
April 10, 1985

User Input Routine
External Reference Specification

Lou Infeld

04/10/85

Copyright 1985 Apple Computer, Inc. Page 1

User Input Routine

TABLE OF CONTENTS

1. IntroductIon
2. General DescrIption
3. Customization and Advanced Uses
4. Information Block

4.1 Format
4.2 Description

4.2.1 General Information section
4.2.1.1 "width"
4.2.1.2 "fill char"
4.2.1.3 "mous-; fill"
4• 2. 1. 4 "cursor"
4.2.1.5 "control"
4.2.1.6 "beep"
4.2.1.7 "immediate"
4.2.1.8 "entry_type"
4.2.1.9 "bord ch"

4.2.2 Termination Information section
4.2.2.1 "exit type"
4.2.2.2 "last-event"
4.2.2.3 "last-ch"
4.2.2.4 "last-mod"
4.2.2.5 "n chars"
4.2.2.6 "char list"
4.2.2.7 "mod list"
4.2.2.8 "tern list"

4.2.3 Internal Information section
4.2.3.1 "origin_x" and "origin_i'
4.2.3.2 "cursory" and "cursor-y"
4.2.3.3 "cursor pos"
4.2.3.4 "input length"
4.2.3.5 "slow blink" and "fast blink"

4.3 Default values
5. Interface Description

5.1 Pascal
5.1.1 General Description
5.1.2 Format of Information Block
5.1.3 Initializing Input Information
5.1.4 Retrieving Input Information
5.1.5 Setting Input Information
5.1.6 Calling the User Input Routine
5.1.7 Examples

5.2 Basic
5.2.1 &INITINPUT
5.2.2 &GETINFO(IB%)
5.2.3 &SETINFO(IB%)
5.2.4 &INPUT(IS$,mlX)
5.2.5 &EXITINPUT
5.2.6 Examples

5.3 Assembler
5.3.1 Format of Calls
5.3.2 Format of Information Block
5.3.3 Initializing Input Information
5.3.4 Retrieving Input Information

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 2

April 10, 1985

User Input Routine

5.3.5 Setting Input Information
5.3.6 Calling the User Input Routine
5.3.7 Examples

Copyright 1985 Apple Computer, Inc. Page 3

User Input Routine

1. Introduction

Most Applications at one point or another require that the user key in some textual
information. In the past there has been little standardization in the way that an "Input
Routine" interfaces with the user. Pascal and Basic each have different user input
conventions. In fact they completely contradict each other; a user has to completely
relearn how to interact with either language after using the other. Many applications use
the "Input Routine" built into the language environment being used. Other applications
use independently developed "Input Routines" which are more sophisticated and user
friendly. However, the poor user of several applications has different interfaces to
contend with, each with its own standards and idiosyncrasies.

To try to solve these problems, Apple Computer has published several documents encouraging
"standard" design guidelines including how an "Input Routine" should look and behave. Now
this "User Input Routine" is being made available to"Apple II developers. It encorporates
all the standards proposed by Apple Computer and is available for the following
environments:

Apple II Assembler
Apple II AppleSoft
Apple I I Pascal

(with or without Console Driver)
(with or without Console Driver)
(with Console Driver)

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 4

Uler Input Routine

2. General Description

The "User Input Routine" attempts to fulfill the standards published in the "Apple I Ie
Design Guidelines" manual (pp 24-37), Bruce Tognazzini's memo "UPDATE: Human Interface
Design Guidelines" dated August 9, 1983, as well 8S de facto standards used in the popular
AppleWorks program.

The "User Input Routine" is called by the application with a string variable containing 8

default (can be null) as well as the maximum number of characters that will fit in the
string variable. A "string variable" is basically a buffer in which the first byte
contains the "length" of the string. The following bytes are the actual characters in the
string.

The "User Input Routine" will display a field on the screen consisting of the default
string followed by a series of "fill" characters. A cursor will be visible to the right
of the default string. The cursor is the "Insert Cursor" as described in the Guidelines.
When this cursor is present, typing any printing character will place that character in
the field at the current cursor position. All characters in the field to the right of the
cursor are shifted one position. If the user presses the CONTROL key and "E" together,
the "Replace Cursor" appears. When this cursor is present, typing any printing character
will place that character in the field replacing the current character under the cursor.
Pressing the CONTROL key and "E" again will return the "Insert Cursor".

The user can edit the field by adding or replacing characters or by using editing
commands. When the user is satisfied with the string in the field, he presses the RETURN
key. This will terminate the "User Input Routine" and return control back to the
application. The user's response will be in the string variable specified when the "User
Input Routine" was called.

If the application specifies a string variable that can contain more characters than the
width of the field, the "User Input Routine" will retain characters that "falloff" the
right edge of the field. These characters will "reappear" if characters in the field are
deleted.

The following editing commands are supported:

LEFT-ARROW
RIGHT-ARROW
CONTROL-D
DELETE
CONTROL-F

CONTROL-E
CONTROL-X
CONTROL-Y

CONTROL-Z

Moves cursor left within field
Moves cursor right within field
Deletes character to the left of the cursor
Deletes character to the left of the cursor
Deletes character under the cursor (Forward

Delete)
Toggle between insert and delete cursors
Deletes all characters in the field
Deletes all characters from present cursor

position to end of field (including
characters saved by insert)

Restores default string

April 10. 1985 Copyright 1985 Apple Computer. Inc. Pa~e 5

User Input Routine

3. CustORizatlon and Advanced-Uses

In general, the "User Input Routine" will behave as described in section 2. However, the
"User Input Routine" can be customized to the particular needs of the application. A
structure called the Information Block is used as a conduit between the application and
the "User Input Routine". The application tells the "User Input Routine" how to react to
the user's keystrokes and conversely the "User Input Routine" tells the application all
about its current status.

If a viewport (window) has been defined, the "User Input Routine" will respect it with the
one restriction: the last two positions in the window can not be included in the input
field. This restriction is necessary to eliminate scrolling and wrapping problems. A
field as large as 254 characters can be specified.

Normally, when the RETURN key or the ESCAPE key is pressed, the "User Input Routine" will
terminate with the Input String set to the characters currently in the field on the screen
(without the fill characters). However, other terminating characters can be configured to
cause termination instead or in addition to RETURN and ESCAPE. Also the "User Input
Routine" can be interrupted rather than terminated. In this case, when the "User Input
Routine" is called again, it continues in the state it was in when it was interrupted
(assuming the application program has not changed any parameters in the Information
Block). This feature is useful for a help facility. A help character (e.g. Open App1e-?)
can be configured to interrupt the "User Input Routine" for a help message in the middle
of editing.

Up to 20 characters can be specified as termination characters. For each termination
character, the application can specify whether the Open Apple or Solid Apple key must be
pressed with the character. Additionally, for each termination character, the application
can specify whether to completely terminate the "User Input Routine" or just "interrupt"
it temporarily.

An "immediate" mode is optionally available that allows the application to constantly gain
control during the input process. This feature can be used by the application, for
instance, to update a clock display, check for mouse movements or run in demonstration
mode.

Anril 10. 1985 Copyri~ht 1985 Apple Computer. Inc. Page 6

User Input Routine

4. lnforaation Block

4.1 Jl'onaat

The InformatIon Block is divided into three logical sections: General Information,
TermInatIon Information, and Internal Information.

max terms

,
width
fill char
mouse fill

cursor

control

beep

immediate

bord ch

last event
last ch
last mod
n chars

equ

equ

db
db
db

db

db

db

db

db

db

db

db
db
db
db

20

*

o
" "
o

o

o

o

o

o

o

o

o
o
o
o

;Maximum number of terminators

General Information

;Width of the field on the screen
;Fill character
; O-use "fill_char" as fill character
j1-use MouseText ghost underline
jcurrent cursor being used

jO-insert cursor
jl-replacement cursor

jO-Control chars will be ignored
jl-Control chars allowed as input
;O-errors will not be beeped
;l-errors will be beeped
jO-calling routine gets control after the
j complete input is keyed in by user
jl-calling routine gets control after each
; keypress check
jlndicates type of entry into routine
;O-initial entry
jl-interrupt re-entry
j2-immediate re-entry
;char to blink outside of field

Termination Information

jlndicates which termination condition
; occurred
jO-not terminated yet
;not O-index into terminating char list
jlast event type (not used)
;character user keyed in
jkeypress modifier
jNumber of terminator chars currently

defined

jThe next 3 items define what keystrokes
will terminate or interrupt the routine.

char list
mod list

term list

ds
ds

ds

max terms jChars which will terminate input
max terms jModifiers for each char in"char list"

jO-none
j l-open Apple
j2-Solid Apple
j3-Either Open or Solid Apple

max terms ;Termination types for each char in

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 7

origln_x
originJ
cursor x
cursor_y
cursor_pos
input_length
slow blink
fast blink

db
db
db
db
db
db
dw
dw

o
o
o
o
o
o
o
o

User Input Routine

"char list"
to-terminate input
;l-interrupt input

Internal Information

;x coordinate of start of field
;y coordinate of start of field
;x coordinate of cursor in field
;y coordinate of cursor in field
;position of cursor in field (I •• width)
;length of Input String (incl invisib part)
;slow blink rate
;fast blink rate

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 8

User Input Routine

4.2 Description

4.2.1 General Inforaation section

4.2.1.1 "width"

This parameter tells the "User Input Routine" how wide to make the field on the screen.
When the "User Input Routine" is called, it displays the default value in the Input String
on the screen at the current cursor position. If there is any room left in the field on
the screen, fill characters are displayed. The parameter "fill char" is used as the fill
character. The number of fill characters displayed is "width" ;inus -"length of Input
String". "Width" is initially 254 characters.

If the value of "width" is greater than the number of character positions from the start
of the field to the end of the window -2, the "User Input Routine" will reduce "width"
accordingly.

4.2.1.2 "fill char"

This is the fill character that is used in the field. "Fill char" is initially the blank
character.

4.2.1.3 "mouse fill lt

If this parameter is I, the MouseText ghost underline is used as the fill character. If
"mouse fill" is 0 the character in "fill char" will be used as described above.
ItMouse=fill" is initially O.

It is the application's responsibility to determine whether MouseText is available in ROM
before using this option. The following algorithm can be used to determine whether
MouseText is available:

If memory location $FBB3 contains $06
AND

memory location $FBCO does not contain $EA

then MouseText is available

4.2.1.4 Itcursorlt

This parameter represents the current cursor type being used. If it is 0, the "Insert
Cursor" is in effect. If it is I, the "Replace Cursor" is in effect. If the user presses
CONTROL and "E", this parameter changes value. The application can force the "User Input
Routine" to start with either of the cursor types by setting "cursor" accordingly before
calling the routine. "Cursor" is initially O.

4.2.1.5 Itcontrollt

If this parameter is I, control characters (ASCII values less than 32) are allowed as
input from the keyboard. To insert a control character, the user must press the CONTROL
key, the Open Apple key and the corresponding alphabetic key. The alphabetic character is
obtained by added 64 to the ASCII value of the control that is desired. The actual value
inserted in the string is the ASCII value + 128 which will appear on the screen as the
inverse of the corresponding character. For example, to insert the Carriage Return
character (ASCII 13), the user presses CONTROL, Open Apple and "M" (ASCII 77). The screen

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 9

User Input Routine

will show an inverse "M" and .the string will contain the value 205 (77+128). If "control"
is 0, control characters will not be allowed and will result in a beep. Note that editing
characters and termination characters are not affected by the setting of "control".
"Control" is initially 0.

4.2. 1. 6 "beep"

If this parameter is 1, any illegal keypresses will cause the "User Input Routine" to
beep. If this parameter is 0, there will be no beeps. "Beep" is initially 1.

4.2.1.7 "i.-ediate"

If this parameter is 1, the "User Input Routine" will return to the application program
after each keypress check. When the application next calls the "User Input Routine", it
will be considered an "immediate" re-entry. If this parameter is 0, the "User Input
Routine" will return to the application program only after a termination character is
pressed.

During "immediate" processing, the application can tell whether a key has been pressed by
checking the parameter "last key". If it is not 0, a key has been pressed and its ASCII
value is in that parameter (its corresponding keypress modifier is in "last mod"). When
the "User Input Routine" is re-entered, it will check "last key" and "last ;od". If there
is a keystroke, it will "process" it, otherwise it will look for the next keystroke. The
application can therefore "process" the keystroke before the "User Input Routine". At
this point, the application can leave the keystroke intact and re-enter the "User Input
Routine" which will also "process" the keystroke. Alternatively, the application can set
"last key" and "last mod" to 0 which will cause the keystroke to be ignored by the "User
Input-Routine". -

Applications using "immediate" mode have the additional responsibility to keep the cursor
blinking at the correct rate. See the description of "slow blink" and "fast blink" for
the necessary considerations.

"Immediate" is initially 0.

4.2.1.8 "entry type"

This parameter tells the "User Input Routine" what type of entry is being made. If the
value of "entry_type" is 0, this is an initial entry and a new field is established. If
the value is 1, the routine assumes it is being re-entered after an interrupt termination.
If the value is 2, the routine assumes it is being re-entered after "immediate" processing
by the application. This parameter is managed by the "User Input Routine" and normally
does not need to be changed by the application.

4.2.1.9 "bard ch"

This character will be used by the "User Input Routine" as the blink character when the
cursor is outside of the field. This condition occurs when the field is completely filled
in. "Bord chIt is initially blank.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 10

User Input Routine

4.2.2 Terulnation Inforaati~ section

4.2.2.1 "exit type"

When the "User Input Routine" terminates, this parameter contains the "type" of
termination that occurred. Termination characters are numbered from 1 to 20. "Exit type"
will contain the ,number of the termination character that caused the termination. If
"exit type" is 0, this indicates that the "User Input Routine" has not terminated yet
(i.e. i1immediate" mode is in effect).

4.2.2.2 "last event"

This parameter is not currently used.

4.2.2.3 "last ch"

This parameter contains an ASCII value if the last keypress check sensed a keystroke or O.
It is useful for applications using the "immediate" mode of the "User Input Routine".

4.2.2.4 "last mod"

This parameter contains the keystroke modifier if a keystroke was sensed by the last
keypress check. Otherwise it is O. The possible values of "last mod" are:

o - no modifier pressed
1 Open Apple key pressed together with key
2 Solid Apple key pressed together with key
3 Either Apple keys pressed together with key

4.2.2.5 "n chars"

This parameter is the number of termination characters that have been configured.
"N_chars" is initially 2 (for RETURN and ESCAPE).

4.2.2.6 "char list"

"Char list" is a 20 byte table containing the ASCII values of the configured termination
chara~ters. For the alphabetic characters "A" to "Z", only the upper case ASCII values
need be in the table.

Only the first "n_chars" bytes are looked at by the "User Input Routine". The first 2
bytes in this list are initially 13 and 27 respectively (these values are the ASCII codes
for RETURN and ESCAPE).

4.2.2.7 "mod list"

"Mod list" is a 20 byte table which specifies what keystroke modifiers are needed for each
termination character to be recognized. A value of 0 indicates that no modifiers can be
pressed. A value of 1 indicates that the Open Apple key must be pressed together with the
termination character. A value of 2 indicates that the Solid Apple key must be pressed.
A value of 3 indicates that either the Open Apple or Solid Apple keys must be pressed
together with the termination character.

4.2.2.8 "terM. list"

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 11

User Input Routine

"Term list" is a 20 byte table which specifies the termination type of each termination
character. A value of ° indicates that a normal termination will occur when the
termination character (along with any keystroke modifiers) is pressed. A value of 1
indicates that an "interrupt" termination will occur.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 12

Uaer Input Routine

4.2.3 Internal Inforaation Dection

4.2.3.1 "origin x" and "origin I"

These parameters contain the relative coordinates of the start of the field within the
current window. When the "User Input Routine" is entered initially (not reentered after
an "interrupt" termination or "immediate" termination), "origin_x" and "originy" are set
to the current relative cursor position.

4.2.3.2 "cursor x" and "cursor I"

These parameters contain the relative coordinates of the cursor within the current window.
When the "User Input Routine" is entered initially, the cursor is positioned after the
default Input String in the field and "cursor_x" and "cursory" are set to that coordinate
location.

4.2.3.3 "cursor pos"

This parameter contains the relative position of the cursor in the field (not in the
window). The value of "cursor_pos" is in the range 1•• "width".

4.2.3.4 "input length"

This parameter contains the current length of the Input String. If the maximum size of
the Input String is larger than the width of the field on the screen, the "User Input
Routine" uses the "invisible" part of the Input String to save characters that were
"pushed" out of the field by insertions. Therefore, "input length" may have a value
greater than "width". However, in this case, the length of-the Input String actually
returned to the user is still in the range 1.. "width". The returned length of the Input
String is contained in the first byte of the Input String.

