bY itself then It is just the cOl"l"esponding 6502 01" 650~

specification. If anumbel" is follow.d by pal"enthesis then it
I"epl"esents .the delay, pl"oduced by TTL gates, between the 6502 and ~he

pel"iphel"al slots. The chal"actel"s in the pal"enthesis denote the pal"t
numbel"(s) of the pal"t(s) which genel"ated the delay. These pal"ts al"e
typically 74" s.l"ies TTL except fol" the 8T28 and 8T97. Ifthel"e al"e
two numbel"s in a column with a 11+" then the fil"st numbel" signifies the
6502 specification and the second the TTL delay, wi th the
cOl"l"esponding pal"t numbel". Most of the TTL delay times al"e fl"om the
Texas Instl"ument data books. The 6502 specifications al"e fl"om the
Synel"tek 6502 data sheet and fl"om Synel"teK appl ication note AN2
SY6500.

WHEN THE RDY LINE CAN BE CHANGED AND WHEN IT CAN"T

As can be seen from these diagrams, the RDY I ine should not be gated
with the 00 trailing edge since this happens around the same time as
the fall ing edge of 02. This would violate the Trs specification and
probably force the 6502 to perform erratically. Gating the RDY 1 ine
wi th the trai I ing edge of Q3 during 00 might worK, but this could
leave as Ii ttlfP as 25 ns. for thfP signal to be val id. In other words
Q3 must enablt' the RDY I infP low wi thin 25 ns. of Q3 cha.nging states.
If th i s ou tpu t cannot be guaran teed stabl e, then the RDY line mi gh t
violate the Trs specification.

The saffPst time to pull the RDY line is using the 00 rising edge, but
this edge occurs before I/O SELECT, I/O STROBE, or DEVICE SELECT is
enabled. Therefore this scheme will not worK if any of these three
enables is used by the peripheral card. For example, many peripheral
cards use· memory mapped I/O to transfer data, with the cards registers
designed to reside in the DEVICE SELECT memory space. Location COnO
(where n = e + slot number of peripheral card) might hold the status
of the card, and location COn! might be used to read a device such as
a disK or an A/D converter. The ca.rd uses the DEVICE SELECT signal,
pin 41 on the slot, a.nd the 4 low order a.ddress 1 ines to determine if
the 6502 wants to read the status register or read from the A/D
converter. Typically, the status register can put its da.ta on the bus
wi thin 200 ns., easily meeting the set-up requirements ~f the 6502.
But the A/D converter might taKe at lea.st 100 us. before it ca.n
respond with data. The RDY I ine must be pulled low to allow time for
the A/D converter to set up the data bus. Notice that the peripheral
card doesn't Know that it should pull the RDY line low until after the
)EVICE SELECT s·igna.1 ha.s gone low. This signal doesn't go 104,.l,l until
after 00 goes high, 50 the 00 rising edge can't be used to enable the
RDY I ine for this periphera.l card.

There a ... e a 'hw ways Around th is prob !em. One so I uti on wou I d be to
decode the COnO address on the peripheral card a.ndnot use DEVICE
SELECT. This al~o reoquireseoither putting user selectable switches on
thecal"'d fol' seo t ti ngthe sl~t numbel", or maKing th(O cal"d slot
dependent. Another solution is t6puTl th(O RDY I ine lOW using one of
the fil"'st three (Odges, tl'ailing ~r leading, ~f the7MclocK. These
edgeosoccur at 70, 140, and 210 ns. into 00 and are trai I lng, leading,
then trailing edges, respectively. The best solution is to use the
DEVICE SELECT signal to enable the RDY line. The following timing
diagram should he~p.

7M

00

Q3

DEVICE
SELECT

ADDRESS write cycle / \I val id 6502 halts wladdresses & \
RIW* don't pull ROY /_/\. RlW~:!,.;*:.._!I...!.i.!ln~e_v:!.;a!Ll!...!i~d!_!.!h.£.~.!..r.Le I

ROY XXXXXXXXIIIIIIIII 111111111

I I
DON'T CHANGE ROY LINE AT THESE TIMES

DON'T PULL RDY DURING WRITE CYCLES

8ecau~ there is. no acknowl edge response from the 6502, the per i pher a I
card must do some .. of its own housekeep i ng and check if a wr i te eye Ie
is taking placft. On wrih cycles thft 6502 will not halt, but continue
running until the next read cycle. After a slow peripheral pulls the
ROY line and before it tr i es to. ge t on the bus, j.t must make sure the
6502 is not in the middle o.f a write cycle. Otherwisethere.will bea
bus. crash, as botb the< per i phera I card and 6502 try> to dri veth, bus.
One simp I e way to. prevent tbis bus c:ra.sh from occur i ng. j s to maKe .'. sure
the per.ipheral card doesn't pull the RDY I ine low during a wri te
eye Ie. Th i 'I can beguaran teed by checK i ng th. R/W* Ii ne when 00 goes
high or DEVICE SELECT goes low. The R/W* 1 ine will be stable by this
time.

'RELEASING'THE RDY LINE

When the ROY I ine is released the 6502 wil I continue the cycle that
was originally halted and allow the 6502 to read the data bus. Oata
will be read on the next trail ing edge of 02 by the 6502, as long as
ROY doesn't change within Trs of the end of 02. When the peripheral
device has set the data bus up with the correct data it can release
the ROY 1 i ne to comp Ie te the read cYC Ie. Re leas i ng the ROY line has
exactly the same constraints as pull jng the 1 ine; 00 not change ROY
within 200 ns. of the end of 02.

The ROY 1 i ne can be re I eased before da ta has been se t up, if the da t a
will be val id within specification. This means that ROY can be
relea.sed in the middle of 01 if the data bus will be valid 117 ns.
before 02 trail ing edge, for the Apple]((62 ns. for the Apple //e).

SLOW WRITES

3ince the 6502 can't be halted during write cycles, if a devic~

requires longer than one cycle to receive data then the data must be
buffered. He-re is an example of how to accompl ish this:

DATA BUS ---">
/

7

"L
S
3
7
4

---------"> To slow peripheral
/

DEVICE SELECT or

I/O SELECT or _

I/O STROBE

o
I
' INXFER (read when ready by slow device)

NOTE: It is very easy to overrun the slow peripheral using this
~cheme, since it only buffers one byte at a time. Don't send data
cwice to the buffe-r within the- maximum al lowed time between slow
peripheral reads.

APPLE //e TECHNOTE "5

5-J~ 84

One of tht nfW features of the Apple lie is the ability to add more
me~ory or oVfride existing memory from a peripheral card. This ffature,
which usn the INH (inhibit> linE.> on the periphHal slots, hH been
expanded from its original purpose on the Apple J[+ of disabling the
onbo&l'd RCt1 and allowing the language card (RAM) to reside in the same
address space. The ApplE.> lie allows any part of memory to be replaced by
memory on a peripheral card. This article explains how a peripheral card
should use the INH line.

For further information contact:
PCS Developer Technical Support
HIS 22-W. Phone (408) 996-1010

Disciaimer of ali Warranties and Liabilities

Apple Computer, Inc. maKes no warranties, either express. or implied,
with respect to this documentation or with respect to the software
described in this documentation, its qual ity, performance,
merchantability, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed "as is". Th€' entire risK as to its quality
and performance is ~ith the vendor. Should the programs prove defective
folowing their purchase, tne vendor (and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of ail necessary
servicing, repair, or. correctior: and any incidental or c.onsequentia~

damages. In no event will Apple Computer, Inc. b.e I iab~e for direct,
indirrct, incidental, or consequential damages resulting from any defect
in the. software, even. if Appie Computer, Inc. has beer, advised of the
possibility of such damages. Some- statE's do nct allow the exclusicrl cr
limitation of implied warranties or liabiiity for incidentai or
consequenti~l qamages, so the above I imitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole. or part, be copied, Pl'lotocopied, reproduced,
translated or rtduced to any electronic medium or machine readab:e form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Hariani Avenue
Cupertino,CA 95014

Not ice

Apple Compuhr, Inc. reserves the right to maKe improvements in the
product described in this docum?nt at any tim~ and without notice.

PB

Peter 8aum
Developer Technical Support
M.S. 22-W

Apple Computer
20525 Mariani
Cupertino. Ca. 95014

Jan. 5, 1984
Copyright1983

Using the INH :ine on trHc' Apple //e

One of the- new features of the ApDl!e //e is the abi 1 i ty to add more
memory or ove-ride existing memory from a peripheral card. This
feature, which uses the INH (inhibit) linE' on the peripheral slots,
has been expanded from its original' purpose on the Apple](+ of
disa b 1 i n g the 0 n boar d RDM and all O~'J i n 9 the 1an gu age car d (RAM) t 0

reside in the same address space. The Apple //e allows any par-t of
memory to be replaced by memory O~ a peripheral card.

USES

Pr'esent~y, only a felAl periphe r a.l deJ.,'ices use the INH 1 ine in the //e
for memory expansion. One type of card uses INH for RAM expanSion by
sw i t chi ngin ext r a 1an 9 u agE' car d:, wh i 1e an 0 the r c 1ass 0 f car' d = USE'S
it to extend the built-in 80-column ROM code by replacing it with
the- i r own ROM code. Other car'd: use INH so that they can have more
than one stacK and zero page. Future peripheral cards can take
advantage of the INH 1 ine to do even fancier memory expansion, such as
Keeping mul tiple p~ograms running in memory at the same timE'.

M0 rem em0 r y, e i the r ROM 0 r RAM, c arl be adde d by map p i h 9 the memer' 7'

into the same address space as existIng memory. The processor can then
select which memory, the onboard or the additional, it wants to use C)"

set tingar e g i s te r (0r so f t sw i t c h). This tee h n I que 0 f sw; t chi n g
d iffere n t b 1 0 c Ks of mem0 r yin tothe:·am e addresssp ace i s c ,:1.1 1e d ban k
switching. An example of this technique for extending memory is four'ld
in the Apple][+ language car·d and in the banKswi tched memo"':>' c,rl t:ie
//e.

HOW IT WORKS

When the I NH 1 i n e, pin 32 in:. lot s 1- 7, i s P u 1 1e d 1ow, all me m0 i' Y NI

the motherboard· and in theauxi 1 iary slot is disabled (in<::luding
memory on the 80-<::01 umn and ex tended SO-col umncards.). Th I S all OJAIS a
per i ph era 1 car d , i n slot s. 1-7, toe n ab 1 Eo i t / S memor Y on tot. h e bu s •

When the 6502 reads a byte from memOry ..the data typ i ca.l1 y comE'S from
one of three pl aces: motherboard ROM,' motherboard RAM, or RAM on one
of the 80-col umn cards j n the'· aux i 1 i ar::<" slot. When the INH 1 i I"}e i 'E.

pul led lOW, all of the above mentioned ROM anD RAM is disabled and
will not drive the data bus. This allow: the peripheral slots to drive
the bus bye nab 1 i n 9 d a. taon t 0 it. The 650 2 w i i 1 the n rea d d a t a from
the per i ph e- r a. 1 cardin 'E. te adof a 10 cat ion 0 nth e mot her' boar d 0 r
auxilia.ry slot.

During a 6~02 wri te cycle, if the INH 1 ine is pulled low, then
moth.rboard and a.uxil iary card RAM are both disabled. A peripheral
card can th.n r.a.d a byte off the data bus and store it away.

IMPLEMENTAT I Clt'J

Because pull i ng the INH line low di sabl es all of memol"Y, the
periphel"al cal"d must be vel"Y cal"eful when it does this. If only a
small piece of memol"Y is to be banked into a specific address space,
then the INH line should only be pulled on memory I"efel"ences to that
addl"ess space. Otherwise the motherboard memory wi 1 1 be disabled and
the proces~or wi I 1 read/write to the wrong memol"Y and the program
won't wOl"k propel"lyn For example, if a pel"iphel"al cal"d wants to
rep i ace the zel"o page w: th memory on the cal"d, then the INH line
should be pul led low only on I"efel"ences to the addl"ess space between
$0 and $FF. I f the INH line is pu I led dul" i ng a pl"ocessol" i nstl"uc t j on
fetch from the moni tOI" ROM at $F800, the 6502 wi II read the wl"ong
instl"uction (01" a floating bus) and probably cl"ash the pl"ogram.

Pulling the INH line at s.pecific addl"esses is called select decoding.
The hardware on the pel"iphel"al cal"d does this by checking the addl"ess
bus of the 6502, and if the addl"ess fa 1 1s j n the cOl"l"ec t I"ange the
cal"d pulls the INH I ine low. In the eal"i iel" example of a new zel"o
page, if the addres·s. bus was in the I"ange $O-$FF the cal"d would pull
INH low.

DIFFERENCES: //e vs. J[+

On the Apple J[+, select decoding was not necessal"i ly needed because
the I NH i i neon i y a f f e c ted the ROM and not the RA'1. 1fthe ApP ; e J [+
pel"ipheral card wanted to bank in extl"a language cal"ds at 4he
addl"ess€'s $DOOO-$FFFF then it coul d pui 1 the INH Li ne and k€'ep : t i Ot.'J

dUl"ing an>, memory access. This wouid just disable the onboal"d ROM and
not any othermemor>, acc€'sses such as zel"o page or stack. This same
card would not work in the //e, since the next instl"uction fetch to
RA1Y: aft er pu I 1 i ngINH 1OiAl W 0 u 1d rea d a flo a tin g bus be c au sea I I the
memory would be disabled.

ANOTHER FEATURE

For those of YOU who love to muck around in the guts of the Apple //€'
one mol" e feature has bee n added to the I NH fun c t ion • The I NHi j new i i 1
also ovel"ide DMA accesses to memory on the mothel"boal"d. This means
that if a pel"iphel"ai card uses DMA to I"ead or write to memol")', another
per i phel"a I cal"d cou I d pu II the INH line and pl"ocess the DMA acee ss. An
example of this would be a co-processol" card using the memol")' on a RAM
card in another slot. Rather than have the co-pl"ocessol" write to the
memol")' on the mothel"boal"d and then have the 6502 Wl"ite to the RAM
card, the co-pl"ocessol" can write to an address that the RAM cal"d
I"ecognizes. The RAM card could then pull the INH I ine and it would be
fl"ee to I"ead 01" wl"ite the data bus. This technique could also be used
b)' a co-processol" to wri te dil"eetly to a pl"intel" cal"d in anothel" slot.

TIMING

The peripheral card must wai t for the address bus to settle, which
occurs a maximum of 190 ns. after the fall ing edge of 00, before
pu 11 i ng th. INH 1 i ne. (The 6502A max i mum addre.ss se tup time is 140 ns.
from 02, with a worst case 6502A sKew of 50 ns. from 00 to 02.) To
9 u aran te ~ t hat the RAM i s disa b led and a wr i ted0 e s n .' t ace ide n t a I I >'
take place to the mother·bc1.3fd;· ·the INH 1 ine must be pulled IOVJ wi thin
330 ns. of 00.

01

00

1.)1 DEO

CPU

Q3 28(, n s. 210 ns I

addr
'\./

-----------_./'\._--------------------
I (-190ns-> I

->1 140 1(-

'\, --:/ '\j val i d '\.. _
/ '\. /, /------ ---' -----------------'

(1) The I NH 1 n e can be p u 1 i e d h j 9 r; a t t his tim e •
(2) The INH I ne can be pulled low (or high) after the addr'es:E's arE'

val id at 190ns, but before 330 ns. (from 00).

CIRCUITS

A simple example of a c:rcui t that can be used to Implement the IN~

function is shown below.

i
Q! INH* J[1-7J32

I
I

7
4
L
S
3
7
9

PUl...;..INH*

select
decode
109 i c

f

I '\ I
Q3---------------j >0-----------------1 >

1/ I
Oo------------------------------------IG

,-------

I
A15 ----------1
A14 ----------1

I
1 ID

AO ----------1 _

AN APPLI CATION

The following circui t can be used to replace the code in the
mon; tor ROM, from location $FCOO to $FFFF, wi th custom code. Any time
the address space be tween $FCOO-$FFFF is accessed the INH line is
pul led iow, the motherbo~rd memory is disabied, and the circui t's !K
RAM i Sen a b led ins tead j. Par t 0 f t his of eat ur e can bed i sab : e d e.. nd the
motherboard memory can be read by Keeping the swj tch connected to +5
vol ts (READDIS). Whenever the system writes to any location in the
address space $FCOO-$FFFF, the circui t wi 11 disable any RAM C~ the
motherboard and instead wri te into the lK RAM.