4.2.3.5 "slow blink" and "fast blink"

These parameters are the count-down timers used to get the correct blinking frequency for
the cursor. The cursor should blink at 80 cycles per minute with one phase taking twice
as long as the other. Assuming that the cursor is "under" a character in the field and
the "insert" cursor is on, the character should be visible twice as long as the underline.
If the "replace" cursor is on, the inverse character should be visible twice as long as
the normal character. The initial values of "slow blink" and "fast blink" will cause the
correct cursor blink rate. However, if "immediate" mode is turned on, the cursor will no
longer blink at the correct rate because the application program will get control in the
middle of the blink loop. It is up to the application program to change "slow blink" and
"fast blink" so that the cursor will again blink at the correct rate.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 13

User Input Routine

4.3 Default values

The default values of the Input Information Block are:

Current relative cursor coordinate in window
defined by Console Driver

width-254;
fill char- I I;

mouse fill-O;
curSOr-Oj
control-Oj
beep-1 ;
immediate-Oj
entry_type-O;
exit type=O;
bord-ch-l I.- ,
last_event-O;
last_ch-O;
last_mod-O;
n chars=2;
char list[1]-chr(13);
char-list[2]-chr(27);
mod list[I]-O;
mod-Ust[2]"0;
exit list [l],,0;
exit=list[2]"0;
origi~x=

origin.J=
cursor x=

{RETURN}
{ESCAPE}

cursor.J=
cursor_pos=O;
input length=O;
slow_blink= I
fast blink=

April 10, 1985

Values necessary to blink cursor
80 times per minute

Copyright 1985 Apple Computer, Inc. Page 14

User Input Routine

5. Interface Description

5.1 Apple II Pascal

5.1.1 General Description

The Apple II Pascal version of the "User Input Routine" is part of the Console Driver and
therefore requires that the Pascal environment be loaded with the correct Attach files.
The Console Driver is configured as unit number 130.

To access the "User Input Routine"t a Pascal program must make calls to the Console
Driver. Three "unitstatus" calls are provided to initialize t set and get the Information
Block. The actual call to the "User Input Routine" is in the form of a "unitread".

Sections 5.1.3 to 5.1.6 will describe each of the Console Driver calls in detail.

April 10 t 1985 Copyright 1985 Apple Computer t Inc. Page 15

User Input Routine

5.1.2 Foraat of the Inforaatlon Block

The following is the Pascal equivalent of the Information Block:

const max terms-20; {Maximum number of terminators}
type byt~-0•• 255;
var Input_Info:packed record

{General Information}
{-------------------}

width:byte;
fill_char: char;
mouse_fill:byte;

cursor:byte

control:byte;

beep:byte;

immediate: byte;

entry_type: byte;

bord_ch: char;

exit_type:byte;

last_event: byte;
last_ch:char;
last_mod:byte;
n_chars:byte;

char_list: packed

mod list :packed

{Width of the field on the screen}
{Fill character}
to-use "fill char" as fill character
I-use Mous~ext ghost underline}

{current cursor being used
a-insert cursor
I-replacement cursor}

{a-Control chars will be ignored
I-Control chars allowed as input}

to-errors will not be beeped
I-errors will be beeped}

to-calling routine gets control after the
complete input is keyed in by user

I-calling routine gets control after each
printable character is input}

{Indicates type of entry into routine
O-ini tial entry
I-interrupt re-entry
2-immediate re-entry}

{char to blink outside of field}

{Termination Information}
{-----------------------}
{Indicates which termination condition occurred

O-not terminated yet
not a-index into terminating char list}

{last event type (not used)}
{character user keyed in}
{keypress modifier}
{Number of termination chars defined}

{The next 3 items define what keystrokes will
terminate or interrupt the routine. The case
of each character is ignored}

array [l •• max terms] of char;
{Chars which will terminate input}

array [l •• max terms] of byte;
{Modifiers for each char in "char list"

a-none
1-0pen Apple
2-Solid Apple

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 16

term_lis t: packed

User Input Routine

3-Either Open or Solid Apple}
array [1 •• max terms) of byte;

{Termination types for each char in "char list"
O-terminate input
I-interrupt input}

{Internal Information}
{--------------------}

origin_x: byte;
origin_y: byte;
cursor x: byte;
cursor-y: byte;
cursor pos: byte;
input~ength:byte;
slow_blink: integer;
fast_blink: integer;

end {Input_Info};

{x coordinate of start of field}
{y coordinate of start of field}
{x coordinate of cursor in field}
{y coordinate of cursor in field}
{position of cursor in field (1 •• width)}
{length of Input String (incl invisible part)}
{slow blink rate}
{fast blink rate}

The text of this data structure is in the file II INPUT. INFO. TEXT" on the release disk.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 17

User Input Routine

5.1.3 Initializing Input Information

To set the User Input Information Block to its default values, call the procedure:

init mode:-24577; {Console Driver command $6001}
unit~tatus(130,Input_Info,init_mode);

OR if the console driver is also to be initialized use:

unitclear(l30) ;

Note: the variable "Input Info" in the unitstatus call above is not actually used by the
"User Input Routine". It is needed in the "unitstatus" call because of its parameter
structure.

An automatic "unitclear" is performed by the Pascal system when it is booted.

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 18

User Input Routine

5.1.4 Retrieving Input Information

To get the current settings of all the Input Information parameters, call the procedure:

get info:-16385; {Console Driver command $4001}
unitstatus(130,Input_Info,get_info);

where "Input_Info" is a record with the format specified in 5.1.2.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 19

User Input Routine

5.1.5 Setting Input Information

To change the data in the User Input Information Block, call the procedure:

set info:-8193j {Console Driver command $2001}
unitstatus(130,Input_Info,set_info)j

where "Input Info" is a record with the format specified in 5.1.2. If this call is never
made, the "D;er Input Routine" uses the default values.

Note that changing any parameters in the record will not have any effect until the
"unitstatus" call is made.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 20

User Input Routine

5.1.6 Calling the User Input Routine

To call the "User Input Routine", call the procedure:

unitread(130,Input_Str,max_Iength);

where "Input_Str" is a string supplied by the calling routine where the "User Input
Routine" will store the user's keystrokes. "Max length" specifies the maximum number of
characters which will fit in the string (usually-80 unless "Input Str" is defined as an
extended string).

If the Input String has an initial value, the "User Input Routine" will assume that it is
a default value and display it.

Upon return from "unitread", IORESULT will contain the "exit_type" value which is the
index into the "char list" of terminating characters.

5.1.7 Exa:aples

The program "Demo" is a good example of the "User Input Routine" in action. It can be
used to tryout many of the features.

In the simplest use of the "User Input Routine", the application displays a question on
the screen using the Console Driver and then calls the "User Input Routine" for the
answer. The following program segment illustrates the above:

VAR
question,answer:string;

question:='What is your name? ';
answer:=" ;
unitwrite(130,question[1),length(question));
unitread(130,answer,80);

If the application wants to provide a default name:

VAR
question,answer:string;

question:='What is your name? ';
answer:='Fred';
unitwrite(130,question[1) ,length(question));
unitread(130,answer,80);

If the application wants to provide the user with a small visible field:

{Console Driver command $4001}
{Console Driver command $2001}

CaNST
get info"16385;
set=infox 8193;

VAR
question,answer:string;
Input Info:packed record

- {use record structure in 5.L2}

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 21

User Input Routine

e~;......
{Get the current Information Block}

unitstatus(130,Input_Info,get_info);

{Change the desired parameters}

Input Info.width:-12;
Input=Info.fill_char:-'.';

{Set the updated Information Block}

unitstatus(130,Input_Info,set_info);

{The rest of the logic is the same}

question:-'What is your name? ';
answer:-'Fred';
unitwrite(130,question[1],length(question»;
unitread(130,answer,80);

Anril 10. 1985 Copyri~ht 1985 Apple Computer, Inc. Page 22

User Input Routine

5.2 Basic

The Basic version of the "User Input Routine" is in the form of several AMPERSAND ('I.')
calls. The AMPERSAND facility allows a machine-language program to be loaded from a Basic
program and its functions called in the form of Basic commands. The following commands
are available:

&INITINPUT
&GETINFO(IB:t)
&SETINFO(IB%)
&INPUT (IS$)
&EXITINPUT

Initialize Information Block
Get Information Block
Set Information Block
Call "User Input Routine"
Removes package from Ampersand hooks

The release disk contains the "User Input Routine" in a "relocatable" file "INPUT.REL".
The EdAsm RLOAD facility must be used to load "INPUT~REL" from within the application
program.

5. 2. 1 &INITTIiPlIT

This call will initialize the Information Block to its default values. See 4.3 for the
default values associated with each parameter.

5.2.2 &GETINFO(IB%)

This call retrieves the current Information Block and stores it into the integer array
IB%. The array IBi. should be dimensioned for at least 22+3*max terms integers where
"max terms" is currently 20. The contents of each integer in rEi. is as follows:

IB%(l) .. width IBi.(2) .. fill char IB7.(3) .. mouse fill
IB%(4) cursor IB%(5) .. control IBi.(6) .. beep
IB%(7) immediate IBi.(8) .. entry_type IB%(9) '" bord ch
IB%(lO) = exit_type IB%(ll) '" last event IB%(l2) .. last ch
IB%(l3) .. last mod IBi.(l4) .. n chars IBi.(l5) '" charlist
IB%(35) mod list IB%(55) .. term lis IBi.(75) .. origin_x
IB%(76) originJ IBi.(77) .. cursor x IB%(78) '" cursorJ
IB%(79) cursor_pas IB%(80) '" input_length IBi.(8l) .. slow blink
IB%(82) '" fast blink

5.2.3 &SETINFO(IB%)

This call moves the contents of the integer array IBi. into the Input Information Block.
The format of IBi. is assumed to be the same as described above.

5.2.4 &INPlIT(IS$)

This is the actual call to the "User Input Routine". The variable "IS$" is a string which
contains the default Input String and will contain the result of the user's input.

5. 2. 5 &KXITTIiPlIT

This call will terminate the "User Input Routine" and disconnect the ampersand package.

5.2.6 Exaples

AnTil 10. 1985 Copyright 1985 Apple Computer, Inc. Page 23

User Input Routine

The program "Demo" is a good -example of the "User Input Routine" in action. It can be
used to tryout many of the features.

In the simplest use of the "User Input Routine", the application displays a question on
the screen and then calls the "User Input Routine" for the answer. The following program
segment illustrates the above:

PRINT CHR$ (4) ; "BLOAD INPUT. OBJ".
PRINT "What is your name? ";
&INPUT(IS$)

If the application wants to provide a default name:

PRINT CHR$(4);"BLOAD INPUT.OBJ"
PRINT "What is your name? ";
IS$-"Fred"
&INPUT(IS$)

If the application wants to provide the user with a small visible field:

DIM IB%(82)
PRINT CRR$ (4) ; "BLOAD INPUT. OBJ"
&GETINFO(IB%)
IB%(1)-20:REM width
IB%(2) ..".":REM fill char
&SETINFO(IB%) -
PRINT "What is your name? ";
IS$="Fred"
&INPUT(IS$)

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 24

Uoer Input Routine

5.3 A8IIe1IIIbier

The Assembler version of the "User Input Routine" provides a set of calls similar to
ProDOS MLI calls which provide the following functions:.

Initializing Input Information
Retrieving Input Information
Setting Input Information
Calling the User Input Routine

The release disk contains an "absolute" binary file "INPUT.OBJ" and a "relocatable" file
"INPUT.REL". "INPUT.OBJ" was generated from "INPUT.REL" with the starting address $4000.
If this starting address is not satisfactory for the application, the program "RELOCATOR"
must be used to generate a new "absolute" file which starts at the desired location.

5.3.1 Poraat of the' Inforaation Block

The following is the Assembler equivalent of the Information Block:

maxterms equ 20

Inputlnfo equ *
.
t

width db 0
fill char db " "
mousefill db 0

cursor db 0

control db 0

beep db 0

immediate db 0

entrytype

bordch

;
exit type

lastevent
lastch
lastmod

db

db

db

db
db
db

o

o

o

o
o
o

;Maximum number of terminators

General Information

;Width of the field on the screen
;Fill character
;O-use "fillchar" as fill character
;1-use MouseText ghost underline
;current cursor being used

;O-insert cursor
;1-replacement cursor

;O-Control chars will be ignored
;1-Control chars allowed as input
;O-errors will not be beeped
;1-errors will be beeped
;O-calling routine gets control after the
; complete input is keyed in by user
;1-calling routine gets control after each
; printable character is input
;Indicates type of entry into routine
;O-initial entry
;1-interrupt re-entry
;2-immediate re-entry
;char to blink outside of field

Termination Information

;Indicates which termination condition
; occurred
;O-not terminated yet
;not Q-index into terminating char list
;last event type (not used)
;character user keyed in
;keypress modifier

April 10, 1985 Copyright 1985 Apple Computer, Inc. Pap;e 25

nchars db o

User Input Routine

;Number of terminator chars currently
defined

;The next 3 items define what keystrokes
will terminate or interrupt the routine.

charllst
mod list

termlist

ds
ds

ds

maxterms ;Chars which will terminate input
max terms ;Modifiers for each char in"char1ist"

;O-none
;1-0pen Apple
;2-Solid Apple
;3-Either Open or Solid Apple

maxterms ;Termination types for each char in
"char1ist"

;O-terminate input
;l-interrupt input

Internal Information

originx db 0 ;x coordinate of start of field
originy db 0 iY coordinate of start of field
cursorx db 0 ;x coordinate of cursor in field
cursory db 0 ;Y coordinate of cursor in field
cursorpos db 0 iposition of cursor in field (l •• width)
input1ength db 0 ;length of Input String (inc1 invisib part)
slowblink dw 0 ;slow blink rate
fastblink dw 0 ifast blink rate

5.3.2 Foraat of Calls

The "User Input Routine" has only one entry for all the functions. It is located at the
beginning of the code. A call is made as follows:

JSR INPUT
DB COMMAND
DW PARAMPTR
BNE ERROR

The label "INPUT" is the starting address of the "User Input Routine".
will determine this location when he relocates the routine in memory.
there should be a statement of the form:

The programmer
In the application.

INPUT EQU nnnn

where "nnnn" is the starting address of the "User Input Routine".

"COMMAND" is a number which specifies which function is requested. "PARAMPTR" is a two
byte pointer to a parameter list.

When the "User Input Routine" returns to the calling program. the carry flag will be set
if an error has been detected. The only possible error that is detected by the "User
Input Routine" is an illegal command error (3). This occurs if "COMMAND" is not one of
the available function numbers.

April 10. 1985 Copyright 1985 Apple Computer. Inc. Page 26

User Input Routine

The calling program should check the carry flag (as in the BNE instruction above) and
report the appropriate error. The actual error type is passed to the calling program in
the A-register.

5.3.3 Initializing Input Information

This call will initialize the Information Block to its default values. See 4.3 for the
default values associated with each parameter. This call has the following format:

JSR
DB
DW

INPUT
10
o

;command number for Initialize

5.3.4 Retrieving Input Information

This call will retrieve the current contents of the Input Information Block. The format
of the call is:

JSR
DB
DW

INPUT
11
INPUT INFO

;command number for Get Input Information

where "INPUTINFO" is the address of a buffer where the contents of the Information Block
is to be moved. This buffer will have the format as described in 4.1.

5.3.5 Setting Input Information

This call will set the Input Information Block to values in the specified buffer. The
format of the call is:

JSR
DB
DW

INPUT
12
INPUTINFO

;command number for Set Input Information

where "INPUTINFO" is the address of the buffer. This buffer must have the format as
described in 4.1.

5.3.6 Calling the User Input Routine

This call will perform the actual input. The format of the call is:

JSR
DB
DW

INPUT
13
PARAH

;command number for Input

where the format of "PARAH" is:

PARAH

STRING

DW STRING
DB maxlength
STR "This is the default"

Upon return from this call, the A register will contain the "exittype".

April 10 t 1985 Copyright 1985 Apple Computer, Inc. Page 27

User Input Routine

5.3.7 !x.uples

The program "Demo" is a good example of the "User Input Routine" in action. It can be
used to tryout many of the features.

In the simplest use of the "User Input Routine", the application displays a question on
the screen and then calls the "User Input Routine" for the answer. The following program
segment illustrates the above:

QUESTION STR "What is your name ? "
ANSWER STR ""

DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-l
PARAM DW ANSWER

DB MAXLEN

display question

LOOP
LDY Ho
LDA QUESTION+1,Y
JSR $FDED
INY
CPY QUESTION
BCC LOOP

get answer

JSR INPUT
DB 13
DW PARAM

;display the char

If the application wants to provide a default name:

QUESTION STR "What is your name ? "
ANSWER STR "Fred"

DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-l
PARAM DW ANSWER

DB MAXLEN

display question

LOOP
LDY #0
LDA QUESTION+l,Y
JSR $FDED
INY
CPY QUESTION
BCC LOOP

get answer

;display the char

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 28

User Input Routine

JSR INPUT
DB 13
DW PARAM

If the application wants to provide the user with a small visible field:

QUESTION STR "What is your name? "
ANSWER STR "Fred"

DS 81-*+ANSWER
MAXLEN EQU *-ANSWER-l
PARAM DW ANSWER

DB MAXLEN
INPUT INFO DS 84

get current Information Block

JSR INPUT
DS 11
DW INPUT INFO

change values in Information Block

LDA 1180
STA INPUTINFO
LDA 11"."
STA INPUTINFO+l

jwidth

jfillchar

set Information Block

JSR INPUT
DS 12
DW INPUT INFO

display question

LOOP
LDY flo
LDA QUESTION+l,Y
JSR $FDED
INY
cpy QUESTION
Bce LOOP

get answer

JSR INPUT
DB 13
DW PARAH

jdisplay the char

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 29

ConsoleS tuff Library
External Reference Specification

11/02/84
Lou Infeld

BETA Release Version

page 1

11/02/84

TABLE OF CONTENTS

ConsoleStuff Library ERS Lou Infeld

1. Introduction
2. Description

2.1 Interface Constants and Data Structures
2.1.1 Console Driver commands
2.1.2 MouseText characters
2.1.3 Console Buffer data structure
2.1.4 Box Comment data structure

2.2 Console Buffer procedures
2.2.1 CWrite
2.2.2 CWriteCh
2.2.3 CWriteStr
2.2.4 CWriteIStr
2.2.5 CWriteln
2.2.6 CWriteNum
2.2.7 CGotoxy
2.2.8 CPlace
2.2.9 Window
2.2.10 Line
2.2.11 Box

2.3 Box Comment procedure
2.4 Help procedures
2.5 GetXY procedure

page 2

11 102/84

1. Introduction

ConsoleStuff Library ERS Lou Infeld

The Console Driver provides a quick method for an application to display text on the
screen. It provides many commands to quickly move around the screen, blank portions
of the screen, divide the screen into windows and other useful facilities. To use
these, a buffer containing text as well as console commands has to be sent to the
Console Driver.

The ConsoleStuff Library is a Pascal unit that an application can use to build the
necessary console buffer which can then be sent to the Apple II Console Driver.
Many text formatting routines are in this library as well as other utility routines
to write on the screen including Boxes, Message Areas and Help Screens.

Since this unit requires the Apple II Console Driver to be in the application's
environment, the Console Driver must be loaded when the Pascal system is booted.

The ConsoleStuff Library contains a large (1024 bytes) Console Buffer which is used
to send console data and commands to the Console Driver. Most of the routines in
the library build up this buffer until it is full or until the calling routine
explicitly requests that the buffer be sent to the Console Driver. Only when the
Console Driver gets the buffer does anything happen on the screen. Since the
Console Driver writes onto the screen very rapidly, a Pascal application gets
machine language speed from its console output. This is in dramatic contrast to the
built-in Pascal console interface.

In addition to formatting routines, this library also contains routines which
display Boxes for Comments or Help Screens. These Boxes appear lion top" of the
screen overwriting whatever was beneath. When the application is finished with these
Boxes, they disappear and the text that was underneath reappears.

page 3

11/02/84

2. Description

ConsoleStuff Library ERS Lou Infeld

2.1 Interface Constants and Data Structures

Constants and variables defined in the Interface section of the ConsoleStuff unit
define mnemonics for the Console Driver commands and the Console Buffer and the
Box Comment procedures.

2.1.1 Console Driver con-ands

Instead of using the numerical values of the Console Driver commands, the
ConsoleStuff unit defines a character constant for each command which the
application can use. The following character constants are defined as Console
Driver commands:

c Reset View- -cyeg_Line
c On Cursor
c-Bell
c D Cursor
c Cl View
c-Normal
c-DLE
c Vert Pos- -c Horiz Pos
c-D Scroll
c Off Mouse- -c Cl Line
c_Escape
c Cl End Line- - -c U Cursor

{chr(Ol)} ,
{chr(03)},
{chr(OS)},
{chr(07)} ,
{chr(lO)},
{chr(l2)} ,
{chr(l4)} ,
{chr(l6)} ,
{chr(l8)} ,
{chr(20)},
{chr(22)},
{chr(24)},
{chr(26)},
{chr(27)},
{chr(29)},
{chr(31)}

c_Set_View {chr(02)},
c_Restore_View {chr(04)},
c_Off_Cursor {chr(06)},
c L Cursor {chr(08)},
c Cl To End {chr(ll)},
~Retu~ Cursor{chr(13)},
~Inverse {chr(lS)},
c-Horiz Shift {chr(17)},
c-Cl Beg View {chr(19)},
c-C~sor-Move {chr(21)},
~U Scroll {chr(23)},
c-H~me Cursor {chr(2S)},
C-On Mouse {chr(27)},
c-R Cursor {chr(28)},
c-Abs Pos {chr(30)},

Note that the commands "c On Cursor" and "c Off Cursor" are ignored by the
Apple II Console Driver since they affect -the- Pascal cursor. If these
characters are sent to the Pascal console using a "write" command, they will
have the desired effect.

2.1.2 MouseText characters

Additional character constants are defined for some useful MouseText
characters. To use any of these characters, the "c_On_Mouse" command must
first be sent to the Apple II Console Driver. These are the defined variables:

{Line drawing characters}

f R Side {chr(9S)}, f L Side {chr(90)}, f U Side {chr(9S)},
f D Side {chr(76)}, f Horiz {chr(83)}, f Vert {chr(l24)} ,

{Arrows}

f U Arrow {chr(75)}, f DArrow {chr(74)}, f R Arrow {chr(85)},
f-L-Arrow {chr(72)} ,

{Specials}

page 4

11/02/84 ConsoleS tuff Library ERS Lou Infeld

2.1.3 Console Buffer data structure

The Console Buffer itself is available as an interface variable.
a set of variables are available which indicate the current
buffer:

Additionally,
status of the

CBuff: CBuffType; {Console Buffer}

{CBuff data structure}

CBuff Globals: record
size: integer;
lines:integer;
width:integerj

end;

2.1.4 Box eo..ent data structure

{# of characters in Console Buffer}
{# of lines in Console Buffer}
{Max width of lines in Console Buffer}

The "BoxComment" procedure displays a one line message on the screen. See 2.3
for a detailed discussion of the procedure. The configuration data structure
associated with this procedure are:

{Box Comment data structure}

Box Globals: record
Y: integer;
Stat: integer;

Ch: char;
Clear: boolean;

Beep: boolean;

Time: integer;

end;

2.2 Console Buffer procedures

{Y coordinate of Box}
{Status to be inserted instead of "&" in
comment}

{Character read if comment ended in "?"}
{If true, comment will be cleared from
screen. If false, comment remains on
screen until next BoxComment call}

{if true, a beep will be sounded with
comment}

{# of secs comment stays on screen if no
keypress}

These procedures allow the application to
subsequent transmission to the Console Driver.
similar to the Pascal "write" function. Some
abilities.

prepare the Console Buffer for
Some provide formatting utilities
provide Window and Line drawing

Each procedure will add to the Console Buffer the necessary text and console
commands to perform the requested function. When the "CWrite" procedure is
called, the Console Buffer is sent to the Console Driver. The Console Driver
will interpret each character in the Console Buffer and will either display the
character or perform one of its console functions. The Console Buffer is emptied
and can be again "filled" by the ConsoleStuff procedures.

page 5

11/02/84 ConsoleStuff Library ERS Lou Infeld

Since the Console Driver supports the concept of a "window", all coordinate
parameters should be specified relative to the window in effect. The one
exception is the "Window" procedure which requires absolute coordinates since it
establishes a new window relative to a screen coordinate systeem in which (0,0)
indicates the upper left and (79,23) the lower right corners.

2.2.1 CWrite

This procedure sends the Console Buffer to the Console Driver and initializes
the Console Buffer data structure to zeroes.

Example: CWrite;

2.2.2 CWriteCb

This procedure adds the specified character to the Console Buffer.

Examples: CWriteCh('a');
CWriteCh(c_Cl_View);

2.2.3 CWriteStr

This procedure adds the specified string to the Console Buffer.
string up to 255 characters is allowed.

Examples: CWriteStr('This will be displayed');
CWriteStr(strvar);

2.2.4 CWriteIStr

Any size

This procedure adds the specified string to the Console Buffer.
string will display in Inverse Mode.

Examples: CWriteIStr('This will be in inverse');
CWriteIStr(strvar);

2.2.5 CWriteln

However, the

This procedure is similar to "CWriteStr" except a Carriage Return is added to
the Console Buffer after the string.

Examples: CWriteln('This is a title');
CWriteln('---------------');

2.2.6 CVriteNmi

The specified integer is converted to an ascii string and added to the Console
Buffer. The size of the field and the fill character can be specified. The
integer will be right justified in the field unless the field size is O.

"09"}
"100"}

Examples: CWriteNum(IO,5,' ');
i:-9;
CWriteNum(i,2,'0');
CWriteNum(lOO,O,' ');

{resulting field

{resulting field
{resulting field

page 6

" 10"}

11/02/84

~.2.7 CGotoxy

ConsoleSLuff Library ERS Lou Infeld

Calling this routine adds the Console Driver commands necessary to change the
character position to the specified relative coordinates.

Example: CGotoxy(lO,lO)j

2.2.8 CPlace

{char position changed to (lO,lO)}

This routine combines the "CGotoxy" and "CWriteCh" procedures.
puts the specified character into the specified position.

It effectively

Example: CPlace(lO,lO,'X')j

2.2.9 Window

{char "X" displayed at (lO,lO)}

This procedure changes the Console Driver window to that specified by the given
coordinates. The "absolute" coordinates of the upper left corner and the lower
right corner must be specified. These coordinates are not checked for validity
and illogical values will have strange effects.

{changes window so that upper left
corner is at (10,15) and lower right
corner is at (60,20)}

Note that this procedure is the only Console Buffer routine which uses absolute
coordinates. All others use coordinates relative to the current window in
effect.

2.2.10 Line

This procedure causes a line
the two sets of coordinates.
(others will be ignored).
validity (other than defining
effects.

Examples: Line(5,10,5,20)

2.2.11 Box

to be drawn with the specified character between
Only vertical or horizontal lines.can be drawn

The coordinates specified are not checked for
a line) and illogical values will have strange

{result: vertical line between
coordinates (5,10) and (5,20)}

{result: horizontal line between
coordinates (10,5) and (60,5)}

(using MouseText fonts) at the
are not checked for validity and

This procedure draws a box
coordinates. These coordinates
values will have strange effects.

Example: Box(10,ls,60,20)j

2.3 Box eo-ent procedure

specified
illogical

{result: box with upper left corner at
(10,15) and lower right corner at
(60 ,20)}

This procedure places the specified comment on the screen inside of a narrow box.

page 7

11/02/84 ConsoleStuff Library ERS Lou Infeld

If the message is not a question (ends with a question mark), the box stays on
the screen for a period of time or until any readable key is pressed.

If the message is a question, the box stays on the screen until a key
This key is assumed to be the answer to the question and is stored
Comment data structure field "Box Globals.Ch".

is pressed.
in the Box

If an "Es" is embedded in the comment, it is replaced with the ASCII equivalent of
the integer in the "Stat" field of "Box Globals".

Other fields of the Box Comment data structure can be set to configure the
"BoxComment" procedure:

Y
Clear

Beep
Time

Y coordinate of the Box (default is 21)
If TRUE (default), comment will be cleared from screen
If FALSE, comment stays on screen until next call
If TRUE (default), a beep will be sounded with comment
Number of secs comment stays on screen if no key pressed
(default is 15)

Examples: BoxComment('This is a comment');
Box Globals.Stat: m l0;
BoxComment('The status is "Es"');
BoxComment('Do you want to continue (Y/N) 1');

2.4 Help procedures

Two procedures are available to aid in displaying Help Screens. The first opens
up the Help Screen and the second closes it down and redisplays the original
screen contents.

The calling routine first sets up the Console Buffer using the Console Buffer
routines without calling the "CWrite" procedure. Next the "OpenRelp" routine is
called. It puts a Box on the screen just large enough to contain the Relp lines.
When the "CloseRelp" procedure is called, the Relp Box disappears and the screen
environment is restored.

Examples: CWriteln('This is the first line of the Relp Screen');
CWriteln('This is the second line of the Relp Screen');
CWriteln('This is the last line of the Help Screen');
OpenRelp;
read(keyboard,ch);
CloseHelp;

2.5 GetXY procedure

This routine returns the current relative coordinates of the character position
within the current window as well as the window coordinates themselves. Note
that this procedure is not a Console Buffer formatting procedure. Coordinates
returned are those currently in effect.

Example: GetXY(x,y,ulx,uly,lrx,lry); {char position is (x,y) and
upper left corner of window is
(ulx,uly) and lower right

page 8

11/02/84 Con801eSluff Library ERS Lou lnfeld

corner of window i8 (lrx.lry)}

page 9

Conliole Driver/Unr Input Routine
Reluili 1.0Bi Notes

Lou Infeld

04/16/85

Version 1.0Bi is the first Eeta relnse for the Console Driver and User Input Routine.
Previous versions are cosidered Alpha releases. The following changes were ma.de in the
Con50le Driver and User Input Routines since the b.st release:

Console Driver

o Documentation corrected -- Several of the control codes were incorrectly specified in the
documentation.

o Eug fixed -- Calling the Horizonhl, Vertical or Absolute Position commands with values
outside of the current window sometimes resulted in positioning the cursor to the top or
left side of the window rather than the bottom or right side.

o Eug fixed -- Clearing viewports that are two lines high caused Console Driver to hang.

User Input Routine

o Eug fixed -- Sometimes cursor remnants remained on screen.
o Eug fixed -- Control F didn't work in Pascal version. The fix was to disa.ble all specia.l

Pascal control characters including Control 'Al, Control S, Control Z, etc. as well as Control
F.

o Standard change -- Control R (restore) changed to Control Z (undo).
o Enha.ncement -- Eorder character a.dded to Information BlocK. This chara.cter will be blir.l<ed

(ra.thel' tha.n a Blanl<) whenever the field is filled and the cursor is forced outside.
o Bnhancement -- Upon initial entry in immediate mode, the application will get control

before the cursor starts blinKing. This will allow initial cursor repositioning without
cursor remnants.

o Enhancement -- Last event type parameter added to Information Elock. This parameter is
not currently used.

April 16, 1985 Copyright 1985 Apple Compu'ttr, Inc. Page 1

Apple II Con8ole Driver

EXTERNAL REFERENCE SPECIFICATION

APPLE II CONSOLE DRIVER

Neal Johnson

April 10, 1985

BETA RELEASE VERSION

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 1

Apple II Console Driver

TABLE OF CONTENTS

1. Introduction
2. Functional Description

2.1 Screen Map
2.2 Console Driver Environment Controls

2.2.1 Cursor Position
2.2.2 Viewport Specification
2.2.3 Cursor Movement Controls
2.2.4 Fill Character
2.2.5 Default Settings and Environment

2.2.5.1 The Default Viewport
2.2.5.2 The Default Cursor Movement Controls
2.2.5.3 The Default Screen Environment
2.2.5.4 Mousetext
2.2.5.5 Normal and Inverse Text

2.3 Screen Control Codes
2.3.1 No Operation
2.3.2 Save and Reset Viewport
2.3.3 Set Viewport
2.3.4 Clear from Beginning of Line
2.3.5 Restore Viewport
2.3.6 Undefined
2.3.7 Undefined
2.3.8 Sound the Bell
2.3.9 Move Cursor Left
2.3.10 Undefined
2.3.11 Move Cursor Down
2.3.12 Clear to End of Viewport
2.3.13 Clear Viewport
2.3.14 Return Cursor
2.3.15 Set Normal Text
2.3.16 Set Inverse Text
2.3.17 Space Expansion
2.3.18 Horizontal Shift
2.3.19 Vertical Position
2.3.20 Clear from Beginning of Viewport
2.3.21 Horizontal Position
2.3.22 Cursor Movement Controls
2.3.23 Scroll Down
2.3.24 Scroll Up
2.3.25 Turn Mousetext Off
2.3.26 Home Cursor
2.3.27 Clear Line
2.3.28 Turn Mousetext On
2.3.29 Move Cursor Right
2.3.30 Clear to End of Line
2.3.31 Absolute Position
2.3.32 Move Cursor Up

2.4 Displayable Characters
2.4.1 Displayable Text Characters
2.4.2 Mousetext Characters
2.4.3 Control Characters

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 2

Apple II Console Driver

3. Interface Description
3.1 Pascal

3.1.1 Data Interface
3.1.2 Calling the Console Driver
3.1.3 Status Calls
3.1.4 Control Calls

3.1.4.1 Getting the Current Cursor Position
3.1.4.2 Getting the Current Text Screen Character
3.1.4.3 Saving and Restoring the Viewport

3.2 BASIC
3.2.1 Console Driver Functions

3.2.1.1 Calling the Console Driver
3.2.1.2 Output Data to the Console
3.2.1.3 Save the Current Viewport Contents
3.2.1.4 Restore the Current Viewport Contents
3.2.1.5 Get the Status of the Console Driver
3.2.1.6 Get the Current Cursor Position
3.2.1.7 Get the Current Text Screen Character
3.2.1.8 Initialize the Console Driver
3.2.1.9 Release the Console Driver
3.2.1.10 Console Driver Version and Copyright
3.2.1.11 Setting the Console Driver Address

3.2.2 Using the Console Driver with Your Program
3.2.2.1 Console Driver Zero Page Usage
3.2.2.2 Console Driver Softswitch Usage
3.2.2.3 Relocating the Console Driver

3.3 Assembler
3.3.1 Console Driver Functions

3.2.1.1 Calling the Console Driver
3.2.1.2 Output Data to the Console
3.2.1.3 Save the Current Viewport Contents
3.2.1.4 Restore the Current Viewport Contents
3.2.1.5 Get the Status of the Console Driver
3.2.1.6 Get the Current Cursor Position
3.2.1.7 Get the Current Text Screen Character
3.2.1.8 Initialize the Console Driver

3.3.2 Using the Console Driver with Your Program
3.3.2.1 Console Driver Zero Page Usage
3.3.2.2 Console Driver Softswitch Usage
3.3.2.3 Relocating the Console Driver

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 3

Apple II Console Driver

1. Introduction

The Console Driver (henceforth known as lithe driver") is an implementation
of the Apple III Console Driver, with special modifications, for the Apple II
series of computers (11+, lie, and lIe). The driver supplies a simple and
consistent interface to a nearly complete set of display format and control
procedures contained in a relatively small and fast package. Both display
and control commands are sent to the driver in the same manner. This allows
a programmer to build up a set of data structures that contain both display
and control information. Presentation of the information to the driver can
be made with one call. This simplifies the programming of the human interface
for a program, in that the programmer does not have to make a sequence of
calls to set up for text to be displayed. Instead, the format information
can be imbedded in the text itself.