Here is a ser i es of commands tha t can be used with the c I rcu j t tc
replace the reset vector at $FFFC and $FFFD. A new reset routine can
be wri tten that wi 11 print the screen or save the status of all tile
registers whenever the reset key is pressed.

S tar t the s ys t em wit h the c ire u it;' s sw i t c h con nee ted t 0 +5
(READDIS). This will enable the system to read the mOr"Jitor ROM
du r i ng powe r up, be f or e the 1K RAM has be e n i nit i ali zed.

Get into the moni tor by typing CALL -151. The system prompt
should now be a '*'.
Copy the moni tor ROM into the lK RAM wi th the command
FCOO<FCOO.FFFFM <CR>

Change the reset vector so that it ,jumps to location $300 ("lith
this command, FFFC:O <CR>. COpy your new reset routine into
m.mory starting at location $300.

s.t th. swi tch to ground (READEN) so that all future read
access.s to $FCOO-$FFFF will read the lK RAM.

For exampl. if these instructions are stored in memory starting at
location $300, thtn whtn reset is pressed the system will cltar the
screen and theon continue execution in the monitor (prompt=/*/).

$300120 58 FC
$303a4C 65 FF

JSR HOME (clean: screen)
JHP to MON (resume execution in monitor)

One of the problems with this circuit is that it also overrides a.ny
a c c e sse s tot h e 1an g u age car d .' The ref 0 rean y program t hat use s the
language card will not ""Iork with this circuit. The circuit doesn/t
keep tra.cK of which memory' is enabled, ROM or ianguage card RAM, in
the $FCOO-$FFFF space.

APPLE //. TECHNOTE ~6

6-Hay 84

This article describes the paddle circuit used in the Apple II family of
compuhrs. The article starts with a simplt' description of tht' circuit
used and then takes the reader through a thorough example of a typical
paddl e read rou tine. F ina 11 y, a few of the anoma.l i es of the paddl e
circuit are discussed.

For further information contact:
PCS Developer Technical Support
MIS 22-W. Phone (408) 996-1010

Disclaimt'r of all Warranties and Liabilitit's

Applt' Compuhr, Inc. makes no warranties, either express or impl ied,
with respect to this documentation or with respect to the software
described in this docu~entation, its qual i ty, performance,
merchantabi1 ity, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed las is-. The entire risk as to its quality
and performance is with the v.ndor. Should the programs prove defective
folowing their purchase, the vendor <and not Apph Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
sl'rvicing, repair, or correction and any incidttnta1 or consequential
damages. In no .vent will Apple Compuhr, Inc. be liable for direct,
indirect, incid.ntal, or consttquential damages resulting from any_defect
in the software, even if Apple Computer, Inc. has been advised of the
possibility of such danlages. Some stahs do not allow the exclusion or
limitation of implied warranties or liability for incidental or
consequential damages, so the above 1imitation may not apply to yOU.

This documentation is copyrighhd. All rights are reserved. This
document may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Not i ce

Apple Computer, Inc. reserves the right to make improvements in the
product d.scribed in this document at any time and without notice.

P8

Pet~r Saum
20525 Mariani Ave.
Cupertino, Ca. 95014

Apple Computer
MS 22-W

May 6, 1984
Copyr i gh t 1984

A Treatise on the Apple Paddles/Joysticks

This article describes the paddle circuit used in the Apple //
fami ly of computers. The article starts with a simple
description of the circuit used and then taKes the reader
through a thorough example of a typical paddle read routine.
Finally, a f~w of the anomalies of the paddle circuit are
discussed.

Circui t Description

The value of the Apple paddles (or joystick) is ~etermined by a
software timing loop reading a change of state in a timing
circui t. The paddles consist of a variable resistor (from 0-150k
ohms) which makes up part of the timing circuit. There is a
routine in the Monitor ROM, cal led PREAD, which counts the time
untl 1 a state change occurs in the paddJe circuit. This ~ime is
translated into a value between 0 and 255.

The blocK diagram below shOC,lo,ls the paddle circuit for the Apple
Je+, Apple //cand the Apple //e. The large block on the left
illustrates part of the circuitry inside the 558 timer chip. The
558 ch i p CEonsi s.ts ..of four of these blocks, wi th all fo.ur paddle
triggers 1 ines shorted together on the motherboard and activated
by the soft sw.itc~at$C070. The. outputs of the 558 chip run
into a multiplexC)r, which places. the appropriate signal onto the
high bitof theidaita bus when a paddlesoftswitch <l.ddressin the
range $C06't--7 •. is read •. The Apple / /c uses a. 556tim:r rather
than the 558 chip and only supports two paddles, 0 and 1.

The 100 ohml""esistor and .022 microfarad.capacitor are on the
motherboard,.withthe variable resistor. in the paddle. Ea<;:h of
the four paddle inputs have their. 'OWn capacit(jl"" and resistor.
Since these componen ts can vary by as much a~i 5"6 from App 1e to
Apple, this circuit is not a very exact ana.log tcldigital
converter. If a paddle is moved from one Apple to another
wi thoutchangi ng the re.si 45t.ance (turn ing the knob).,. the.pa.dd1e
read routin~ wilt probably calculate a different value. for' each
machine.Abou~the only feature of the paddle read routine that
a programmer can depend on is that the value returned wi 11 rise
if the paddle resistance increases (or fall if the resistance

. decreases) •

The paddle timing circuit on the Apple Jr+ and Apple //c is
sl ightly different than the one on the Apple //e. On the Apple
//e the 100 ohm fixed resistor is between the transistor and the
capacitor, while the variable resistor in the paddle is
connected directly to the capacitor. On the Apple)r+ and //c
the capacitor is connected directly to the transistor and the
fixed resistor is in series wi th paddle resistor.

..•...,
l.Jcc 558 ti mer PADDLE

••••••••••• Ii ••••••••••••• I

l)cc .

($C06x)
OllTPUT

.,............ . .
lee OHMS

."..--...A..-...-....-....te J[+ ;
~ON·LY ./;......=

JiP-o +~····......r·· ":';~,;'"'! ":"'~\'.' '/tv'"""':
•• ,,'• . I•
• • • Ii . •: , ~•..........·••
~. 022LIf"·

--•

-Q..........

RESET

5k:

\
5K c:omp

/

51< FLIP
FLOP

- TRIGGER',
':' ($C070) ~.....•....•.••..•...................•....••...•..•....••..•...•......•.•...•.........~

Paddle Circuit for Apple)[+, //c and //e Showing 558 Timer

An Example of Typical Paddle Read Routine

The timing circuit works by discharging a capacitor through a
transistor, then shutting the transistor off and letting the
paddle charge the capaci tor by supplying current through the
variable resistor. The rate at which the capaci tor charges is a
function of the variable resistance; the lower the paddle
resistance the greater the current and the faster the capacitor
charges. When the capaci tor reaches a predetermined value it
changes the sta te of a f 1 i p-f lop. The paddl e read rou tine cown ts
the time it takes for the capacitor to rise and change the
fl ip-flop.

Let~s step through an example of a typical paddle read
operation. For now we~l I assume the capaci tor has already been
discharged and in a few pages 1'1 I explain when this assumption
can be made and when it can~t.

The software starts by reading the softswitch at location $C070,
which strobes the trigger I ines on the 558 timer. This causes
two events to occur, the output si gnal (wh i ch is read at
$C064-$C067 for paddle 0-3, respectively) goes high and the
transistor turns off. .

The software, after initially strobing the trigger 1 ine,
exe.cutes a timing loop .which rea.ds the state of the output
si gnal •. When the output si gnal changes from high to low. the the
software jumps out of the timing .loop. and returns a value
indicating the time. The moriitor PREAD routine consists of a .11
usee. loop and wi 11 return a value between 0 and 255. (NOTE: The
firmware 1 isting is wrong and says the loop is 12 Usee.). The
timing loop returns 255 if the circui t takes long~r than 2.82
msec. for the state change to occur.

* PADDLE READ ROUTINE
* ENTER WITH PADDLE NlJ1SER (0-3) IN X-REG

FBIE:AD 70 CO PREAD "4 LOA PTRIG ;TRIGGER PADDLES
FB21 :AO 00 2 LDY '*0 ; INIT COUNTER
FB23:EA 2 NOP ; COMPENSATE < FOR 1ST COUNT
FB24:EA 2 NOP
FB25:BD 64 CO PREAD2 4 LOA PADDLO,X ; COUNT EVERY 11 USEC.
FB28:10 04 2 BPL RTS2D jB.RANCH WHEN TIMED OUT
FB2A:C8 2 INY ; INCREMENT COUNTER
FB2B:DO F8 3 BNE PREAD2 jCONTINUE COUNTING
FB2D:88 DEY ; COUNTER OV.ERFLOWED
FB2E:60 RTS jRETURN W/VALUE 0-255

Inside the 558 timer chip, when the trigger is strobed low, the
comparator that feeds the set input of the flip-flop is
triggered, which in turn sets the output of the 558 timer. At
the same time the transistor, which has held the capacitor near
ground by sinking current from it, is shut off. The capacitor

can nOYJ charge up us; ng the current suppl i ed by the paddl e. The
smaller the paddle"s resistance the more current the paddle will
supply and the faster the capacitor charges. After some time,
the capaci tor wi 1 I charge to the threshold value of 3.3 vol ts,
which is set by the voltage divider network in the 558 timer,
and the comparator that feeds the reset input on the fl ip-flop
wi 11 tr i gger. Th i s sets the output signal ($C06x) of the 558
timer low, which indicates to the software that the circui t has
time d ou t •

TRIGGER $C070

f

,-----
FEEDBACK TO
RESET COHP

OUTPUT

-"
-'

..... . --------1 <==THRESHOLD

I <--TIMING VALUE--)t

0-2.82 MILLISECONDS

Resetting the fl ip-flop turns the tran~tstor on,which
discharges th~ capacitor Very qUickly (normally lerss than 250
ns). That paddle can thtln btread again.

A Closer Lookiat the Hal"dWar'e

The First Anomaly

Notice that the last sentence states that the paddle can be read
again and not the paddles. If another pacidler Lsrerad immeciiately
after the first, it may yield the wrong value. Tcfshow this I"II
step through an example of reading a second paddle immediately
after finishing the first.

In this example I'lTassume that the first paddle has been set:
with a very low resistance, while th~ second paddle has a high
resistance. T~e fir~t paddle will time out very quicKly and
return wi th a small value, whi Ie the second paddle wi II take
longer and yielda larger value.

We start reading the paddles by testing the paddle outputs to
see if they"re IOYJ, which indicates that the capaci tor has been
discharged. Assuming that the outputs are low, the next step is
to trigger the 558 timer ($C070), which turns off the transistor
and allows the capacitors to charge. Since all of the trigger
input 1 ines are shorted together all four of the capac; tors wi II
charge up, but at different rates since the paddle resistances
have been set to different values. The voltage on the capacitor

for the first paddle wi 1 I reach the threshold vol tage very
quicKly since the" paddle resistance has been set low, and
the I" e f or e the tim i ng loop wi lIt ime ou t qui c K1y.

At this point the capacitor for the second paddle is still
charging and has not reached the threshold value yet, since the
paddl~ resistance was set to a high value. The transistor for
the second paddl e is st ill turned off due to the in j t i al tr i gger
used for reading paddle one. This means that the capaci tor for
the second paddle has not been discharged.

Any attempts at reading the second paddle now wi 11 only yield
false results. The capacitor is partly charged and therefore
wi 11 reach the threshold value much faster than if the capacitor
had been completely discharged. If the timing loop is used it
will return with a smaller value than it would if the capacitor
had been completely discharged. Notice that retriggering
(reading location $C070) the 558 timer wi 11 not help, since that
only Keeps the transistor turned off and doesn~t help discharge
the capacitor. The only way for the capacitor to discharge is to
let the circuit timeout completely by letting the capacitor
charge until it resets the flip-flop.

To read the second paddle the capacitor must first be
discharged, which is only done when the threshold value is
reached and the 558 timer fl ip-flop is reset. The only way to
guarantee that the capacitor is discharged is if the transistor
is on. This condition is met when the paddle output is low.
Therefore start every paddle read either by waiting for at least
3 ms. before strobing the trigger input or testing to maKe sure
that the paddle output is low.

If after 4 ms. the paddle output is not low then there is a good
chance that there is no paddle connected. It may also indicate
that a peripheral wi th a larger maximum value resistor than the
150K ohms used by the Apple paddles is attached. Some peripheral
devices use this technique of a larger variable resistor so that
more than 256 points of resolution can be determined. Of course
this requires a custom software driver and the Monitor PREAD
routine can~t be used.

The Apple //e Anomaly

The problem with Apple //e paddle input is that the capaci tor
may not be discharged by the transistor. Typically, the
transistor will discharge the capacitor in less than 250 ns. on
the Apple][+. But on the Apple //e if the paddle resistance is
very low then the paddle may supply enough current to always
Keep the capaci tor charged.

Becau~e the fixed resistor (100 ohms) on the Apple //e
motherboard is between the capaci tor and the transistor, there
wi 11 be a voltage drop across the resistor if the capaci tor
stays charged. When the transistor is shut off by the trigger

strobe, this vol tage drop wi 11 disappear and the capaci tor,
wh i ch may be near the threshol d vol tage, wi 11 tr i gger the reset
comparator earlier than it would if the capacitor had been
discharged completely. The net affect of this rs that the
paddles will read zero on the Apple //e when they would read a
sma I I value on the Apple)[+ or //c.

Other circuits which expect the capacitor to discharge
completely may not work properly. A circuit which attempts to
s i mu 1ate a padd leth I'" ou gh ac t i vee omp on. n t s su chas a dig ita Ito
analog converter may be able to source enough current that the
capacitor never discharges and the paddle always reads zero.

Hopefully, this article has given the reader a good feel for the
paddle circuitry and the routines Which determine the paddle
values. To reinforce the material covered yOU shoul.d try wri ting
your own paddl e read rou tint. For examp Ie, yOU cou I d WI'" i te a
read routine that would read two paddles at once. The software
loop will not have the 11 usee. resolution of the PREAD routine,
but you~ll find it stills works just fine. Happy programming!

APPLE //e TECHNOTE #7

3-Ap i 1 84

This articll? describes thrl?e diffl?rent types of intHfacl?s, sl?rial,
parallel, and IEEE-488, that are currently used to connect a printing
devicl? to an Appll? II. Thl? interfacl? cards availabll? from Appll? and the
protoco I to connec t to an App I e pI' inter are br i ef I y descr i bed. Pin ou t
configuration and switch settings for these interfacl?s cards and
printers is also included.

For further information contact:
PCS Developer Technical Support
MIS 22-W. Phone (408) 996-1010

Disclaimer of all Warranties and Liabilitil?s

Apple Computer, Inc. makes no warranties, l?ither express or impl ied,
with respec t to th i s documen tat i on or with respec t to the sof tware
described in this documentation, its qual i ty, performance,
merchantabil ity, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed ·as is·. The entire risk as to its quality
and performance is with the vendor. Should the programs prove defective
folowing their purchase, the vendor <and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
servicing, repair, or correction and any incidental or consequential
damages. In no eVl'nt will Apple Computer, Inc. be liable for direct,
indirect, incidental, or consequentic. 1 damages resulting from any defect
in the software, even if Apple Computer, Inc. has been advised of the
possibil ity of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or
consequential damages, so the above I imitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or. part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB

Peter 8aum
Apple Computer
20525 Mariani Ave.
Cupertino, Ca. 95014

Apr. -3, 1984
Copyr i gh t 1984

Connecting a Printer to an Apple //

This article describes three different types of interfaces,
serial, parallel, and IEEE-488, that are currently used to
connect a printing device to an Apple //. The interface
cards ava i 1abl e from App 1e and the protocol to connec t to an
Apple printer are briefly described. Pin out configurat'ion
and swi tch settings for these interfaces cards and printers
is also included.

Ser i a 1

Currently, Apple sells a card, cal led the Super Serial Card
(SSC), that can be used to connect an Apple printer to an
Apple // (Apple sells a dot-matrix printer, cal led the
Imagewri ter, a daisy-wheel printer, and a plotter, which all
use a serial interface). The SSC replaces both the
Communications card and the Hi-speed Serial card. The SSC
supports the firmware (Pascal 1.1> protocol except for the
optional control and interrupt handl ing routines. For more
information on the firmware protocols see Appendix A of the
Super Serial Card manual (Part # A2L0044).

If the SSC is to be connected to an Imagewriter printer then
the swi tch·es shoul d be set as follows:

SSC Imagewriter

I 1234567 1234567 modem I 87654321
ION / / / / / / v ID8-25 DB-2510N / .'