The driver supports a form of "window" known as a "viewport". The
viewport is a rectangular portion of the screen where all console functions
take place. This feature allows the programmer to define a portion of the
screen where slhe wants text to be displayed. All text outside the viewport
is protected. Any display of the text will occur within the bounds of the
viewport.

The console driver can serve as a low level tool for the implementation
of different styles of human interface. Much of the implementation for the
various styles of human interface would be in the design of the data
structures describing the format and text to be displayed.

NOTE: This release (1.0) of the Console Driver only supports an 80-column
screen. Sections describing the 40-column screen should be ignored at
this time.

2. Functional Description

2.1 Screen Map

2.1.1 40-Column Screen

The 40-Column screen consists of 40 columns of text in
24 lines. The upper left corner is column 0, line ° (or
simply 0,0.) Columns are number left to right, ° to 39.
Lines are numbered top to bottom, ° to 23.

2.2.2 80-Column Screen

The 80-Column screen consists of 80 columns of text in
24 lines. The upper left corner is column 0, line ° (or
simply 0,0.) Columns are number left to right, ° to 79.
Lines are numbered top to bottom, ° to 23.

2.2.3 The Viewport

The Viewport is a rectangular portion of the screen

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 4

Apple II Console Driver

where all current text is dinplnyed. Portions of the Bcreen
outside the viewport are not affected by either format or
display commands.

The driver maintains a "cursor", which is not visible
on the screen, that represents the current location that
a displayable character will be placed. This cursor is
specified by the value of the two variables CH and CV.
(See Section 2.2.1 below)

When the console driver is first used, the viewport
defaults to the whole screen (either 40 or 80 column
display). The programmer can set the viewport by a special
control and four parameter bytes which specify the upper
left and the lower right corners of the viewport. From that
point on, all console functions will take place within the
bounds of the viewport.

The current viewport specifications can be saved and
the viewport can then be set to the specifications of the
previously saved viewport. The programmer can then return
to the original viewport settings with another command.

2.2 Console Driver Environment Controls

2.2.1 Cursor Position

The current cursor position is maintained in two
variables:

CH - current horizontal position

CV - current vertical postion

When the driver is first used, these values are set to
zero signifying the upper-left corner of the screen.

The values of CH and CV always represent the absolute
screen coordinates (actual column and line number) and are
not relative to the current viewport.

2.2.2 Viewport Specification

The viewport is specified by six variables that specify
the top, bottom, left, and right edge of the viewport and
also its width (in COlumns) and its length (in lines).

WNDTOP - top line of viewport

WNDBOT - bottom line of viewport

WNDLFT - left column of viewport

WNDRGT - right column of viewport

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 5

Apple II Console Driver

WNDWTH - width of viewport in columns

WNDLEN - lenKth of viewport in lines

2.2.3 Cursor Movement Controls

The cursor movement controls specify the rules for
moving the cursor within a viewport. These controls are
flags directing the driver how to move the cursor. If
set to zero, they are false and if set to one, they are
true. The four cursor movement controls are:

CONLFD (Line Feed) - If true, the console driver
will automatically perform a line feed after every
carriage return (control code 13 decimal or SOD hex.)
When false, no automatic line feed is performed.
The programmer can perform a line feed by explicitly
sending a line feed character (10 decimal or $OA hex.)
Scrolling is controlled by the other cursor movement
control settings.

CONADV (Advance) - If true, the cursor will advance
one space to the right after each display character
is placed on the screen. When false, the cursor will
not advance (it will remain in the same position)
after each character. In this case the programmer
would have to explicitly move the cursor by sending
a Move Cursor Right control (09 decimal or $09 hex.)
Wrapping andlor scrolling is controlled by the other
cursor movement control settings.

CONWRAP (Wrap) - If true, an attempt to move the
cursor beyond the right or left edge of the viewport
will cause the cursor to be placed at the opposite
edge of the next or previous line, respectively, of
the viewport. If false, the cursor remains at the
edge of the viewport on the current line. To move
to either the next or previous line requires the
programmer to send a Move Cursor Up (11 decimal or
SOB hex) or a Move Cursor Down (10 decimal or $OA
hex) character, followed by either a Return Cursor
(13 decimal or SOD hex) to move the cursor to the
beginning of the previous line or a Horizontal
Position (24 decimal or $18 hex) with the appropriate
parameter value to send the cursor to the end of line.
Scrolling is controlled by the other cursor movement
control.

CONSCRL (Scroll) - If true. an attempt to move the
cursor beyond the top or bottom line of the viewport,
will cause the contents of the viewport to be scrolled
either down or up. The cursor will then be placed
at the beginning of the new top or bottom line. If

April 10, 1985 Copyright 1985 Apple Computer. Inc. Page 6

Apple II ConDole Driver

false, the cursor will remain at the top or bottom
of the viewport.

DLEFLAG (Space Expansion) - If true, the DLE's
($10 hex or 16 decimal) will be interpreted 8S

space expansion controls with a following
parameter byte. (See section 2.3.17) If false,
then they are ignored.

2.2.4 Fill Character

The fill character is the character used to clear the
contents of the viewport. This value is a Space (32 decimal
or $20 hex). Its value is in the variable CONFILL. Due to
the Apple II character mapping the actual binary value
of the fill character is $OAO hex or 160 decimal for a
normal Space character or $20 hex or 32 decimal for an
inverse Space character.

2.2.5 Default Settings and Environment

2.2.5.1 The Default Viewport

The default viewport is the entire screen
(either 40 or 80 columns).

Viewport Parameter 40-Col Value 80-Co1 Value
------------------ ----------- ------------

WNDTOP 0 0

WNDBOT 23 23

WNDLFT 0 0

WNDRGT 39 79

WNDWTH 40 80

WNDLEN 24 24

2.2.5.2 The Default Cursor Movement Controls

The default settings for the Cursor Movement
Controls are:

CONLFD (Line Feed) - TRUE

CONADV (Advance)

COWRAP (Wrap)

- TRUE

- TRUE

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 7

Apple // Console Driver

CONSCRL (Scroll) -TR~

DLEFLAG (Space Expansion) - TRUE

2.2.5.3 The Default Screen Environment

The default screen environment is the
default viewport (See section 2.2.5.1), the
text display mode is normal. the cursor is
off. the fill character is space. and the
initial position of the cursor is in the
upper-left hand corner (0.0).

2.2.5.4 Mousetext

The flag MOUSE. specifies whether or not the
driver will display mousetext charactera. If MOUSE
is true then character is the range $40 to 5F hex
or 64 to 95 decimal will be mapped into the
mousetext character set. If false, the mapping will
not take place. Control codes will always be
processed as is. The default is MOUSE false.

2.2.5.5 Normal and Inverse Text

The flag CONVID controls the display of text in
either normal or inverse modes. If CONVID is $80 hex
or 128 decimal. text is displayed in normal mode.
If CONVID is O. then text is displayed in inverse.
The setting of CONVID is handled via two control codes
described below (Set Normal Text or Set Inverse Text.)

2.3 Screen Control Codes

2.3.1 No Operation

CONTROL CODE: $00 (hex) or 00 (decimal)

OPERATION: No Operation

DESCRIPTION: This control code has no effect and
is ignored.

2.3.2 Save and Reset Viewport

CONTROL CODE: $01 (hex) or 01 (decimal)

OPERATION: Save and Reset Viewport

DESCRIPTION: This control code saves the current settings
of the viewport: its coordinates. cursor position, cursor
motion controls, mousetext. and normal/inverse setting. The
viewport will then be set to the default values of the full

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 8

Apple II Console Driver

screen. (See section 2.3.5 Restore Viewport)

2.3.3 Set Viewport

CONTROL CODE: $02 (hex) or 02 (decimal)

OPERATION: Set Viewport

DESCRIPTION: This control code will set the viewport.
It requires four parameter bytes which specify the
absolute coordinates for the upper-left and lower-right
corners of the viewport. The order of the parameters
is:

upper-left corner X (or column) value

upper-left corner Y (or line) value

lower-right corner X (or column) value

lower-right corner Y (or line) value

If less than four parameters are passed, this control
code will be ignored. This control simply sets the
boundaries for the viewport. It does not affect the
cursor motion controls, normal/inverse, or mousetext
setting. It will not save the current viewport.
The cursor will be placed in the upper-left corner
of the new viewport.

The parameters are checked for validity prior to setting
the viewport values. The rules for validity are as
follows:

If any paramter byte is > 127, i.e. minus value
because bit 7 is set, this command will be
ignored.

For any X coordinate (UL corner or LR corner), if
it is > 39 or 79 (depending on the screen size)
then it will be set to 39 or 79.

For any Y coordinate (UL corner or LR corner), if
it is > 23 then it will be set to 23.

UL corner X will be used for WNDLFT.

UL corner Y will be used for WNDTOP.

LR corner X, if greater than WNDLFT, will be used
for WNDRGT, else this command will be ignored.

LR corner Y, if greater than WNDTOP, will be used
for WNDBOT, else this command will be ignored.

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 9

Apple II ConDole Driver

If for any reaoon the command is ignored, it will
not change the current viewport settings.

2.3.4 Clear from Beginning of Line

CONTROL CODE: $03 (hex) or 03 (decimal)

OPERATION: Clear from Beginning of Line

DESCRIPTION: This control code will clear the current line
from the beginning of the line to and including the current
cursor position in that line.

2.3.5 Restore Viewport

CONTROL CODE: $04 (hex) or 04 (decimal)

OPERATION: Restore Viewport

DESCRIPTION: This control code will restore the viewport
to the values of the last previously saved viewport. If
no viewport has been saved, then the values will be set
to the default values for the whole screen. (See section
2.3.2 Save and Reset Viewport)

2.3.6 Undefined

CONTROL CODE: $05 (hex) or 05 (decimal)

OPERATION: Undefined

DESCRIPTION: This control code is undefined and is
ignored.

2.3.7 Undefined

CONTROL CODE: $06 (hex) or 06 (decimal)

OPERATION: Undefined

DESCRIPTION: This control code is undefined and is
ignored.

2.3.8 Sound the Bell

CONTROL CODE: $07 (hex) or 07 (decimal)

OPERATION: Sound the Bell

DESCRIPTION: This control code will cause the ProDOS
recommended "beep" to be sounded. It has no effect
on the screen. Sequencial control codes will have the
effect of producing a longer sound.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 10

Apple II Connole Driver

2.3.9 Move Cursor Left

CONTROL CODE: $08 (hex) or 08 (decimal)

OPERATION: Move Cursor Left

DESCRIPTION:
one position.
in accordance
(See sections

This control code will move the cursor left
Wrapping around and scrolling are performed

with the settin~s of the cursor motion controls.
2.2.3 and 2.3.22 Cursor Movement Controls)

2.3.10 2.3.11 Move Cursor Down

CONTROL CODE: $OA (hex) or 10 (decimal)

OPERATION: Move Cursor Down (Line Feed)

DESCRIPTION: This control code moves the cursor down one
line. Scrolling is performed in accordance with the
cursor motion controls. (See sections 2.2.3 and 2.3.22
Cursor Movement Controls)

2.3.12 Clear to End of Viewport

CONTROL CODE: SOB (hex) or 11 (decimal)

OPERATION: Clear to End of Viewport

DESCRIPTION: This control code will clear the contents of
the viewport, starting from and including the current cursor
position to the end of the line and all the lines below the
cursor. The cursor is not moved.

2.3.13 Clear Viewport

CONTROL CODE: SOC (hex) or 12 (decimal)

OPERATION: Clear Viewport

DESCRIPTION: This control character will move the cursor
to the upper-left corner of the viewport and then clear
the viewport by setting the contents to space characters.
The space characters will be either normal or inverse
depending on the setting of this mode. (See sections
2.3.15 and 2.3.16)

2.3.14 Return Cursor

CONTROL CODE: SOD (hex) or 13 (decimal)

OPERATION: Return Cursor (Carriage Return)

DESCRIPTION: This control code moves the cursor to the

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 11

Apple II Conso1@ Driv@r

beginning of the current line (the left edge of the
viewport.) A line feed may also be issued automatically
after the return depending on the setting of the cursor
motion controls. Scrolling may also take place. (See
sections 2.2.3 and 2.3.22 Cursor Movement Controls)

2.3.15 Set Normal Text

CONTROL CODE: $OE (hex) or 14 (decimal)

OPERATION: Set Normal Text

DESCRIPTION: This control code specifies that all subsequent
characters will be displayed as white characters on a black
background. It does not affect any characters already on
the screen. This control code will set the flag CONVID to
$80 hex or 128 decimal. (See section 2.3.16 Set Inverse Text)

2.3.16 Set Inverse Text

CONTROL CODE: $OF (hex) or 15 (decimal)

OPERATION: Set Inverse Text

DESCRIPTION: This control code specifies that all subsequent
characters will be displayed as black characters on a white
background. It does not affect any characters already on the
screen. This control code will set the flag CONVID to O.
(See section 2.3.15 Set Normal Text)

2.3.17 Space Expansion

CONTROL CODE: $10 (hex) or 16 (decimal)

OPERATION: Space Expansion

DESCRIPTION: This control code supports the DLE space
expansion that exists in Pascal text files. It takes
one parameter which represents the number of spaces to
output plus 32. The driver subtracts 32 from the parameter
to determine the number of spaces to output to the screen.
If the parameter does not exist, then the driver will
ignore this control. DLE expansion can be turned off
using the mode value of 4 or 12 in the UNITWRITE call
to the driver. (See section 3.1.2 below.) It can also
be turned on or off with the Cursor Movement Control.
(See Section 2.3.22 below) The default is on.

2.3.18 Horizontal Shift

CONTROL CODE: $11 (hex) or 17 (decimal)

OPERATION: Horizontal Shift

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 12

Apple II Conoole Driver

DESCRIPTION: This control code will cause the contents of
the viewport to be shifted right or left the number of
columns specified by the single byte parameter following
the control code. If the parameter does not exist or is
set to 0, the control will have no effect. The parameter
is interpreted as an eight-bit two's complement number.
If it is positive (less than 128 decimal or $7F hex) the
contents will be shifted right the number of columns equal
to the value of the number. If it is negative (greater
than or equal to 128 decimal or $7F hex), the contents
will be shifted left the number of columns equal to the
negative value of the number. In both cases, if the value
is greater than or equal to the width of the viewport, it
will cause the viewport to be cleared.

The shifted characters are moved directly to their
destination location. The space vacated by the shifted
characters is set to blanks. Characters shifted out of
the viewport are removed from the screen and are not
recoverable.

2.3.19 Vertical Position

CONTROL CODE: $12 (hex) or 18 (decimal)

OPERATION: Vertical Position

DESCRIPTION: This control code will move the cursor
vertically to the relative line number passed in
a single byte parameter (0 to 23 for both 40-columns or
80-columns). A parameter whose value is
10 means to move to the tenth line in the viewport,
not to line 10 of the whole screen. A parameter of
o will move the cursor to the topmost line. To
determine the correct relative line, the parameter
is added to the value of WNDTOP (See Section 2.2.2
Viewport Specifications). This is an eight-bit add.
If the resulting value is greater than the value of
WNDBOT (the bottommost line of the viewport) but
less than 127 then the cursor will be placed in the
bottommost line of the viewport. If the sum is
greater than 127 (negative) then the cursor will be
placed in the topmost line. If the parameter is
missing, this control will be ignored. This control has
no effect on the horizontal position of the cursor.

2.3.20 Clear from Beginning of Viewport

CONTROL CODE: $13 (hex) or 19 (decimal)

OPERATION:Clear from Beginning of Viewport

DESCRIPTION: This control code will clear the viewport
from its beginning (0, 0 or home position) to and

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 13

Apple II Console Driver

including the curmor. The cursor is not Qoved.

2.3.21 Horizontal Position

CONTROL CODE: $14 (hex) or 20 (decimal)

OPERATION: Horizontal Position

DESCRIPTION: This control code will move the cursor
horizontally to the relative column number passed in
a single byte parameter (0 to 39 for 40-columns or
o to 79 for aO-columns). A parameter whose value is
10 means to move to the tenth column in the viewport,
not to column 10 of the whole screen. A parameter of°will move the cursor to the left-most column. To
determine the correct relative column, the parameter
is added to the value of WNDLFT (See Section 2.2.2
Viewport Specifications). This is an eight-bit add.
If the resulting value is greater than the value of
WNDRGT (the rightmost column of the viewport) but
less than 127 then the cursor will be placed in the
rightmost column of the viewport. If the sum is
greater than 127 (negative) then the cursor will be
placed in the leftmost column. If the parameter is
missing, this control will be ignored. This control
has no effect on the vertical position of the cursor.

2.3.22 Cursor Movement Controls

CONTROL CODE: $15 (hex) or 21 (decimal)

OPERATION: Cursor Movement Controls

DESCRIPTION: This control code and its parameter will
set the cursor movement controls as specified by the
parameter. The parameter is a single byte value, with
only the lower five bits as significant. The upper four
bits are to be set to zero. A zero will reset the control
and a one will set it. If the parameter does not
exist or the upper three bits are non-zero, the command is
ignored. (See section 2.2.3 Cursor Movement Controls)

Bit Control

Bit 0 Advance

Bit 1 Line Feed

Bit 2 Wrap

Bit 3 Scroll

Bit 4 DLE Space Expansion

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 14

Apple II Console Driver

2.3.23 Scroll Down

CONTROL CODE: $16 (hex) or 22 (decimal)

OPERATION: Scroll Down

DESCRIPTION: This control code will cause the contents of
the viewport to scrolled down, leavin~ a blank line at
the top of the viewport. The cursor position will remain
the same after the scroll.