IOFF , , , , , , , , term ina, 1 1===============1 OFF , , , , , ,
I SW1 SW2 I (590-0037) I SW1
I I I
I I I 4321

I I ON / /

I OFF , ,
= sw itch is in up (crosed/on) position I SW2

, = sw itch is in down (open/off) posi tion I
v = The jumper block should point toward term ina 1

Note: Switch 1-5 on the printer must be in the on (up)
position for the printer to work wi th the Apple //e.

These switch settings set the serial interface to use 9600
baud printer mode wi th 8 data bits, one stop bit, no delay
af ter carr i age re turn (CR), 80 col umn 1 i ne width, no echo to
screen, and au toma tic 1 i ne feed sen t af ter CR.

The Apple pa~t numbe~ fo~ a cable that connects the SSC to an
Imagew~ite~ is 590-0037. This cable consists of two male
DB-25 connecto~s with pins 1-8,12,13,19,20, 23 wi~ed pin
to pin and shielded.

The SSC has a 10-pin heade~ on it, but comes wi th a cable
which connects the heade~ .to a female DB-25 connecto~. The
DB-25 can be configu~ed as eithe~ a modem (DCE) o~ as a
te~minal (DTE) using a jumpe~ blocK (in the latte~ case the
jumpe~ blocK acts as a modem el iminato~). Though the pin out
configu~atjon of the DB-25 connecto~ is well defined, the~e

is no standa~d use of the hands~aKe signalS. Diffe~ent

p~inte~s wi I I use the handshaKe I ines fo~ diffe~ent

functions. The fol lowing table shows the pinout fo~ the DB-25
on th~ SSC. Consul t the p~inte~ manual fo~ mo~e specific
info~mation on which signals a~e used.

10-pin
Heade~ Signal Name

Female DB-25 pinout
Te~m ina I Modem notes

1 F~ame G~ound (FRMGND) 1 1
2 T~ansm it Data (TxD) 3 2
3 Receive Data (RxD) 2 3
"4 Request To Send (RTS) 8 4
5 Cl ea~ To Send (CTS) 8 5
6 Data Set Ready (DSR) 20 6
8 Signa 1 G~ound (SGLGND) 7 7

10 Data Ca~~ie~ Detect (DCD) 4,5 8 *1
7 Seconda~y Clea~ to Send (SCTS) 19 19 *2
9 Data Te~minal Ready (DTR) 6 20

notes: I",) 14
*1 - only if SWl-7 is closed (on) wi th SSC I I

*2 only if SW2-7 is closed (on) wi th SSC I I DB-25
I ,.
I) 25

13 f/

To illust~ate an example of a se~ial inte~face, 1 / 11 use the
Imagew~ite~ p~inte~. He~e is the pinou~ and inte~face

specification:

Pin no. Symbol Desc~ipi tion D i ~ec t i on

1 FG F~ame G~ound

2 TxD Send Data Output
3 RxD Receive Data Input
4 RTS Request to Send Ou tpu t
7 SG Signal G~ound

14 FAULT Fault Output
20 DTR Data Te~minal Ready Output

Functional Description:

FG =
TxD =
RxD =
RTS =
Faul t =
DTR =

Grounding line for circuit protection
Serial transmission I ine from printer to computer
Ser i a I t I" an sm iss i on lin e from c ompu tel" top I" i n te I"

True when printer is turned on
False when printer deselected; true when selected
True if printer on and ready to receive

The printer uses a hardware handshaKing scheme, cal led the
Data Transfer Ready protocol, to receive data. Whenever the
capac i ty of the i npu t buffer is less than 30 charac ters, the
printer sends a busy signal by setting the DTR line false.
The computer must stop transmission wi thin the next 27
characters or the printer will ignore the excess data. The
DTR lin e i s a I so se t f a I se wh e nth e pr i n tel" i s de se I e c ted,
and when it rece i ves a DC3 charac tel". The DTR line is true
whenever there is room for at least 100 characters in the
input buffer, when the printer is turned on, selected, and
has received a DCl character.

Parallel

Apple currently ships a paral leI card, cal led appropriately
the Paral I el Interface Card (PIC), wh i ch can be used to
connect a paral lelprin~er to.an Apple // (Apple used to sel I
a dot-matrix printer called the DMP, but has discontinued
shipping any printers wi.th a parallel interface). The PIC
replaces the Parallel. Printer Interface Card and the
Centronics Interface Card. The PIC doesn't support the
firmware pr'otocol, so Pascal identifies the card as a printer
card (described in Pascal protocols).

Most commonly used printers wi I I operate properly if the
swi tches on the PIC are set as fol lows:

1234567
ON

OFF

, ,
, , , , ,

This sets the parallel interface to transfer data using a 1
microsecond strobe pulse of negative polarity when sending
data, whi Ie receiving a negative acKnowledge signal, with
interrupts disabled. .

The PIC has a 26-pin header, but comes wi th a cable which
connects the header to a female D8-25. The Paral leI Printer
Card and the Centronics Card used a 20-pin header. Most
paral leI printers (90%) use a 'microribbon 36' as the
connector. The pinout varies from printer to printer, but the
fol lowing table covers most printers (Apple DMP, Epson). For
other printers refer to page 7 of the Parallel Interface Card
manua I (Par t .. A2L0045).

PIC
Function

Printer
·Func t i on

26-pin
header

D8-25
conn.

36-pin
microribbon

20-pin
header

Ground Ground 3 2 19 1
Ground Ground 22 24 16 20
Ground Ground 7 4
Ground Ground 14 20
ACK AcKnowl edge 6 16 10 2
Strobe Strobe 4 15 1 8
DO 0 Data 1 9 5 2 10
DO 1 Data 2 11 6 3 11
DO 2 Data 3 15 8 4 12
DO 3 Data 4 18 22 5 13
DO 4 Data 5 20 23 6 14
DO 5 Data 6 21 11 7 15
DO 6 Data 7 23 12 8 16
DO 7 Data 8 (#2) 25 13 9 17
DI 3 Fault 24 25 32 6
DI 4 8usy 2 14 11 7
DI 5 Paper out 12 19 12' 9
DI 6 Select 16 21 13 18
DI 7 Enable 10 18 35 19

(#1) 7

Apple internal part #
for cabl e ••••••.•••••

, I I I
590-00498 590-00428

(#1) - Pin 7 is blocKed on the female D8-25.connector and
om i tted on th~ rna 1e D8-25 connec tor to. preve.n t the
insertion of serial connectors into parallel ports.

(#2) - This may be assigried a 'hard' value for some printers
to distinguish between graphics and normal character
sets.

Functional Description of Signal for Typical Printer
Strobe = Printer clocKs data in on fall ing edge
ACK = Set low by printer to indicate it has processed

last character and is readY for another
Fault = Set low if printer detects fault condition
8usy = Set high by printer to indicate not ready
Paper out= Used by printer to indicate out o~ paper
Se 1e c t = 0ut put from prj n t e r, set h i gh i f prj n t e r s e I e c ted
Enable = Set high by printer to indicate printer active

Since the PIC can also be used to input paral leI data and
doesn't act as only a pl"'intel"' card, it is no longel"' l"'efel"'l"'ed
to as a pl"'intel"' card, but instead as a genel"'al pUl"'pose
pal"' all e 1 cal"' d .

IEEE-488

Though most printing instruments on the marKet today use
either a ser i al or parall el interface, another standard
interface, IEEE-488, is also avai lable. These devicE?-:· can be>
connected to the Apple // through the Apple IEEE-488
Interface Card. Curre>ntly Apple doesn/t se>11 any printe>r
devices that use the IEEE-488 interface, but other companies
supply them. One of the advantages of the IEEE-488 bus oVe>r
either the para 11 e I or ser i a I <RS-232) busses is tha t more
than one type of printer can be attached to the bus at the
same time. This means that both a fast dot-matrix and a daisy
wheel printer can be hooKed to the Apple with only one>
peripheral card.

The IEEE-488 bus standard is a weI I defined 8-bi t paral leI,
byte ser i aI, asynchronous data transfer interface. The
standard has been thoroughly documented wi th the most
complete description available from the Institute of
Electrical and Electronic Engineers <IEEE) in New YorK.
Standard cables are manufactured by many companies, and
usually advertised as either I EEE-488 , General Purpose
Interface Bus <GPIB), or Hewlett-PacKard Interface Bus (HPIB)
cables.