2.3.24 Scroll Up

CONTROL CODE: $17 (hex) or 23 (decimal)

OPERATION: Scroll Up

DESCRIPTION: This control code
of the viewport to be scrolled
at the bottom of the viewport.
will remain the same after the

2.3.25 Turn Mousetext Off

will cause the contents
up, leaving a blank line

The cursor position
scroll.

CONTROL CODE: $18 (hex) or 24 (decimal)

OPERATION: Turn Mousetext Off

DESCRIPTION: This control code turns off the display
of mousetext (See Section 2.3.28).

2.3.26 Home Cursor

CONTROL CODE: $19 (hex) or 25 (decimal)

OPERATION: Home Cursor

DESCRIPTION: This control code moves the cursor to the
upper-left corner of the current viewport. It does not
clear any portion of the viewport, nor does it change any
of the viewport settings.

2.3.27 Clear Line

CONTROL CODE: $lA (hex) or 26 (decimal)

OPERATION: Clear Line

DESCRIPTION: This control code moves the cursor to the
beginning of the current line and then clears the entire
line.

2.3.28 Turn Mousetext On

April la, 1985 Copyright 1985 Apple Computer, Inc. Page 15

Apple II Console Driver

CONTROL CODE: $IB (hex) or 27 (decimal)

OPERATION: Turn Mousetext On

DESCRIPTION: This control code turns on the display
of mouse text characters. All displayable characters
(See Section 2.4 Displayable Characters) in the range
$40 - $5F hex or 64 - 95 decimal will be mapped into
the mousetext characters for display. (See Section
2.3.25)

2.3.29 Move Cursor Right

CONTROL CODE: $IC (hex) or 28 (decimal)

OPERATION: Move Cursor Right

DESCRIPTION: This control code will move the cursor right
one position. Wrapping around and scrolling are performed
in accordance with the settings of the cursor motion controls.
(See sections 2.2.3 and 2.3.22 Cursor Movement Controls)

2.3.30 Clear to End Of Line

CONTROL CODE: $ID (hex) or 29 (decimal)

OPERATION: Clear to End of Line

DESCRIPTION: This control code clears the current line
starting from and including the current cursor position
in the line. The cursor is not moved.

2.3.31 Absolute Position

CONTROL CODE: $lE (hex) or 30 (decimal)

OPERATION: Absolute Position

DESCRIPTION: This control code combines the actions of
the Horizontal Position and Vertical Position control
codes. (See sections 2.3.25 and 2.3.26). It requires
two single byte parameters. The first specifies the
horizontal position and the second specifies the vertical
position of the cursor. Placement of the cursor follows
the rules given under both Horizontal and Vertical Position
control codes. If both parameter bytes are miBsing t the
command is ignored.

2.3.32 Move Cursor Up

CONTROL CODE: $IF (hex) or 31 (decimal)

OPERATION: Move Cusor Up (Vertical Tab)

April lOt 1985 Copyright 1985 Apple Computer, Inc. Page 16

Apple II Console Driver

DESCRIPTION: This control code moves the cursor up one
line. Scrolling is performed in accordance with the
cursor motion controls. (See sections 2.2.3 and 2.3.22
Cursor Movement Controls)

2.4 Displayable Characters

The Console Driver uses the Alternate Character set of the
Apple II for the display of characters. It assumes however, that
all characters passed to it are in the standard ASCII character
set (range $00 to $7F hex or 0 to 127 decimal). These characters
will be mapped into the appropriate character set for display
purposes, e.g. normal or inverse or mousetext.

A special case is made for characters passed to the driver in
the range $80 to $FF hex or 128 to 255 decimal. The characters
are displayed after reseting the 7th bit. This results in the
mapping shown in the chart below:

$80 - $9F

$AO - $BF

$CO - $DF

$EO - $FF

mapped to

mapped to

mapped to

mapped to

Inverse upper case letters

Inverse special characters

Mousetext characters

Inverse lower case letters

This is independent of the settings for normallinverse and
mousetext in the driver. Refer to the Apple II Reference Manuals
for more details on the character sets.

All characters in the range $00 to $lF hex or 0 to 31 decimal
are defined as control codes which invoke the operations listed
above in Section 2.3.

All characters in the range $20 to $7F hex or 32 to 127 decimal
are defined as displayable characters and will be displayed given
the various settings of the console driver on the screen.

The use of mouse text requires that the mousetext-on control
code be sent to the console driver. Then any characters in the
range $40 to $5F hex or 64 to 95 decimal will be mapped into
the appropriate mousetext character. For example, to get the
"running man" characters would require:

27 - mouse text-on control code
"F" - first part of "running man"
"c" - second part of "running man"

At the end of a sequence of mousetext characters, it is important
to turn off mousetext with the mousetext-off control code. Any'
characters not in the mouse text range will be displayed as is

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 17

Apple II Console Driver

given the lettings of the console driver.

3. Interface Description

3.1 Pascal

3.1.1 Data Interface

Both control codes and text to be displayed are passed
to the driver as a contiguous array of data. For example.
if the programmer wished to print "Hello" on line 10.
column 15. in inverse. and then home the cursor and return
back to normal text. s/he would create the following array
of data (all numbers are decimal):

30 - absolute position
15 - parameter (column 15)
10 - parameter (line 10)
15 - inverse text
72 - "H"
101 - "e"
108 - "1"
108 - "1"
111 - "0"
25 - home cursor
14 - normal text

This array is not a string in the Pascal sense of the word,
in that the first byte is data and not the length of the
array (as in a string.) The console driver can accept an
array up to 32767 bytes long (Pascal limit on integers).

The second required bit of data is an integer that
denotes the length of the array' to be processed by the
driver. In the above example. the integer could either
be a variable with the value 11 or the constant "11 ".

3.1.2 Calling the Console Driver

The driver is an "Attach" driver for Pascal. For
information on Pascal Attach drivers. please refer to
APPLE I I PASCAL 1.2 DEVICE AND INTERRUPT SUPPORT TOOLS
MANUAL. The unit number for the driver is #130.

To transfer data to the driver to be displayed on the
screen. requires a UNITWRITE call from a Pascal program.
The format for the call is shown below:

UNITWRlTE(130. ARRAY_ADDR, LENGTH_ARRAY, MODE)

where 130 is the unit number for the driver

ARRAY ADDR is a VAR parameter denoting the
address of the array of data

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 18

Apple II Console Driver

LENGTH_ARRAY is the length of the array passed

MODE is the mode expression which is an integer.
This can have four values:

value DLE-expansion Auto linefeed
------------ ------------

0 TRUE TRUE
2 FALSE TRUE
8 TRUE FALSE
12 FALSE FALSE

When passing a string to the driver, it is important
to always reference the string as:

so as not to pass the length byte found in STRING_VAR[O].

3.1.3 Status Calls

The driver only accepts one status call that returns
a data structure that describes the current state of the
driver. (See section 2 for a description of these variables.)
The form of the UNITSTATUS call is shown below:

where 130 is the unit number of the driver

CON STAT BLK is a record with the format:

TYPE BYTE - 0 •• 255

VAR CON STAT BLK: PACKED RECORD OF
CV:BYTE ;
CH:BYTE;
WNDTOP:BYTE;
WNDBOT: BYTE;
WNDLFT: BYTE;
WNDRGT: BYTE;
WNDWTH: BYTE;
WNDLEN: BYTE;
CONWRAP: BYTE;
CONADV:BYTE;
CONLFD: BYTE;
CONSCRL:BYTE;
CONVID: BYTE;
DLEFLAG: BYTE;
CONFILL: BYTE;
MOUSE:BYTE;

END;

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 19

Apple II Console Driver

This call will instruct the driver to copy its values
into this record so the programmer may inspect the current
state of the driver.

3.1.4 Control Calls

The driver accepts four control calls. These calls
allow the programmer to get the current location of the
cursor, the text character at the current cursor location,
or save and restore either the contents of the current
viewport. The buffer in which this data is stored must be
supplied by the programmer, it is not in the driver itself.
For programs that do not require this function, this saves
them space. It is recommended that the programmer allocate
some space on the heap for this storage. This allows this
space to be reclaimed as needed. To calculate the amount
of space required for a viewport, multiply its width (WNDWTH)
by its length (WNDLEN).

3.1.4.1 Getting the Current Cursor Position

To get the current location of the cursor on
the text screen, the programmer can make a
UNITSTATUS call of the form:

UNITSTATUS(130, LOCATION, 2);

where LOCATION is a record of the form:

LOCATION c RECORD
HORIZONTAL: INTEGER;
VERTICAL: INTEGER;

E®;

The driver will set these values equal to the screen
coordinates, CH and CV. These are integer values.
These values are not relative to the viewport but
represent the actual column and line number.

3.1.4.2 Getting the Current Text Screen Character

By making a UNITSTATUS call of the form:

UNITSTATUS(130, CHARACTER, 8194);

where CHARACTER is a byte (0 •• 255) variable,

the driver will return the current binary value of the
character found at the current cursor location.

3.1.4.3 Saving and Restoring the Viewport

To save the contents of the viewport, requires

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 20

Apple II Console Driver

8 UNITSTATUS call of the form:

UNITSTATUS(130. VWPORT~UF. 16386);

where 130 is the unit number for the driver

VWPORT BUF is 8 buffer to hold the contents
of the-viewport.

To restore the contents of the viewport. requires
8 UNITSTATUS call of the form:

UNITSTATUS(130. SCREEN_BUF. 24578);

where 130 is the unit number for the driver

VWPORT BUF is a buffer to hold the contents
of the screen.

It is up to the programmer to keep track of which
viewport has been saved in which buffer. When
restoring a viewport. the programmer must have already
set the required viewport prior to the restore call.

3.2 BASIC

The version of the console driver that is used with BASIC
programs supports the following functions:

Output Data to the Console

Save the Current Viewport

Restore the Current Viewport

Get the Status of the Console Driver

Get the Current Cursor Position

Get the Current Text Screen Character

Initialize the Console Driver

Get A Segment of Memory

Get a Console Driver Error

Get the Console Driver Version

Get the Console Driver Copyright Notice

Release the Console Driver

The console driver functions are AMPERSAND ('&') routines.

April 10, 1985 Copyright 1985 Apple Computer. Inc. Page 21

Apple II Console Driver

3.2.1 Console Driver Functions

3.2.1.1 Calling the Console Driver

Calls the the Console Driver are done using
the "Ampersand Hook". BASIC statements of the
form:

&name(parameter list)

are used to call the Console Driver. Specific
formats for the calls are described below.

3.2.1.2 Output Data to the Console

There are two calls to the driver to output data
to the display. The first is of the form:

&WRTSTR(S$)

where S$ is a string

This call will output the contents of S$ to the
display. S$ can include both control codes and
ASCII characters.

The second form is:

&WRITE(I1%, 12%, SA%)

where SA$ is a one-dimensional string
array and 11% is a starting index and
12% is an ending index

This call will output a sequence of strings
contained in the string array SA$. The
sequence begins with the string selected by
the index 11% and will end with the string
indexed by 12%. These strings can contain
both control codes and ASCII characters.

3.2.1.3 Save the Current Viewport Contents

In order to save the contents of the viewport,
a buffer must be allocated to store the contents.
This is done through a call to the special function
"Get memory" whose form is:

>MEM(P%, A%)

where P% is an integer specifies the number of
pages (256 bytes) of memory to allocate and
A% will be the address of that memory

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 22

Apple II Console Driver

This call allocates the number of pa~es required to
store the viewport contents. The number of pages
required can be calculated by

(WNDWTH * WNDLEN) I 256

rounding up to the nearest integer

For example to store the whole screen contents
requires 8 pages to be allocated. The memory
address of the memory allocated is returned in the
variable Ah. If the required number of pages is
not available, then a BASIC "OUT OF MEMORY" error
will occur.

Once a call to >MEM has been made, then a
call to save the contents of the viewport can be
made. The call is of the form:

&SVVP(A%)

where A% is the address returned from a call
to >MEM

3.2.1.4 Restore the Current Viewport Contents

To restore the viewport contents, a call of
the form:

&RSTRVP(A7.)

where Ah is the address used in the call to
&SVVP

This will restore the previously saved contents to
the viewport. The programmer must be careful to
restore contents that are of the same size as the
current viewport.

3.2.1.5 Get the Status of the Console Driver

To get the status of the console driver, a call
of the form:

&CDINFO(CU)

where CI% is a 16 element array, i.e.

DIM CU(I6)

This will return the contents of the status block
to the array CI%. To inspect the contents, the
following is a mapping of the array elements to

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 23

Apple II Console Driver

the status block elements:

CUO) .. CV
CU(2) .. CH
CUO) .. WNDTOP
CI% (4) .. WNDBOT
CU(5) .. WNDLFT
Cn: (6) .. WNDRGT
CU(7) .. WNDWTH
CU(8) .. WNDLEN
CU(9) .. CONWRAP
CI%(10) .. CONADV
CI%(ll) .. CONLFD
CI%(l2) .. CONSCRL
CU(l3) CONVID
CI%(l4) .. DLEFLAG
CI%(l5) .. CONFILL
CI%(l6) MOUSE

3.2.1.6 Get the Current Cursor Position

To get the current position of the cursor,
a call of the form:

>CP(H%, VA:)

where H% is the value of CH (x-position) and
V% is the value of CV (y-position)

This call returns the absolute coordinates of the
cursor.

3.2.1.7 Get the Current Text Screen Character

To get the value of the text character at the
current cursor position, a call of the form:

>CHR(CA:)

where C% is the character returned

This call returns the binary value of the text
character at the current cursor position.

3.2.1.8 Initialize the Console Driver

To initialize the Console Driver to its
default environment, a call of the form:

&INITCD

This call sets the driver environment to its
default state described above.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 24

Apple II Console Driver

3.2.1.9 Release Console Driver

To release the Console Driver Ampersand
package and to restore the screen to a normal
BASIC environment, a call of the form:

&STPCD(C%)

where C% is 40 to set up a normal 40-column
display or 80 to set up a normal 80-column
display

3.2.1.10 Console Driver Version and Copyright

To access the version number of the driver,
a call of the form:

&CDVRSN(V%, R%)

where V% is the version number returned and
R% is the revision number returned

To access the copyright notice of the driver,
a call of the form:

&CDCPYRT (CHi.)

where CHi. is the copyright notice returned

3.2.1.11 Setting the Console Driver Address

Before the Ampersand package can use the
Console Driver, it must have the location of
the driver passed to it with the call:

&STCDADR(Ah)

where A% is the starting address (which is
also of the entry-point) of the console
driver

This call must be made before any other calls to
the Ampersand package.

3.2.2 Using the Console Driver with Your Program

A BASIC program using the console driver should do
no console display through BASIC. All display should
be done with the driver.

A sample use of the driver to place the string
"Hello there" at position 10, 15 would be:

10 DIM ABS$(3)

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 25

Apple II ConDole Driver

20 DIM STR$ (11)
30 ABS$(l) • CHR$(30): REM ABSOLUTE POSITION
40 ABS$(2) • CHR$(10): REM X COORDINATE
50 ABS$(3) • CHR$(15): REM Y COORDINATE
60 STR$ • "Hello there"
70 &WRTSTR(ABS$)
80 &WRTSTR(STR$)

3.2.3 Locating the Console Driver in Memory

The Console Driver is an EDASM produced REL
file. This requires that it be relocated in memory
before it can be used. Following the instructions
in either the ProDOS or DOS Assembler Tools Manual,
use REOOT and RLOAD to perform the relocation.

3.3 Assembler

The version of the console driver that is used with assembly
language programs supports the following functions:

Output Data to the Console

Save the Current Viewport

Restore the Current Viewport

Get the Status of the Console Driver

Get the Current Cursor Position

Get the Current Text Screen Character

Initialize the Console Driver

The console driver has a single entry point. Calling the driver
is done in much the same way as ProDOS MLI calls.

3.3.1 Console Driver Functions

3.3.1.1 Calling the Console Driver

Calls to the console driver are done in much
the same way as calls to the ProDOS MLI. The
driver has only one entry point located at the
beginning. Once the driver has been relocated
in memory, its starting address is the entry point
of the driver. A call is made as shown below:

JSR PCONSOLE
DFB COMMAND
DW PARAMPTR
BNE ERROR HANDLER

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 26

Apple II Console Driver

The label PCONSOLE is the Itarting address of the
driver. The programmer will determine this through
deciding where to relocate the driver in memory.
In the calling program there should be a ststement
of the form:

PCONSOLE EQU nnnn

where nnnn is the starting address of the driver.

The JSR is followed by a byte that holds the
command value which is a number that selects the
appropriate console driver function. For specific
values. see below.

Following the command value byte is a two byte
pointer to a parameter list. The format for the
parameter list verifies per console driver function.
The specific formats are described below.

The driver will return to the caller with the
carry flag clear if no error occured. or with the
carry flag set if an error did occur. The calling
program should check the carry flag (the BNE
instruction shown above) and report an appropriate
error. The actual error type is passed back to the
caller in the A-register. The error handler can
check this value to determine the specific error
that occured.

3.3.1.2 Output Data to the Console

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
o
OUTPUTDATA

;output to screen

PARAMETER LIST FORMAT:

OUTPUTDATA DW
DW

DATAl
LENGTH1

This call will output data (both text and
control codes) to the console driver. The parameter
list is a pointer to a data string followed
by a length value. For example. DATAl would
point to

DATAl DFB
DFB
DFB
ASC

30
10
15
"Hello

;absolute position
;x position
;y position

there I I"

April la, 1985 Copyright 1985 Apple Computer. Inc. Page 27

Apple II Console Driver

LENGTH1 EQU 16 jlength of DATAl

This call returns no errors. The A-register
value will be 0 and the carry flag will be clear.