The IEEE-488 card doesn/t support the firmware protocols, so
an assembly language driver must be used to access the card
from Pascal <See AppendiX F of the IEEE-488 Interface User/s
Guide, part number A2L0037).

Appendix A

Product

Super Serial Card
SSC to Imagewri ter Accessory Ki t *
SSC to Imagewriter external Cable
Imagewri ter
Apple Daisy Wheel Printer <DWP)
SSC to Apple DWP Accessory Ki t *
Apple Color Plotter
SSC to Color Plotter Accessory Kit *
Paral leI Card
IEEE-488 Interface Card

SSC manual
Para 11 e I Interface Card manua I
ProDOS Technical Reference Manual
Apple //e Reference Manual
Apple //e Design Guidel ines

A2B0044
A2C0352
590-0037
A9M0303
A3M0025
A2C0351
A9M0302
A2C0302
A2B0021
A2B0015

A2L0044
A2L0045
A2W0010
A2L2005
A2F2116

* The accessory Kit includes a cable and manuals

· Apple J [Monitor Entry Points

2 August 1984

This document lists all supported entry points in the Apple] [
family $F800 Monitor ROM. This is NOT a programming guide. Since
each member of the Apple J[family has variations in the
implementation of the Monitor, it is the individual programmer's
responsibility to identify the machine type and take appropriate
action when calling these routines. The only purpose of this
document is to reassure software developers that the entry points
for these routines will remain intact and that there is no
committment to keep any other Monitor code in the same locations.

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpos:. Apple
Computer, Inc. software is licensed "as is". The entire risk as to
its quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc., its distributor, or retailer) assumes the entire cost
of all necessary damages. In no event will Apple Computer, Inc. be
liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer,
Inc. has been advi sed of the pos s i bili ty of such damages. Some
states do not allow the exclusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, California 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

CJS

Apple J [Monitor Entry Points

$F800 PLOT Plot on the
PLOT puts a single block

low-resolution display screen.
the accumulator, its horizontal
with the accumulator scrambled,

Page 2

low-resolution screen
of the color value set by SETCOL on the
The block's vertical position is passed in
position in the Y register. PLOT returns
but X and Y intact.

$F819 HLINE Draw a horizontal line of blocks
HLINE draws a horizontal line of blocks of the color set by SETCOL

on the low-resolution graphics display. Call HLINE wi th the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal coordinate in
location $2C. HLINE returns with A and Y scrambled, X intact.

$F828 VLINF Draw a vertical line of blocks
VLI~ffi draws a verticle line of blocks of the color set by SETCOL

on the low-resolution display. You should call VLINF with the horizontal
coordinate of the line in the Y register, the top vertical coordinate in the
accumulator, and the bottom vertical coordinate in location $2~. VLINE will
return with the accumulator scrambled.

$F832 CLRSCR Clear the low-resolution screen
CLRSCR clears the low-resolution graphics display to black. If

CLRSCR is called while the video display is in text mode, it fills the
screen with inverse at-sign (@) characters. CLRSCR destroys the contents of
A and Y.

$F836 CLRTOP Clear the low-resolution screen
CLRTOP is the same as CLRSCR, except that it clears 'only the top

40 rows of the low-resolution display. (Mixed~mode)

$F847 GBASCALC Calculate base address for low resolution graphics
GBASCALC calculates the base address of the line on which a

particular pixel is to be plotted. The accumulator is scrambled.

$F85F NXTCOL Increment color by 3
NXTCOL adds 3 to the current color (set by SETCOL) used for low

resolution graphics. The accumulator is scrambled.

$F864 SETCOL Set low-resolution graphics color
SETCOL sets the color used for plotting in low-resolution graphics to

the value passed in the low nybble of accumula tor. The colors and their
values are listed in the technical reference manual. The accumulator is
scrambled.

$F871 SCRN Read the low-resolution graphics screen
SCRN returns the color value of a single block on the low

resolution graphics display. Call it with the vertical position of the
block in the accumulator and horizontal position in the Y register. Call it
as you would call PLOT (above). The color of the block will be returned in
accumulator. No other registers are changed.

Apple) [Monitor Entry Points

$F88E INSDS2 Set-up indexes for opcode in A register
INSDS2 expects to find the opcode in the accumulator.

sets up formats, modes, and indexes into the mnemonic table.
the X register must be zero. Upon exit the accumulator and X
scrambled.

Page 3

It then
Upon entry,
register are

$F8DO INSTDSP Display disassembled instruction
INSTDSP disassembles and displays one instruction pointed to by

the program counter (PCL-PCH). None of the registers are preserved.

$F940 PRNTYX Print contents of Y and X registers as hex
PRNTYX prints the contents of the Y and X registers as a four

digit hexadecimal value. The Y register contains the first byte output,
the X register contains the second. On return, the contents of the
accumulator are scrambled.

$F941 PRNTAX Print A and X in hexadecimal
PRNTAX prints the contents of the A and X registers as a four

digit hexadecimal value. The accumulator contains the first byte output,
the X register contains the second. On return, the contents of the
accumulator are scrambled.

$F944 PRNTX
PRNTX prints

hexadecimal value.
scrambled.

Print contents of X register as hex
the contents of the X register as a two digit
On return, the contents of the accumulator. are

$F948 PRBLNK Print 3 spaces
PRBLNK outputs three blank spaces to the standard output device.

On return, the accumulator usually cc~tains $AO, the X register contains 0.

$F94A PRBL2 Print many blank ~paces

PRBL2 outputs from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks to be output.
If X=$OO, then PRBL2 will output 256 blanks. On return, the accumulator
usually contains $AO, the X. register contains 0.

$F953 PCADJ Adjust program counter
PCADJ increments the program counter by 1~ 2, or 3 depend~ng on

the LENGTH byte stored at $2F,O = 1 byte, 1 = 2 bytes, 2 = 3 bytes. All
registers are scrambled.

$FA40 r~Q IRO handler
IRQ first determines if the interrupt request was from a BRK

instruction. If not, control is sent to IRQLOC ($3FE). The accumula tor is
stored (at $45 with the)[,)[+, and original lie monitors and pushed on the
stack with the "ICON" lie, and lie monitors). When the $03FE interrupt
handler terminates with an RTI, all registers are restored. (Generally
called by operating system, not user.)

Apple] [Monitor Entry Points Page 4

$FA4C BREAK
BREAK saves

BRK handler
the registers and 1MPs to BRKV ($3FO).

SFA62 RESET Hardware reset handler
RESET sets normal video out and keyboard in, re-initialize system,

set and clear various annunciators (depending on system type), clear
keyboard, and falls through to NEWMON.

$FAA6 PWRUP System cold start
PWRUP prints system type at t~p of screen, sets page 3 vectors

equal to cold start of current BASIC. It then falls through to SLOOP.

$FABA SLOOP Disk controller slot search loop
SLOOP is the disk controller search loop. It searches for a disk

controller beginning at the peripheral ROM space pointed to by $00-$01. If
a disk controller is found, it JMPs to the ROM code. Otherwise, it cold
starts BASIC. (Required to support the ProFile card boot code.)

$FAD7 REGDSP Display contents of registers
REGDSP sets location A3 ($40-S41) equal to $0045, then displays

the contents of the registers (from locations $45 thru $49) with labels.
(Setting A3 prepares the user for modifying memory beginning at $45.) The
accumulator and X register are not preserved.

$FBI9 RTBL Register names table
RTBL contains the ASCII codes for "AXYPS" (hi-bit set), the names

of the regis te rs.

$FBIE PREAD Read a hand controller
PREAD returns a number that represents the position of a hand

control. You pass the number of the hand control in the X register. If
this number is not valid (not equal to 0, 1, 2, or 3), stange things may
happen. PREAD returns with a number from $00 to SFF in the Y register.
The accumulator is scrambled.

$FB2F INIT Initialize system
Clears $48, the 6502 status register save locations, and sets

softswitches to Lo-RES, PAGE 1, TEXT, then falls through to SETTXT.

$FB39 SETTXT Set text mode
SETTXT se ts text mode and LDA ItO to set window top then JMPs to

SETWND.

$FB40 SETGR Set graphics mode
SETGR sets mixed graphics mode and clears the graphics portion of

the screen then LDA 1t20 to set window top and falls through to SETWND.