3.3.1.3 Save the Current Viewport Contents

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
1
SAVEBUFFER

jsave viewport

PARAMETER LIST FORMAT:

BUFFERSIZE EQU 1920 ;full screen

SAVEBUFFER DS BUFFERSIZE

This call will save the contents of the current
viewport in the buffer pointed to in the call, in
this case SAVEBUFFER. This buffer must be large
enough to hold the entire contents of the viewport.
The number of bytes required is equal to the width
of the viewport (WNDWTH) times the length (WNDLEN).
In the example shown above, the buffer is large enough
to hold the contents of the entire screen (80 columns
by 24 lines).

This call returns no errors. The A-register
value will be 0 and the carry flag will be clear.

3.3.1.4 Restore the Current Viewport Contents

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
2
SAVEBUFFER

jrestore viewport

PARAMETER LIST FORMAT:

SAVEBUFFER DS BUFFERSIZE

This call will restore the contents of the current
viewport from the buffer pointed to in the call. in
this case SAVEBUFFER. The programmer should be
careful that the viewport contents to be restored
matches the size of the current viewport. A viewport
can be defined. its contents saved. and then the
viewport can be redefined as the same size but at a
different location on the screen. Then the contents
can be restored back to it. This gives the programmer

April 10. 1985 Copyright 1985 Apple Computer, Inc. Page 28

Apple II Console Driver

the ability to move a viewport and its contents around
the screen.

This call returns no errors, the A-register is 0
and the carry flag is cleared.

3.3.1.5 Get the Status of the Console Driver

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
3
STATUSBLK

;get status

PARAMETER LIST FORMAT:

STATUSBLK EQU *
CV DFB 0
CH DFB 0
WNDTOP DFB 0
WNDBOT DFB 0
WNDLFT DFB 0
WNDRGT DFB 0
WNDWTH DFB 0
WNDLEN DFB 0
CONWRAP DFB 0
CONADV DFB 0
CONLFD DFB 0
CONSCRL DFB 0
CONVID DFB 0
DLEFLAG DFB 0
CONFILL DFB 0
MOUSE DFB 0

This call will return the current status of the
console driver in the status block pointed to in the
call, in this case STATUSBLK. The programmer must
insure that the status block used matches this
description exactly or data may be destroyed if the
status block is smaller than the one described.

This call returns no errors, the A-register will
be 0 and the carry flag will be clear.

3.3.1.6 Get the Current Cursor Position

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
4
CURSORPOS

;get cursor position

PARAMETER LIST FORMAT:

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 29

Apple II Connole Driver

CURSORPOS EQU

XPOS
YPOS

DFB
DFB

o
o

This call will return the absolute screen
coordinates of the current cursor position.
XPOS is the column and YPOS is the line. These
values correspond the values of CH and CV described
above.

This call returns no errors, the A-register will
be 0 and the carry flag will be clear.

3.3.1.7 Get the Current Text Screen Character

CALLING FORMAT:

JSR PCONSOLE
DFB 5 ;get text character
DW TEXT CHAR

PARAMETER LIST FORMAT:

TEXT CHAR DFB 0

This call will return the binary value of the
text character located at the current cursor
position. This value will reflect whether or
not the character is inverse, normal, or
mousetext. It is up to the calling program to
decipher the value.

This call returns no errors, the A-register will
be 0 and the carry flag will be clear.

3.3.1.8 Initialize the Console Driver

CALLING FORMAT:

JSR
DFB
DW

PCONSOLE
6
o

;initialize

PARAMETER LIST FORMAT:

No parameter list required.

This call will set the console driver back
to its default state. No parameter list is
required.

This call returns no errors. The A-register

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 30

Apple II Console Driver

will be 0 and the carry flag will be clear.

3.3.2 Using the Console Driver with Your Program

3.3.2.1 Console Driver Zero Page Usage

The console driver uses zero page locations
$20 to $40. The contents of these locations are
saved when the driver is called and restored upon
exit.

3.3.2.2 Console Driver Softswitch Usage

The console driver uses certain softswitches
to control its use of the display memory. They
are:

80COL ($COOD) - turn on 80-column card

80STORE ($C001) - use auxilary memory for display

PAGE2 ($C055, $C054) - to switch between even and
odd locations on the 80-column card

ALTCHARSET ($COOF) - to use alternate character
set

When the console driver is called these switches are
set to their appropriate value. Since the console
driver is intended to be the SOLE means by which
console display is managed, these switches are NOT
reset when the driver returns to the calling program.
It is up to the program to reset back to the
normal environment.

3.3.2.3 Relocating the Console Driver

The Console Driver is an EDASM produced REL
file. This requires that it be relocated in memory
before it can be used. Following the instructions
in either the ProDOS or DOS Assembler Tools Manual,
use RBOOT and RLOAD to perform the relocation.

April 10, 1985 Copyright 1985 Apple Computer, Inc. Page 31

"Fileca rd" Menu Support Uni t

EXTERNAL RFFFRENCE SPECIFICATION

APPLE II PASCAL "FILECARD" MENU SUPPORT UNIT

Neal Johnson

Novemeber 10, 1984

Final Release Version

Novembe r 10, 1984 Copyright 1984 Apple Compllter, Inc. Page 1

"Fileca rd" Menu Support Uni t

TABLE OF CONTENTS

1. Introduct ion
2. "Filecard" Menu Description

2.1 The Screen Layout
2.2 The Top Portion
2.3 The Bottom Portion
2.4 The "Filecard" Area
2.5 Error Boxes

3. "Filecards"
3.1 Introduction
3.2 How to Design a Hierarchical Menu Structure
3.3 Card Numbers
3.4 Card Levels
3.5 Card Titles
3.6 The "Filecard" Data Structure

4. "Filecard" Menus
4.1 Introduction
4.2 Menu Description

4.2.1 Menu Items that Select other Menus
4.2.2 Menu Items that Select Operations

4.3 The Menu Item Data Structure
4.4 The Menu Data Structure

5. The "Fileca rd" Menu Support Uni t
5.1 Introduction
5.2 Unit Interface Data Structures

5.2.1 Console Driver Control Codes
5.2.2 Constant Declarations
5.2.3 Type Declarations

5.2.3.1 CON STAT BLK
5.2.3.2 POSITION­
5.2.3.3 MENU ITEM
5.2.3.4 A MENU
5.2.3.5 A CARD
5.2.3.6 SCREEN BUFFER
5.2.3.7 OUTPUT-BUFFER
5.2.3.8 ERROR BUFFER
5.2.3.9 STR22-and STR60

5.2.4 Variable Declarations
5.2.4.1 SAVE BUFFER
5.2.4.2 BUFFER
5.2.4.3 BUFF P
5.2.4.4 STATUS BLK
5.2.4.5 MODE

5.2.5 Functions Available
5.2.5.1 PUT CONTROL
5.2.5.2 PUT-STRING
5.2.5.3 RESET BUFFP
5.2.5.4 WRITE-BUFFER
5.2.5.5 GET CON STATUS- -5.2.5.6 VP SAVE
5.2.5.7 VP RESTORE
5.2.5.8 GET POSITION

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 2

"Filecard" Menu Support Uni t

5.2.5.9 SET MODE
5.2.5.10 MIDDLF UPDATF
5.2.5.11 RIGHT UPDATE
5.2.5.12 MAKE CARD
5.2.5.13 RFMOVE CARD
5.2.5.14 MAKE TOP
5.2.5.15 MAKE-BOTTOM
5.2.5.16 CLEAR SCREEN
5.2.5.17 INIT A MENU
5.2.5.18 GET SFLECTION
5.2.5.19 ERROR BOX
5.2.5.20 GO AWAY ERROR
5.2.5.21 RESET CARD VP

5.2.6 Using the Unit With Your Program
5.3 A Sample Application that Uses the Unit

5.3.1 Setting up the "Filecards"
5.3.2 Setting up the Menus
5.3.3 The Main Body of the Program

5.3.3.1 The Selection Process
5.3.3.2 Going through the Menu Tree
5.3.3.3 Branching Off to an Operation
5.3.3.4 Coming Back from an Operation
5.3.3.5 Performing an Activity
5.3.3.6 Reporting an Error

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 3

"Filecard" Menu Support Unit

1. Introduct ion

The Apple I I Pascal "Filecard" Menu Support Unit (herein known as the
unit) is an implementation of a simple "filecard" style human interface
similar to that used.in the products Appleworks and Access II. This unit
allows a Pascal-based application to use a "filecard" style human interface
without the programmer having to implement the details of such an interface.

The unit requires the Apple II Console Driver to be present in order to
function (see the APPLE II CONSOLE DRIVER E.R.S.).

The unit is an intrinsic unit that can be either in SYSTEM.LIBRARY or
in a program library (Pascal 1.2 128K system).

The unit supplies data structures to define and manage a "filecard"
style, hierarchical menu structure as well as the routines necessary to perform
the required functions of such a human interface.

This document describes the interface in detail, and explains how to
go about designing an application that will use this style of interface.
It then descibes the unit used to implement the interface in an application
and a sample program that uses that uses the interface.

2. "Filecard" Menu Description

2.1 The Screen Layout

The screen layout for the "filecard" style interface is divided
into three portions:

The Top

The "Filecard" Area

The Bottom

Each of these areas serves a primarily different function within
the scope of the whole human interface. See Figure 2.1 for a picture
of the layout.

There are routines in the unit to manage each of these portions,
either as a whole or in parts.

2.2 The Top Portion

The top portion occupies lines 0 - 2 (three lines) on the screen.
The top line (0) is divided into three portions known as the Left,
the Middle, and the Right. Line 1 is left blank. Line 2 is a
line of " " dividing this portion of the screen from the center

portion. See Figure 2.1 for an illustration.

The top portion is used in conjunction with the "filecard" area
to display information about where the user is in the hierarchy of

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 4

"Filecard" Menu Support Unit

menus.

The Left hand side is primarily used for application specific
information, such as the name of the application, the current disk
drive selected, the file name of a selected file, etc. The contents
for this side are up to the application.

The Middle section is used to display the title of the currently
selected filecard. This section changes as other filecards are
selected. The unit manages this area for you during the menu
selection process (see below).

The Right hand side is used to display the "escape route" for
the user. During the menu selection process, if a selection calls
up a filecard (lower in the hierarchy), this section will display
the name of the previous filecard. See Figures 2.4.1 to 2.4.4. When
a filecard is displayed, typing an ESCAPE will revert back to the
previous (or higher level) filecard. This section is also managed
for you during the selection process.

2.3 The Bottom Portion

The Bottom portion occupies lines 21 - 23 (three lines). Line
21 is a line of " " to divide this portion from the center section.
Line 22 is used to display text. For the sample program described
below, lin~23 is left blank. See Figure 2.1 for illustration.

The Bottom portion is divided into two sections, the Right and
the Left. This portion of the screen is used primarily to give the
user instructions, such as what things to type during the selection
process, or as an area for input. The Right section is used for
these types of activities. The Left section is used for application
specific information; its content being left up to the programmer.
The unit supplies routines to manage this portion of the screen.

2.4 The "Filecard" Area

The "Filecard" area of the screen occupies the center portion,
from line 3 to line 20 (18 lines). It is used for the display
of filecards during the selection process. The unit allows up to
four levels of filecards to be displayed at one time (each card
overlays the previous card.) See Figures 2.4.1-4 for illustrations
of the different levels and the interaction with the top portion
of the screen.

The unit supplies the necessary routines to manage this area
of the screen.

2.5 Error Boxes

The unit supplies a simple mechanism to put error messages
on the screen, overlaying the current screen contents. An error
box is placed on lines 12 - 16 and between columns 10 and 71 •

. A viewport is defined within the error box that allows for up to

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 5

"Filecard" Menu Support Unit

three lines of text, up to 59 characters long. When an error box
is displayed, the console will beep. There are two routines to
support error boxes, one to display them and one to remove them from
the display restoring the previous screen contents. See Figure
2.5 for an illustration.

3. "Fileca rds"

3.1 Introduction

The primary "pictorial" framework for a menu in this style of
human interface is called a "filecard". This is not to sugges t that
a menu is like a filecard. The name is a result of the shape of the
menu and not its function! A "filecard" is a rectangular box with
a tab on the left top edge which holds the name of the menu displayed.
The actual menu items are listed within the box.

It is sugges ted that the name of the "filecard" represent the
generic relationship of the menu items. For example, a set of menu
items dealing with files could have the name "File Activities".

Each menu item can be selected by the user of the program. The
action taken may select another menu which causes another "filecard"
to be displayed or it may result in performing some function which
does not use the "filecard" interface. A menu item which selects
another menu is called a "menu selector". A menu item that selects
a function to be performed is called an "action selector". See Figure
3.1 for an illustration.

3.2 How to Design a Hierarchical Menu Structure

When designing an application, one of the most difficult problems
is the design of the human interface. Using this unit makes designing
the "look" of the interface quite simple. As an application developer,
however, you are still faced with designing how you want to split
the different activities that can be performed in your application
into a series of menus and actions.

One approach that makes this type of designing manageable, is
to conceptualize the actions in a "hierarchical" manner. For example,
if your application supports a set of 4 major activities:

File Management

Pri nting

Configuration

Doing the Real Work

these become the menu items on the top most "filecard". Selecting
anyone of these would then display another "filecard" wi th items
appropriate for that activity.

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 6

"Fileca rd" Menu Support Uni t

Selecting "File Management" would then display a "filecard"
one level down with the following menu:

Create a File

Dele te a File

Catalog a Disk

Rename a File

Selecting any of these items could either display another "filecard"
or branch off to do the activity selected.

For every activity supported by your application, you would
define a "path" to that activity moving from a general description
such as "File Management" to a specific description such as "Create
a File." This path moves through a hierarchy of "filecards" and
menus. The idea behind this style of interface is that it helps
lead the user to the activity they wish to perform. In some cases
s/he may not know the actual "name" for the activity, but s/he
knows the general type of activity it is. Using this style of
human interface allows the application to present the range
of activities in such a way that the user can find his/her way
to the the desired goal.

As you sp~cify the types of activities and the menus used to
select them, it helps to draw a picture of the emerging "menu tree".
Figure 3.2.3 shows such a drawing. It is from this drawing that
you then design the initialization procedures for the actual
"filecards" and menus in your program and the main body of your
program where the selection process takes place.

3.3 Card Numbers

Each "filecard" is assigned a numbe r that is used for
identification. The number has no other meaning. When the "menu
tree" is des igned, a numbe r can be assigned. See Figure 3.3 fo r
an example. These numbers are used to refer to individual cards
in a program. The numbers assigned are arbitrary, but they must
be sequential starting from 0 to the highest numbered card. Card
#0 is a special card that exists only as a placeholder for the
"escape path" for card Ill. For details see below.

3.4 Card Levels

The "menu tree" defines a set of levels where each card resides.
More than one card can be at a particular level. The topmost card
is level 1. There is only one card at this level. "Filecards" that
are displayed as a result of selecting a menu item from the topmost
card (level 1) are level 2 cards. "Filecards" displayed as a result
of selecting an item at level 2 are level 3 cards, and so on. The
unit only supports up to four levels of "filecards", Le. only four
"filecards" can be displayed at one time on the screen. See Figure

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 7

"Filecard" Menu Support Unit

2.4.4 for an illustration.
items this allows for up to
applica tionl

3.5 Card Titles

Since each "filecard" can have up to 9 menu
6551 dif ferent "filecards" for one

Each "filecard" has a title which is displayed in the tab on
the upper left corner of the card. This title can be up to 22
characters in length. The title should reflect the nature of the
menu displayed in the card. The title is also displayed in the
middle of the top portion of the screen. This represents
"where" the user is in the "menu tree". See Figure 3.1 for an
example.

3.6 The "File card" Data Structure

The unit supplies a da ta structure to represent each "filecard"
used by your application. The format for the data structure is:

A CARD = PACKED RECORD
~NU NUMBER: INTEGER;
MENU:LEVEL: 0 •• 4;
P CARD: INTEGER;
MENU TITLE: STR22j

END;

The MENU NUMBER is simply the number you have assigned to the card.
The MENU-LEVEL is the level in the "menu tree" of the ca rd. This can
have a value be tween 1 and 4. The value of 0 is a special case. It
represents the "top most" card which is not displayed. It is used
to specify the right hand side of the top display to show what
happens when the user types ESCAPE at the level 1 card. The integer
P CARD is the ca rd numbe r of the previous ca rd in the "menu tree".
This value is used to update the top display Escape path. The
MENU TITLE is a string whose length is limited to 22 characters.
This-is the name of the "filecard" displayed in the tab on the left
hand side.

In your application you should define an array of A CARD's, one
for each "filecard" in your "menu tree". Using your "menu tree"
diagram, define a procedure in your program to initialize this
data structure. The SAMPLE program provided as an appendix shows
such a procedure (set_cards).

4. "Filecard" Menus

4.1 Introduction

Each "filecard" presents the user with a menu of items. The
user then selects one of the items to perform. The user uses the
UP or DOWN ARROW keys to move through the items, or they can type
the item number displayed in the menu to choose an item. Once
an item is chosen, they then type RETURN to select that item.