$FB4B SETWND Set text window
SETWND sets a full width text window with the window top set to

the value in the accumulator and bottom set to the bottom of the screen.
It then VTABs to line 23.

Apple] [Monitor Entry Points

$FBSB TABV Vertical tab
TABV merely stores the value in the accumulator in location CV

($25) and calls VTAB ($FC22).

_.
Page 5

$FB60 APPLEII Print machine.. type
APPLEII clears the screen and prints the machine type centered at

the top of the screen. A and Yare scrambled.

$FB6F SETPWRC Create power-up byte
SETPWRC calculates the "funny" complement of the high byte of the

RESET vector and stores it at PWREDUP ($3FS).

$FB78 VIDWAIT Check for a pause (CONTROL-S)
VIDWAIT checks the keyboard for a CONTROL-S if it is called with

an $8D in the accumulator. If a CONTROL-S is found, it falls through to
KBDWAIT. If not, control is sent on to VIDOUT where the character is
printed and the cursor advanced.

$FB88 KBDWAIT Wait for keypress
KBDWAIT waits for a keypress. The keyboard is cleared unless the

keypress is a control-C then control is sent on to VInoUT where the
character is printer and the cursor advan~ed.

$FBB3 VERSION Monitor ROM identification byte
VERSION is a byte used to aid in identifying which monitor ROM is

installed.

$FBCO

ROM.

ZIDBYTE Monitor ROM sub-identification byte
This byte provides more detailed identification of the monitor

$FBCl BASCALC Text base address calculator
BASCALC calculates the base address of the line for the next text

character on the forty column screen. The value is stored at BASH and BASL
($28-$29).

$FBDD BELLI Beep the speaker
BELLI toggles the speaker on and off at 1000 hz rate for 0.1 sec.

$FBFO STORADV Place a printable character on the screen
STORADV stores the value in the accumulator at the next position

in the text buffer and falls through to ADVANCE.

$FBF4 ADVANCE Increment the cursor position
ADVANCE advances the cursor by one position. If the cursor is

a t' the window limit it branches to CR.

$FBFD VlnoUT place a character on the screen
VInoUT sends printable characters to STORADV. Return, linefeed,

forward and reverse space, etc., are vectored to appropriate special
routines. (NOTE: This routine does not work in 80-columns on] [, }[+, and
original I Ie.)

Apple] [Monitor Entry Points Page 6

SFCIO BS Back-space

BS decrements the cursor one position. If the cursor is at the
beginning of the window, the horizontal cursor position is set to the right
edge of the window and the routine falls through to UP. (NOTE: 40-columns
only.)

SFCIA UP Move up a line
UP decrements the cursor vertical location by one line unless the

cursor is currently on the first line. (NOTE: 40-columns only.)

$FC22 VTAB Vertical tab
VTAB loads the value at CV ($25) into the accumulator and falls

through to VTABZ. (NOTE: This routine does not update OURCV in 80-columns.)

$FC24 VTABZ Vertical tab (alternate entry)
VTABZ uses the value in the accumulator to update the base address

used for storing values in the text screen buffer.

$FC42 CLREOP Clear to end of page
CLREOP clears the text window from the curSOT position to the

bottom of the window. CLREOP destroys the contents of A and Y.

$FC58 HOME Home cursor and clear
HOME clears the current window and places the cursor in the home

position: the upper left corner of the screen.

$FC62 CR
CR. sets

the window and
through to LF.

Begin a new line
the cursor horizontal position back to the left edge of
increments the cursor "lie rtical position. It then falls

(NOTE: 4o-columns onl!.)

$FC66 LF Line-feed
If the cursor vertical position is not past the bottom line, the

base address is updated, otherwise the routine falls through to SCROLL.
(NOTE: 40-columns only.)

$FC70 SCROLL Scroll the screen
SCROLL moves all characters up one position within the current

text window.

$FC9C CLRROL Clear to end of line
CLREOL clears a text line from the cursor position to the right

edge of the window. CLREOL destroys the contents of A and Y.

$FC9E CLEOLZ Clear to end of line
CLEOLZ clears a text line to the right of the window, starting at

the location given by base address BASL indexed by the contents of the Y
register. CLFOLZ destroys the contents of A and Y.

Apple] [Monitor Entry Points
-

Page 7

$FCA8 WAIT Delay
WAIT delays for a specific amount of time, then returns to the

program that called it. The amount of delay is specified by the contents of
the accumulator. With A the contents of the accumulator, the delay is
1/2(26+27A+5A A 2) microseconds •. WAIT returns with the accumulator zeroed and
the X and Y registers undisturbed.

$FCB4 NXTA4 Increment pointer A4
NXTA4 increments the 16 bit pointer, A4 ($42-$43) and then falls

through to NXTAI.

$FCBA NXTAI Compare Al with A2 and increment Al
NXTAI does a 16 bit compare of Al ($3C-$3D) with A2 ($3E-S3F) and

then increments pointer AI.

$FCC9 HEADR Write a header to cassette tape (] [,][+, lie only)
HEADR writes a header to cassette tape.

$FDOC RDKEY Get an input character
RDKEY is the character input subroutine. It places an appropriate

cursor on the display at the cursor position and jumps to the subroutine
whose address is stored in KSW (locations $38-$39), usually the standard
input subroutine KEYIN, which returns with a character in the accumulator.

$FDIB KEYIN Read the keyboard
KEYIN is the keyboard input subroutine. It reads the Apple/s

keyboard, waits for a keypress, and randomizes the random number seed at
$4E-$4F. When a key is pressed, KEYIN removed the cursor. from the display
and returns with the keycode in the accumulator. (NOTE: On lie with 80
columns, it interprets escape codes s::ld forward arrows.)

$FD35 RDCHAR Get an input character or ESC code
RDCHAR is an alternate input subroutine that gets characters from

the standard input subroutine, and also intreprets the escape codes listed
in the technical reference manual.

$FD67 GETLNZ Get an input line
GETLNZ is an alternate entry point for GETLN that sends a carriage

return to the standard output, then continues into GETLN.

$FD6A GETLN Get an input line with prompt
GETLN is the standard input subroutine for entire lines of

characters, as described in the various· technical reference manuals.
program calls GETLN with the prompt character in location $33; GETLN
falls through to GETLNO.

Your
then

$FD6C GETLNO Get an input line with prompt (alternate entry)
GETLNO outputs the contents of the accumulator as the prompt. The

routine will return with the input line in the input buffer ($20o-S2FF) and
the X register holding the length of the input line. If the user cancel~

the input line, either with too many backspaces or a CONTROL-X, then the
contents of PROMPT ($33) will be issued as the prompt when it gets another
line.

Apple] [Monitor Entry ~oints Page 8

$FD6F GETLNI Get an input line, no prompt
GETLNI is an alternate entry point for GETLN that does not issue a

prompt before it accepts the input line. If, however, the input line is
cancelled, with too long a line, with too many backspaces or with a CONTROL-X,
then GETLNI will issue the contents of PROMPT ($33) as a prompt when it gets
another line.

$FD8B CROUTI RETURN with clear to end-of-line
CROUTI clears the screen from the current cursor position to the

edge of the text window, then falls through to CROUT.

$FD8E CROUT Carriage return output
CROUT sends a RETURN character to the current output device.

$FD92 PRAI Print RETURN and Al in HEX
PRAI sends out a RETURN character followed by the contents of the

16 bit pointer, Al ($3C-$3D) in hex follwed by a hyphen.

$FDDA PRBYTE Print a hexadecimal byte
PRBYTE outputs the contents of the accumulator in hexadecimal on

the current output device. The contents of the accumulator are scrambled.

$FDE3 PRHEX Print a hexadecimal digit
PRHEX prints the lower nybble of the accumulator as a single

hexadecimal value. On return, the contents of the accumulator are scrambled.

$FDED COUT Output a character
COUT calls the current output subroutine. The.character to be

output should be in the accumulator. COUT calls the subroutine whose
address is stored in CSW (locations $36 and $37), which is usually the
standard character output COUTI.

$FDFO COUTI Output- to screen
COUTI displays the character in the accumula tor on the Apple I s-.

screen at the current output cursor position and advances the output cursor.
It places the character using the setting of the Normal/Inverse location.
It handles the control charcters [RETURN], linefeed, backspace, and bell.
It returns with all registers intact.