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 8

"Filecard" Menu Support Unit

4.2 Menu Description

4.2.1 Menu Items that Select other Menus - "Menu Selectors"

Certain menu items will select another menu to be
displayed on another "filecard". This new "filecard" will
be one level lower than the "filecard" displaying the item
selected. These menu items are called "menu selectors".
They do not perform any other action than to specify the
next "filecard" to be displayed.

4.2.2 Menu Items that Select Operations - "Action Selectors"

Other menu items select an action to be performed. These
items are called "action selectors". In this case, the
application branches off to perform some action that has been
selected. Here the application may prompt the user for input,
display new information for the user, or other such things.
In most cases, this implies that the screen display of
"filecards" will go away for the duration of that activity.
When the activity is done, the application should return
to the original "filecard" display shown prior to branching
into the activity. Though the unit does not supply the
means of performing the activities for your application,
it does supply the means of selecting these activities and
for coming back to the original "filecard" display. The
SAMPLE program described below shows how this is done.

4.3 The Menu Item Data Structure

The unit supplies a data structure to define a single item in
the menu. This is the MENU ITEM data structure, whose format is:

MENU ITEM PACKED RECORD
DO POSITION: BYTE;
XPOS: BYTE;
YPOS: BYTE i
STATE: BYTE j
DSPLY TEXT: STR60j

END;

The first three bytes of the record contain control codes used by
the Apple II Console Driver to do an Absolute Position. DO POSITION
holds the control code for absolute position, XPOS has the x-position
value and YPOS has the y-position value. These are used to position
the menu item in the "filecard" for display. The STATE value
specifies whether or not the item is displayed in normal text or
inverse text. This is used during the selection process. The
DSPLY TEXT is a string of up to 60 characters which is the actual
text of the menu item that is displayed. The unit supplies an
initialization routine to set up the values of DO POSITION, XPOS,
YPOS, and STATE (INIT_A_MENU). -

This record holds all the information necessary to print it

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 9

"Filecard" Menu Support Unit

at a given location (XPOS, YPOS) in the current viewport, which is
the inside of the current "filecard" displayed on the screen.
The text of the item (DSPLY TEXT) is printed either in normal or
inverse depending on the control code in the variable STATE. For
details on the control codes used (DO POSITION and STATE) see the
Apple II Console Driver ERS. -

4.4 The Menu Data Structure

A se t of menu items belonging in one menu are 11 nked togther;
via another unit-supplied data structure, A MENU. The format is
shown below:

A MENU .. PACKED RECORD
NUM ITEMS: 1•• 9;
CURRENT ITEM: INTEGER;
LIST: ARRAY[I ••9] OF MENU_ITEM;

END;

NUM_ITEMS specifies the number of menu items in this menu. This can
be between 1 and 9. LIST is simply the list of menu items for this
menu. The field CURRENT ITEM is used to maintian the number of
the most recently selected item in the menu. This is done so that
when a user "escapes" back to a menu, the unit can display the item
last selected as highlighted.

In your application you should define an array from 1 to the
number of "filecards". For example,

MENU: ARRAY[I •• 9] OF A_MENU;

Each element of this array corresponds to one of the "filecards 11 you
have defined. The index into this array is to match the number of
the card. Thus MENU[3] specifies the menu to be displayed with the
card whose number is 3.

Each element in MENU (MENU[I], MENU[2], •••) requires
initialization. In your program you should set up a procedure to
set up this array. If you used the INiT A MENU procedure, the
only elements that require your input are:-

MENU[n].NUM ITEMS - gets the number of items for this menu
MENU[n].LIST[nn].OSPLY_TEXT - gets the text for the menu item

The SAMPLE program found in the appendix illustrates this procedure
(PI_SET MENU TEXT and P2 SET MENU TEXT.)

5. The "Filecard" Menu Support Unit

5.1 Int roduct ion

The "Filecard" Menu Support Unit supplies the necessary
routines to support a simple "filecard" style human interface.
In includes data structure definitions to help in setting up

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 10

"Filecard" Menu Support Uni t

the necessary information about the "menu tree" and procedures
to help initialize these data structures.

There are 10 low level routines that allow access to the
console driver to support the display of text in conjuction
with the unit.

The rest of the routines are designed to help set up the
interface, display and remove "filecards" from the display,
and get the user's selection from the menu.

Many of the details described below are based on the Apple II
Console Driver E.R.S. You should be familiar with its contents
before reading this section.

5.2 Unit Interface Data Structures

5.2.1 Console Driver Control Codes

The unit supplies as constants the set of
console driver control codes. These can be used by
the program to perform other console display activities.
The list is:

NOOP 0
SAVEVP = 1
SETVP 2
CLRBOL 3
RESTVP 4
BELL 7
CURLFT 8
CURDWN 10
CLREOV 11
CLRVP 12
CURRET 13
NORMAL = 14
INVERSE 15
DLE = 16
HORSFIFT 17
VPOS = 18
CLRBOV = 19
HPOS = 20
CHCONT '" 21
SCRDWN 22
SCRUP 23
HOFF 24
HOME 25
CLRLINE 26
MON = 27
CURRGT = 28
CLREOL 29
APOS = 30
CURUP 31

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 11

"Filecard" Menu Support Uni t

See the Apple II Console Driver for details on these
control codes.

5.2.2 Constant Declarations

The following constants are defined in the unit,
though in most cases they are not needed in a program
using the uni t:

The is the console driver unit number:

CONSOLE = 130

The following are the required control mode values
for UNITSTATUS calls to the console driver:

GET STATUS = a
GET CURSOR = 2
SAVE VP CONTENTS
REST-VP-CONTENTS =

16386
24578

See the Apple II Console Driver ERS for details
on these control mode values.

5.2.3 Type Declarations

5.2.3.1 CON STAT BLK

The console driver has a status call which
returns the current status of the driver. This
record defines this status information:

CON STAT BLK PACKED RECORD
CV: BYTE;
CH: BYTE;
WNDTOP: BYTE;
WNDBOT: BYTE;
WNDLFT: BYTE;
WNDRGT: BYTE;
WNDWTH: BYTE;
WNDLEN: BYTE;
CONWRAP: BYTE;
CONADV: BYTE;
CONLFD: BYTE;
CONSCRL: BYTE;
CONVID: BYTE;
DLEFLAG: BYTE;
CONFILL: BYTE;
MOUSE: BYTE;

END;

November 10, 1984

See the Apple II Console Driver E.R.S. for a
complete description of these fields.

Copyright 1984 Apple Computer, Inc. Page 12

"Filecard" Menu Support Uni t

The unit has a procedure (GET_CON_STATUS) whicr
will perform the status call.

5.2.3.2 POSITION

This record defines the data structure by
which the current cursor position can be read
via a status call to the console driver:

POSITION = RECORD
XPOS: INTEGER;
YPOS: INTEGER;

END;

where

XPOS is the absolute x-position of the cursor

YPOS is the absolute y-position of the cursor

5.2.3.3 MENU ITEM

The record MENU ITEM defines a single item
in one menu:

MENU ITEM

where

PACKED RECORD
DO POSITION: BYTE;
XPOS: BYTE;
YPOS: BYTE;
STATE: BYTE;.
DSPLY TEXT: STR60;

END;

DO POSITION is the control code for absolute
position

XPOS is the x-position

YPOS is the y-position

STATE denotes whether the menu item is normal
or inve rse text (14 = normal, 15 = inve rse)

DSPLY TEXT is a string up to 60 characters in
length that is the text for the menu item

5.2.3.4 A MENU

This record defines a complete menu for a
single "filecard". Its format is:

A MFNU = PACKED RECORD

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 13

"Filecard" Menu Support Uni t

NUM ITfMS: 1•• 9;
CURRENT ITEM: INTEGER;
LIST: ARRAY[I ••9] OF MENU_ITEM;

END;

where

NUM ITEMS is the number of menu items to be
displayed (from 1 to 9)

CURRENT ITEM is the number of the most recently
selected item

LIST is the list of menu items (from 1 to 9)
for this particular menu

5.2.3.5 A CARD

This record defines a "filecard". Its format
is:

A CARD ~ PACKED RECORD
MENU NUMBER: INTEGERj
MFNU:LFVEL: 0 •• 4;
P CARD: INTEGER;
MENU TITLE: STR22j

ENDj

where

MENU NUMBER is the number assigned to this
"fiiecard" and its menu

MENU LEVEL is the level assigned to this
card-(see above for a description of levels)

P CARD is the menu number of the previous card
in the "menu tree"-

MENU TITLE is the title for this card, a string
no greater than 22 characters in length

5.2.3.6 SCREEN BUFFER

This type defines a buffer that can store
one screen's worth of data. It is used to
temporarily store the contents of the screen or a
viewport when using a Save Viewport or Restore
Viewport control call to the console driver.

SCREEN BUFFER = PACKED ARRAY[I •• 1920] OF BYTE;

5.2.3.7 OUTPUT BUFFER

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 14

"Filecard" Menu Support Unit

This type defines an output buffer where data
is placed prior to writing it out to the console
driver.

OUTPUT BUFFER z PACKED ARRAY[O •• 1023] OF BYTEj

5.2.3.8 ERROR BUFFER

This type defines a smaller buffer where the
screen contents behind an error box are stored so
that the screen can be "re-painted" af ter an error
box is removed from the screen.

ERROR BUFFER = PACKED ARRAY[I •• 310] OF BYTEj

5.2.3.9 STR22 and STR60

For the strings used in some of the data
strucutures defined in the unit, the following
special string definitions are used:

STR22 STRING[22]

STR60 = STRING[60]

5.2.4 Variable Declarations

5.2.4.1 SAVE BUFFER

This is the buffer that is used by all saves
and restores of the viewport. It is large enough
to store a full screen (80 columns by 24 lines)
of da tao

SAVE BUFFER: SCREEN_BUFFERj

5.2.4.2 ERR BUFF

This is the buffer used by the errorbox routines
to store the information overwritten by the errorbox
on the screen so that it can be restored.

5.2.4.3 BUFFER

This is the buffer used to collect data prior
to writing it out to the console driver. All the
routines in the unit that write to the console
use this buf fe r.

BUFFER: OUTPUT_BUFFEPj

5.2.4.4 BUFF P

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 15

"Filecard" Menu Support Unit

This is the global pointer into the output
buffer, BUFFER. It is used as an index into the
array. When data is placed into the array directly,
this pointer must be incremented the appropriate
number of times to reflect the number of bytes
entered. There is a procedure, RESET_BUFFP, that
will set it to 0, to reset the buffer for new
input.

BUFF P: INTEGE R;

5.2.4.5 STATUS BLK

This is a record to hold the status information
for the console driver. Its format is described
above and in the Apple II Console Driver E.R.S.

5.2.4.6 MODE

All data output to the console driver is done
via a UNITWRITE statement. This call requires a
"mode expression" to control automatic DLE-expansion
andlor automatic linefeeds. Normally, this value
is a but it can be set for the procedure WRITF BUFFER
(described below) by setting this integer value, MODE.
The values are their meanings are:

value DLE-expansion Auto 11 nefeed
------------- -------------

a TRUE TRUE
2 FALSE TRUE
8 TRUE FALSE
12 FALSE FALSE

Any other values will result in undefined states.
Changing this value while using the unit's functions
can result in poor performance by the unit! If you
change it for your own purposes, set it back to
zero before calling the unit.

The unit supplies a procedure SET MODE (5.2.5.9)
that will properly set this value~ The default
setting used by the unit is DLE true and Auto-linefeed
true.

5.2.5 Functions Available

5.2.5.1 PUT CONTROL

CALL FORMAT:

November la, 1984 Copyright 1984 Apple Computer, Inc. Page 16

"File card" Menu Support Uni t

PUT_CONTROL(CONTROL);

where CONTROL is an integer value that represents
a control code for the console driver.

This procedure will place a console driver
control code in the output buffer, BUFFER, and
will increment BUFF P. For example, to set up
an absolute position control sequence, a program
would have the following calls:

PUT CONTROL(APOS);
Pur-CONTROL(NEW X);
PUT=CONTROL(NEW=Y);

where NEW X and NFW Yare integer values
corresponding to the x and ycoordinates
that the program wishes to move the cursor

5.2.5.2 PUT STRING

CALL FORMAT:

PUT STRING(A_STRING);

where A STRING is a string (0 to 80 characters in
length.

This procedure places a string in the output
buffer, BUFFER, and increments the pointer BUFF P
the length of the string. For example,

PUT_STRING('This is a string to display!');

5.2.5.3 RESET BUFFP

CALL FORMAT:

This procedure resets the value of BUFF P to
o which effectively clears the output buffer: BUFFER,
of data. Before setting up a new buffer-full of
da ta, this procedure should be called.

5.2.5.4 WRITE BUFFER

CALL FORMAT:

This procedure will write the current contents
of the output buffer, BUFFER, to the console driver.
The number of bytes written is equal to the current

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 17

"Filecard" Menu Support Unit

value of the pointer BUFF_P. After the buffer is
written, BUFF P is set to O.

5.2.5.5 GET CON STATUS

CALL FORMAT:

This procedure will make a status call to the
console driver and return the current status
information in the data structure, STATUS BLK,
where the calling program can inspect it.-

5.2.5.6 VP SAVE

CALL FORMAT:

where SCR BUF is a byte array large enough to
hold the number of characters contained in the
current viewport.

This procedure will save off the contents of
the current viewport into a buffer. It is critical
that the butter be large enough to hold the number
of characters in the viewport. This number can be
calculated via a GET CON STATUS call and then
multiplying the values of WNDLEN and WNDWTH.

5.2.5.7 VP RESTORE

CALL FORMAT:

VP RESTORE(SCR_BUF)j

where SCR BUF is a byte array large enough to
hold the number of characters contained in the
current viewport.

This procedure will restore the contents of
the current viewport from the buffer where they
were previously saved via a VP SAVE call. It is
critical that the buffer have the same number
of bytes of data as the size of the current
viewport. It is not important that the viewport
occupy the same absolute position on the screen.

5.2.5.8 GET POSITION

CALL FORMAT:

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 18

"File card" Menu Support Uni t

where CUR_POS is a record of the type POSITION

This procedure will return the current absolute
position of the cursor in the console driver.

5.2.5.9 SET MODE

CALL FORMAT:

where DLE and LFD are Boolean values

This procedure will set the MODE variable
to the appropriate value given the settings of
the DLE and LFD parameters. If DLE is TRUE then
DLE-expansion will be set, otherwise it will be
reset. If LFD is TRUF than Auto-linefeed will be
set, otherwise it will be reset.

5.2.5.10 MIDDLE UPDATE

CALL FORMAT:

MIDDLF_UPDATE(STR);

where STR is a string

This procedure will update the middle portion
of the top display. It is used in conjuction with
RIGHT_UPDATE (see below) to update the top portion
of the screen during the selection process as
"filecards" are displayed. This procedure is
used to place the title of the current "filecard"
on the screen. This procedure will clear out the
right portion of the top, requiring it to be updatec1
also.

This procedure makes a save-viewport control
call tb the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "res torable".
Before exiting, this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit, this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.11 RIGHT UPDATE

CALL FORMAT:

November 10,1984 Copyright 1984 Apple Computer, Inc. Page 19

"Filecard" Menu Support Unit

RIGHT_UPDATE(STR);

where STR is a string

This procedure will update the right hand
portion of the top display. It has no effect on the
remaining part of the top display.

This procedure makes a save-viewport control
call to the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "restorable".
Before exiting. this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit. this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.12 MAKE CARD

CALL FORMAT:

MAKE_CARD(CURRENT_CARD, PREVIOUS CARD);

where CURRENT CARD and PREVIOUS CARD are A CARD's

This procedure will display a "filecard" on
the screen. The card displayed will be CURRENT CARD.
The level of this card will determine its placement
on the screen. As well as displaying the "filecard"
(only the outline and title. the menu is not
displayed at this time) this procedure will update
middle pot ion of the top wi th the title of the
current card. Using the PREVIOUS CARD record it
will also update the right hand sIde of the top
with the "escape path".

Upon exiting this procedure, the viewport will
be set to the inside of the "filecard" on the screen.

5.2.5.13 REMOVE CARD

CALL FORMAT:

REMOVE_CARD(LEVEL. PREVIOU~CARD. PRE_ESCAPF~CARD);

where LEVEL is a value between 1•• 4. PREVIOUS CARD
and PRE ESCAPE CARD are A CARD's

This procedure will remove the current card
from the display. and then display the previous

Novembe r 10. 1984 Copyright 1984 Apple Computer. Inc. Page 20

"Filecard" Menu Support Uni t

card (to the current card in the "menu tree") on
the screen. LEVEL is the level of the current card.
PREVIOUS CARD is the card record of the ca rd previous
to the current card. PRE ESCAPE CARD is the card
previous to the previous card! The description below
of the sample program will make clear the use of
this procedure. This procedure is used when the
user types an escape during the selection process
to go back to the previous "fileca rd".

Upon exiting this procedure, the viewport will
be set to the inside of the new "filecard" on the
sc reen.

5.2.5.14 MAKE TOP

CALL FORMAT:

MAKE_TOP(LEFT, MIDDLE, RIGHT);

where LEFT, ~IDDLEJ RIGHT are strings

This procedure will put the top display on the
screen, placing the LEFT s trfng lef t-jus tified on
the first line, centering the MIDDLE string, and
right-justifying the RIGHT string. The second line
is left blank, and a line of " " is then drawn.

This procedure makes a save-viewport control
call to the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "res torable".
Before exiting, this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit, this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.15 MAKE BOTTOM

CALL FORMAT:

MAKE_BOTTOM(LEFT, RIGHT);

where LEFT and RIGHT are strings

This procedure contructs the bottom portion
of the display. The LEFT string is left-justified
and the RIGHT string is right-jusitified on line 22.
Line 21 is a line of " " and line 23 is left blank.

This procedure makes a save-viewport control

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 21

"Filecard" Menu Support Unit

call to the console driver. The calling program
should not assume that any viewports it has
saved prior to this call will remain "restorable".
Before exiting, this procedure will restore the
previous viewport setting. The console driver
only supports one level of save for viewports.
Internal to the unit, this does not matter. Any
program using the unit and is also making its
own calls to the console driver (Save and Reset
Viewport, Restore Viewport) should be aware of this.

5.2.5.16 CLEAR SCREEN

CALL FORMAT:

CLEAR_SCREEN;

This is a general procedure to clear the entire
screen. The viewport is left set to the entire screen.
This is used primarily to clear the screen at the
beginning of a program and at the end.

5.2.5.17 INIT A MENU

CALL FORMAT:

where MENU LIST is A MENU

This procedure will set up the initial values
of the following fields in a menu record. Those
fields are:

DO POSITION - set to control code for
absolute position

XPOS - set to 1 (second column in viewport)

YPOS - set from 1 to 9 depending on the
number of menu items in the list

STATE - for item 1 se t to INVERSE, fo r the
other items set to NORMAL

The unit actually uses these data structures to
paint the menu items in the "filecard". The
absolute position control code and the XPOS and
YPOS values determine where the text is placed.
The STATE value determines whether or not the
text is in INVERSE or normal text. This procedure
defaults to displaying the menu as a single-spaced
list in the "filecard". For example,

November 10,1984 Copyright 1984 Apple Computer, Inc. Page 22

"Filecard" Menu Support Uni t

1. First menu item
2. Second menu item
3. Third menu item

9. Last menu item

A program can modify the values of XPOS and
YPOS to control the positioning of the menu items
in the "filecard".

The procedure also sets the field CURRENT ITEM
to 1.

5.2.5.18 GET SELECTION

CALL FORMAT:

SELECTED := GET_SELECTION(MENU_LIST t SELECT_NUM,
SHOW_MENU) ;

where MENU LIST is A MENU t SELECT NUM is a VAR
parameter to return the number of-the item
selected t and SELECTED is a program supplied
BOOLEAN variable; SHOW MENU is a BOOLEAN that
specifies whether or ~t the menu display needs
to be updated t if TRUE update the displaYt FALSE
don't update the display

This is the main procedure to handle the
complete selection process for a menu displayed
in a "filecard". Once a card has been displayed
via a MAKE CARD call t GET SELECTION is then called
with the MENU LIST for the current card. This
call will pai~t the menu list in the "filecard"
on the screen t with the first menu item in inverse.
If the variable SHOW MENU is FALSE t the menu will
not be displayed. This assumes that the menu is
already present on the screen.

At this point t the user can type one of the
following things:

UP-ARROW - will move to the next item above
in the lis t

DOWN-ARROW - will move to the next item below
in the lis t

a numbe r - typing a numbe r will move to the
item with that number in the list

RETURN - will return the number of the item

Novembe r 10 t 1984 Copyright 1984 Apple Computer t Inc. Page 23

"Fileca rd" Menu Support Uni t

currently in INVERSE (selected) in
the variable SELECT NOM and
GET SELECTION will return true

ESCAPE - will return 0 in SELECT NUM and
GET SELECTION will return false

typing anything else (or a number not included
in the list) will cause a beep

A menu item displayed in inverse is considered
to be the "chosen" item. To select that item requires
the user to type RETURN. Moving to an item either
with the arrow-keys or typing a number constitutes
choosing an item.

After GET SELECTION returns it is up to the
calling program to act on the choice. ~he description
of the SAMPLE program below will illustrate how this
is done.

5.2.5.19 ERROR BOX

CALL FORMAT:

This procedure will place an error box on
the screen. saving the screen contents behind
the box. See section 2.5 for a description
of an error box.

This procedure will do a save viewport
control code. Any previously saved viewport
specifiction will be lost. Internal to the unit
this does not matter. Any viewport set by the
calling program will have to be managed by that
program.

It is up to the calling program to place any
text in an error box. This has to be done with
calls to the console driver (Pascal has no knowledge
of the current screen state!) The current viewport
is set to the inside of the error box. so all display
will "automatically" take place there.

5.2.5.20 C~ AWAY FRROR

CALL FORMAT:

This procedure must be used in conjunction
with ERROR BOX. Once an error box has been

Novembe r 10. 1984 Copyright 1984 Apple Computer. Inc. Page 24

"Filecard" Menu Support Unit

displayed, along with an error message (supplied
by the calling program), the box can be removed
from the screen by calling this procedure. It
will restore the original screen contents and will
reset the viewport to the values saved at the time
of the call to ERROR BOX.

Any text in an error box is removed by this
call. The calling program does not need to ~emove

it itself.

5.2.5.21 RESET CARD VP

CALL FORMAT:

RESET CARD VP(CARD_REC);

where CARD REC is A CARD

This procedure is used to set the viewport
back to the inside of a "filecard" (CARD RFC)
on the screen. It is used to update the-screen
during the selection process as cards are removed
and replaced on the screen. See below for details
on its use.

5.2.6 Using the Unit with Your Program

To use the unit requires a USES statement in your
program of the form:

USES {$U library} FILECARD;

where library is the name of the library file where the
unit is located.

5.3 A Sample Application that Uses the Unit

As an appendix, there is a listing of a sample program that
utilizes the unit as the primary human interface code. This
program has 9 different ·"filecards" arranged in the "menu tree"
in Figure 3.3. Each menu has between two to five items, some
of which point to other menus and others which branch of f to
"pseudo" activities. This program illustrates the type of data
structures that are used to create the "menu tree", how to
ini tialize the da ta, and how to organize the "main loop" in the
program which controls the selection process.

5.3.1 Setting up the "Filecards"

The program defines an array of A CARD which
designates the "filecards" used by the-program.

CARD: ARRAY[O •• 9] OF A_CARD;

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 25

"Filecard" Menu Support Uni t

The zeroth element of the array is used only to store
a string (the menu title) that is displayed for the
topmost card's escape path. Elements 1 through 9 are
the actual "filecards" that are displayed. For any
program there should be an array, like that above,
with O•• number of filecards.

The following fields in each A CARD n,eed to be
initialized as follows:

MENU NUMBER - the number assigned by the programmer

MENU LEVEL - the level 1•• 4 in the "menu tree"

P CARD - the menu number of the previous card in the
menu tree

MENU TITLE - the title displayed in the upper left
corner of the "fileca rd"

The procedure SET CARDS shows such an initialization process.
Most of the details used should have already been worked out
in the ini tial design of the "menu tree".

5.3.2 Setting up the Menus

The program defines another array to hold the information
about each of the menus associated wi th the "filecards".

MENU: ARRAY[l •• 9] OF A_MENU;

Each element 1 to 9 corresponds directly with each element
1 to 9 of the array CARD.

The first step is to initialize the fields that control
the display of the menu items (DO POSITION, XPOS, YPOS,
and STATE). This is done throug~a call to the procedure
INIT A MENU in the unit. Since there are nine menus to
set up: a simple FOR-LOOP does the trick:

FOR I := 1 TO 9 DO INIT_A_MENU(MENU[I]);

This is found in the procedure INIT THE MENUS in the sample
program.

The next step is to specify the number of items for
each menu and the text to be displayed for each item in
the menu. The procedures PI SET MENU ITFMS and
P2_SET_MENU_ITFMS show this process. -(There are two
procedures because of the size limitiations for the amount
of code generated in a procedure!)

The standard set up used here will result in a single

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 26

"Fileca rd" Menu Support Uni t

spaced list displayed left-justified in each "filecard".
You can modify this by changing the values of XPOS and
YPOS in each MENU ITEM. When changing these values,
remember that the-x and y values are treated relative to
the viewport coordinates.

5.3.3 The Main Body of the Program

Other than the calls to the initialization procedures,
the main body of the program consists of a large REPEAT'
statement that contains a large CASE statement. This CASE
statement controls the flow of action during the selection
process.

5.3.3.1 The Selection Process

There are three types of action that occur
during the selection process:

Display the next menu in the "menu tree"
selected by a menu item.

Return to the previous "file card" in the
"menu tree".

Branch off to an activity that requires
a different di.splay than the "filecard"
di splay.

The first occurs when a user selects a menu item
using either the arrow keys or a number key and then
types RETURN. If this menu item selects another menu,
then the new "filecard" and its menu must be displayed.

The second happens when the user types ESCAPE
while a "filecard" is displayed. For a "filecard"
with a level greater than 1, this will result in
"moving back" to the previous "filecard" in the
"menu tree" (the card directly underneath the current
"filecard" on the display.) For the topmos t "filecard"
(level 1) the result of typing escape is up to the
program to determine. For the sample program, it
terminates the execution of the program. .

The third happens when a user selects an item
as in the first case, but here the item selects an
activity and not another menu. In this case, the
"filecard" display will more than likely be removed
from the screen and a different display will replacp
it. When the activity is completed, the display
should return to where it was left (the "filecard"
where the user selected the activity.)

The display of the menu (not the "fileca rd")

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 27

"Filecard" l'ienu Support Unit

and the handling of the selection process is done
via a call to the function GET SELECTION. The
function will return FALSE if the user typed
ESCAPE. It will return TRUE if the user selected
an item and typed RETURN and it will return the
number of the item selected.

5.3.3.2 Going through the Menu Tree

When the program begins, it needs to put up
the first display. This consists of the top and
bottom portions of the screen and the first
"filecard". In the program, the procedure
FIRS~SCREEN does this. At all times, there is
a variable CURRENT CARD which has the number of the
currently selected-"filecard". FIRST SCREEN se ts
this to 1, the numbe r of the topmos t (level 1) ca rd.
This variable controls the flow of the display
during the selection process. Another variable,
OLD CARD is used to store the number of the last
selected "file card" • This value is used to de termine
whether or not the menu requires updating when the
"filecard" is redisplayed. This occurs either
because of an error box or when the program branches
off to an activity.

Once the initial screen has been displayed,
the selection process begins. This is found in
the REPEAT loop in the main body of the sample
program. The general structure of the REPEAT
loop is:

REPEAT
IF OLD CARD <> CURRENT CARD THEN

{redisplay menu in 'lfilecard"}
SELECTED := GET SELECTION(MENU[CURRENT CARD],

SEL=NUM, TRUE) -
ELSE

{don't redisplay menu}
SELECTED := GET SELECTION(MENU[CURRENT CARD] ,

SEL-NUM, FALSE); -
CASE CURRENT CARn-OF

1: {case for each "filecard"}
2: {case for each "filecard"}
•

9: {case for each "fileca rd"}
FoND;

UNTIL FALSE;

As CURRENT CARD has been set to 1 as the program
enters this loop, GET SELECTION will display the
menu for the "filecard" on the screen and wait

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 28

"Filecard" Menu Support Unit

for the user's input. Each case in the CASE
statement corresponds to the menu number of the
CURRENT CARD. Thus once something has been selected,
the CASE statement will process the selection
given the CURRENT CARD. .

Each case (of CURRENT CARD) reacts to the
type of selection the user-has made. The basic
f~rmat for each case is:

BEGIN
IF NOT(SELECTED) THEN BACK UP
ELSE

BEGIN
CASE SEL NUM OF

1: {case for each menu item}
2: {case for each menu item}

9: {case for each menu item}
END;
GO_FORWARD;

END;
END;

The case statement here corresponds to the menu
nemsin the menu displayed • For menu items that
select another menu ("menu selectors") the entry
in the case siJllplysets CURRENT CARD to the value
of the menu now selected. For example, if menu
item 3 selects "filecard" 4 then in the case
statement the entry for 3 would be:

3: CURRENT CARD := 4;

When a "menu selector" has been selected, a
new "filecard" must be displayed. The CASE statement
will set CURRENT CARD to the value of the new
"filecard" number. At the bot tom of the CASE
statement there is a call to a procedure called
GO FORWARD. This procedure will display the new
"fTlecard" selected. The sample program includes
this procedure. Its content is shown below:

PROCEDURE GO_FORWARD;

VAR PREVIOUS_CARD, OLD ITFM: INTEGER;

BEGIN
IF OLD CARD <> CURRENT CARD THEN

BEGIN
PREVIOUS CARD := CARD[CURRENT CARD].P CARD;
MAKE_CARD(CARD[CURRENT_CARD] ,-

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 29

"Filecard" Menu Support Unit

CARD[PREVIOUS CARD]);
OLD ITEM :~ MENU[CURRENT CARD].CURRENT ITEM;
MENU[CURRENT_CARD].LIST[OLD_ITEM] •STATE :=

NORMAL;
MENU[CURRENT CARD].LIST[l].STATE :~ INVERSE;
MENU[CURREN~CARD].CURRENT_ITFM := 1;

END;
END;

The procedure determines the previous card to th~

new current card and then calls MAKE CARD to display
the new "filecard". It also se ts the new menu values
for CURRENT ITEM.

This procedure only works when the program is
moving to a new "filecard". When an activity is
selected, the program will return to the original
screen, which does not require that a new "filecard"
be displayed. However, the case will fall through
this procedure call. The test at the beginning
handles this event.

If the user types ESCAPE, it is necessary to
go back to the previous card in the display. This
requires that the current card be removed from
the display. The sample program has a procedure,
BACK UP which handLes this. For each case in the
case-of CURRENT CARD (except the. firs t level 1
card) there is. a test for SELECTED. If it is FALSE,
the user has typed ESCAPE, so BACK UP. The content
of this procedure is shown below:

PROCEDURE BA~UP;

VAR PREVIOUS CARD,
ESCAPE CARD: INTFGER;

BEGIN
PREVIOUS CARD := CARD[CURRENT CARD].P CARD;
ESCAPE CARD := CARD[PREVIOUS CARD].P CARD;
REMOVE-CARD(CARD(CURRENT CARe].MENU LEVEL,

- CARD[PREVIOUS CARD], -
CARD[ESCAPE CARD]);

CURRENT CARD := PREVIOUS~CARD;

END;

The procedure determines the previous card (to back
up to •••) and the escape ca rd to upda te the top of the
display. It then calls RFMOVE CARD to clean up
the display. Finally it sets CURRENT CARD to
PREVIOUS CARD, thus the current card to be displayed
is the ''Previous'' ca rd in the display.

5.3.3.3 Branching Off to an Operation

November 10, 1984 Copyright 1984 Apple Computer, Inc. Page 30

"Fileca rd" Menu Support Uni t

When the user selects a menu item that is an
"action selector". the program must now branch off
to perform that action. This requires in mos t cases
a new display on the screen. removing either the
top. bottom. or "filecard" area. or all three from
the screen. Removing an area requires:

1. Setting the viewport to that area of the
screen that is to be cleared.

2. Saving the contents of that portion of the
screen so that it can be restored.

3. Clearing that area with a Clear Viewport
command.

This will now set up that area to be used for
activity-specific display.

The sample program has a procedure called
SET UP ACTIVITY. which sets the viewport to the
entire-screen. saves the screen contents. and then
clears the screen.

5.3.3.4 Coming Back from an Operation

When an activity is complete the user is to
return to the "filecard" display at the point at
which it was left. This means that the screen
should be restored back to its original contents
prior to branching off to the activity.

When returning. firs t se t the viewport back
to that area which was removed. Then restore
the contents back to the screen. This will put
the display back to its original form. Since.
CURRENT CARD has not changed. GO FORWARD will
restorethe original "filecard" and not a new
one. Falling through the end of the CASE
statement will then bring us back to GET SELECTION
which will display the original menu. Thus the
selection process begins anew at the place left
when the user selected a "action selector".

The sample program has a procedure called
RETURN_FROM_ACTIVITY which sets the viewport to
the entire sc reen and then res to res the sc reen
contents. thus returning back to the "fileca rd"
display at the point it was left.

5.3.3.5 Performing an Activity

In the case (of CURRENT_CARD). for each

Novembe r 10. 1984 Copyright 1984 Apple Computer. Inc. Page 31

"Filecard" Menu Support Unit

card, there is a CASE statement corresponding
to each item in the menu. For those items that
are "activity selectors", the case has the form:

CASE SEL NUM OF

n: BEGIN {branch off to an activity}
SET_UP_ACTIVITY;
DO ACTIVITY; .
RE'TuRN FROM ACTIVITY;

END; - -

END;

If SET UP ACTIVITY and RETURN FROM ACTIVITY are
properly done (see above) the-code-for the
activity itself does not have to worry about
ma intaining the integri ty of the "fileca rd·!
display itself.

5.3.3.6 Reporting an Error

If there is an error to report, the error
box procedures supplied by the unit facilitate
the reporting process. The sample program has
a procedure which presents a simple error,
DO AN ERROR.

BEGIN
ERROR BOX;
PUT_ERROR_MSG;
PAUSE;
GO AWAY ERROR;

END;- -

The basic format is to display an error box and
then to display a message in the error box. PAUSE
waits for the user to read the message and then to
type something to exit. GO AWAY ERROR then cleans
the error box from the screen.

Novembe r 10, 1984 Copyright 1984 Apple Computer, Inc. Page 32

	apple_forumdesdeveloppeurs_03_userinput_01
	apple_forumdesdeveloppeurs_03_userinput_02
	apple_forumdesdeveloppeurs_03_userinput_03
	apple_forumdesdeveloppeurs_03_userinput_04
	apple_forumdesdeveloppeurs_03_userinput_05
	apple_forumdesdeveloppeurs_03_userinput_06