$FE2C MOVE Move a block of memory
MOVE copies the contents of memory from one range of locations to

another. This subroutine is the same as the MOVE commands in the Monitor,
except it takes its arguments from pairs of locations in memory, low-byte
first. The destination address must be in A4 ($42-$43), the starting source
address in Al ($3C-$3D), and the ending source address in A2 ($3E-$3F) when
your program calls MOVE.

Apple] [Monitor Entry Points Page 9

$FE93

$FE5E LIST Disassemble and list 20 instructions
LIST will disassemble and list to the current output device, 20

assembly language instructions beginning at the location pointed to by Al
($3C-$3D) •

$FE80 SETINV Set inverse text mode
SETI~V sets INVFLG so that subsequent text output to the screen

will appear in inverse mode.

$FE84 SETNORM Set normal text mode
SETNORM sets INVFLG such that subsequent text output to the screen

will appear in normal mode.

$FE89 SETKBD Re-set input to keyboard
SETKBD re-sets the the input hooks ($38-$39) to point to the

Keyboard.

$FE8B INFORT Re-set input to a slot
INFORT re-sets the input hooks ($38-$39) to point to the ROM space

reserved for a perphireal card (or port) in the slot (or port) designated
by the value in the accumulator. (NOTE: In new lie and Ilc monitor, does a
quit if the video firmware was on.)

SETVID Re-set output to screen
SETVID re-sets the output hooks ($36-$37) to the screen display

routines.

$FE95 OUTPORT Re-set output to a slot
OUTPORT re-sets the output hooks ($36-$37) to· point to the ROM

space reserved for a peripheral card (or port) in the slot (or port)
designated by the value in the accumulator.

$FEB6 GO Begin code execution
GO begins execution· of the code pointed to by Al ($3C"$3D).

$FECD WRITF. Write a record on a·cassette tape (][,][+, and /Ie only)
WRITE converts the data in a range of memory to a series of tones

at the cassette output port. Before calling WRItE, the address of the first
da ta byte must be in Al ($3C-$3D) and the address of the last byte in A2
($3E-$3F). The subroutine writes a ten-second· continuous tone as a header,
then writes the data followed by a one byte checksum.

$FEFD READ Read data from a cassette tape (][,][+, and lie onfy)
READ reads a series of tones at the cassette input port, converts

them to bytes, and stores the data in a specified range of memory locations.
Before calling READ, the address of the first byte must be in Al ($3C-$3D)
and the address of the last byte in A2 ($3E-$3F).

$FF2D PRERR Print ERR
PRERR sends the word ERR, and falls through to BELL. On return,

the accumulator contains $87.

Apple] [Monitor Entry Points

$FF3A BELL Output a bell character
BFLL writes a bell [CONTROL]-G character to the current output

device. It leaves the accumulator holding $A7.

Page 10

$FF3F RESTORE Restore all registers
RESTORE loads the 6502's internal registers with the contents of

memory locations $45 through $48, as saved by BREAK.

$FF4A SAVE
SAVE

$45 through
changed and

Save all registers
stores the contents of the 6502's internal registers in locations
$49 in the order A, X, Y, P, S. The contents of A and X are
the decimal mode is cleared.

$FF58

$FF65

$FF69

= $60 Known RTS instruction (IORTS)
This byte must always contain $60.

MON Standard Monitor entry with beep
MON beeps the speaker and falls through to MONZ.

MONZ Standard Monitor entry point (CALL -151)
MONZ displays the "*" prompt and sends control to GETLNZ.

$FF8A DIG Shift hex digit into A2
DIG shifts an ASCII representation of a hex digit in the

accumulatpr into A2 ($3E-$3F).

$FFA7 GETNUM Transfer hex input into A2
GETNUM scans input buffer starting at position Y. Shifts hex

digits into A2 ($3E-$3F). Stops when non~hex digit encountered.

$FFAD ~~TCHR Translate next character
NXTCHR is the loop used by GETNUM to parse each character in the

input buffer and convert it to a value in A2 ($3E-$3F).

$FFFA

$FFFC

$FFFE

NMI Non-maskable interrupt vector
NMI is a two byte pointer to the non-maskable interrupt handler.

RESET Reset vector
RESET is a two byte pointer to the RESET handler routine.

IRQVECT IRQ vector
IRQVECT is a two byte pointer to the interrupt request handler.

23~O: 4C 33
23~2<23~O.2360M

2300<23~O.2360·Y

230D: 33 4C 33 4C 33 4C 33 4C
235D: 13 66 19 66 19 66 19 66
230D<23~D.23634Y

(puts green line next to it)
(note first byte)

Ther. YOU have it: a basic explanation o~ how double hi-res
worKs -- except for one or two anomal ies. The first anomaly
is that NTSC moni.tors have a 1 imited display range. The
second anomaly shows one o~ the features o~ double hi-res
versus a 1 imitation of standard hi-res.

An NTSC color moni tor decides what color to display based on
its ·view· of foul'" bit ·windows· in each 1 ine, starting from
the left edge of the screen. The monitor looks at the first
foul'" bits, determines which color is called for, and then
shifts one bit to the right and determines the color for
this new four-bit window. But remember the color depends not
only on the pattern, but also the p0!Siton of the pattern. To
compensate for relative position -from the left edge o-f the
screen, the monitor Keeps track of where on each 1 ine each
of these window starts. <For'those o-f YOU of the technical
persuasion, this is done through the use of the color burst
sign aI, wh i chi s a 3. 58 MHz. c 1oc K) •

Try this example:

2000:0
2001 <2000.3FFFM
2000<2000.3FFF·Y

2001 : 66
2401 : 66
2801 : 66
2CO L: 66
3001 : 66

20~0:33

3402<20~0.2050·Y

3802<2050.2050·Y
3C02<2050.2050 A Y

Clears screen

Draws orange box in uppper left

Draws blue box be low and
to the I'" i gMt of the orange

Notice that i-f the blue box was drawn at the top of the
screen, next to the orange box ,theY would overlap. Yet, the
boxE!'s were drawn on two different columns, orange on mb2 and
blue on auxl. This can be explained by the previous
paragraph, ,and the 51 iding windows. The moni tor wi 11 deotl~ct

thE!' pattern for orangE!' 51 ightly after the mb2 column, whi Ie
the patteorn for bl ue shows up before col umn auxl.

00000001011001110000000
aux2 I mb2 I aux 1

look at four-bit windows and you'll see
an orange pattern overlaps on both sides

If a pattel"'n i~ I"'ep.ated0l"_a 1 in., this ovel"'lap doesn't
cause a pl"'oblem, since the same colol'" just ovel"'laps itself.
But watch what happens when a new pattel"'n is stal"'ted next to
a diffel"'ent pattel"'n:

3002<2050.2050·Y
2C02<2050.2050 A Y
280?<2050.2050·Y

Puts blue pattel"'n next to 0l"'ange

Wh.l"'e the blue ovel"'laps the ol"'ange, you"ll see a white dot.
This is b.cause one of the foul"'-bit. windows the monitol'" sees
i s a I I 1" s • I f two color- s. ar- e p I ac ed I'" i gh t next toe ac h
othel'" , the monitor- wil I sometimes display a thil"'d color, 01'"

fl"'inge, I"'ight at the bounda.r-y. -Fr"inging- is especially
noticeable when ther-e are a lot of nar-I"'ow columns of
diffel"'ent color-s next to each othel"'. <Next time you I"'un
COLOR TEST take a look at the boundal"'ies between the
co I ors) •

orang. blue

000000010110011111001100
aux2 J mb2 I auxl

THE DOUBLE HI-RES ROUTINES

not. th. four 1"~ in a row
at th. boundary b.tween
orang, and bl Uf

.The second anomaly presents a good lead in to the last par.t
of this ser-ies, the double hi-res I"'outines, which plot
I ines. These I"'outines work I ike the standard hi-res
App I E!'sof t comma.nds, .HGR, HeOlOR , at"!~ HPLOT, excep t they use
the Applesoft ampersand functJon.

CCAt this point BRUN COLOR Del HIRES))

&H
&Cn
&PX,y
&lx,y

TEXT
POKE 49164,0
POKE 49247,0

Clear-s double hi-res sCl"'een
Sets the double hires color to n
Plots a point~at x,y
Draws a line fl"'om the last point to x,y

Returns to 40-column text mode

	partie06_01
	partie06_02
	partie06_03
	partie06_04
	partie06_05
	partie06_06

