
The Assembly Language Journal of Merlin Programmers

."
/

'-----0'

ther

I didn't really know the meaning of the word
"behind" until I went into business for
myself. No sooner did I get a business license
than I became like the butcher who backed
into the hamburger machine - he got a little
behind in his work.

Split Stitches and
EIIlergencies

%e Sourceror s!JLpprentice

All yuks aside, I got waylaid in September by
some surgery and a trade show, hence weare
even behinder than normal. My apologies
and don't fear. We've not evaporated or gone
belly up (boy, some of you are nervous,
although I understand the concern. This is a
difficult time in the computer industry, a real
dog eat dog business to begin with.) Did any
of you see us at AppleFest? It was a profitable
adventure, but extremely tiring. Not only
that, but two of Apple's finest, Greg Branche
and Tim Swihart, got me laughing so hard
that I literally split my stitches!

On top of that, two other parties need to cover
their costs and make a profit, the publisher
(who now pays for manuals, etc.) and the
distributors (Egghead Software, Roger Coats,
Programs Plus and the like).

Enough drivel. Time for a little hard news...

1) We are no longer carrying Applied
Ingenuity hard drives. They are still a fine
product and a good buy at the current (higher)
price, but AI itself is the best place to get the
drives, both in terms of order fulfillment
speed and price.

2) DesignMaster is now sold exclusively by
The ByteWorks (4700 Irving Blvd. NW Suite
207, Albuquerque, NM 87114, (505) 898
8183). Before you choke on the price, the
program is greatly expanded, supports
System 5.0, and is still the best productivity
buy for yer bucks. Note that it won't be
shipping for a few weeks yet. Considering
that the programmer used to sell it for $30,
you may be wondering why the jump in price.
Chris Haun is probably making less on each
unit now than he was - but he doesn't have to
fill orders and do bookkeeping (onerous
chores, let me tell ya).

The sorry lesson herein is that anybody
selling a product too cheaply is not building
in enough margin to make it worth while for
someone else to distribute!

3) The Merlin translation of APP.BUILDER
(the 8 bit macro language for assembly
language programmers) is on hold. Apple's
Eric Soldan re-wrote major portions of it and
asked me to wait until he was done.

In APP.BUILDER's stead he submitted a fine
article on using/reading the paddle circuits
in your Apple. 01' Eric had some neat tricks
up his sleeve for coercing two byte values out
of the port.

One of the main themes I heard from
Apprentice subscribers is that you would
like to see "The Gentleman's GS" become a
monthly feature. That would be hard to do
since we're so limited by space. But I will
endeavor to put one in at least every other
month... starting next month.

By Eric Soldan, Apple II DTS

rrhe Sourcerors .9Lpprentice

YourFront

September 1989

Value(s)etting ore
ante Port

Editor: Eric accomplishes something herein that I did not even believe was possible - coercing
the game paddles to return two byte values. I can see why Apple snatched him up for DTS! The
concepts he delivers are not difficult conceptually, but they are a might heavy for the casual
reader, especially in the last half of the article. For that reason, get a pop/fruitjuice/milk, kick
the kids outforabout 20 minutes, sit back, and read on...

You probably haven't given your game port a lot of thought lately. You know what it is capable of,
right? Just plug a paddle, joystick, Koala Pad, or whatever in, and start reading the values from
it. Nothing could be simpler. Do a PDL(n) from APPLESOFf, or a LDX #n, JSR PREAD in
assembly language. Either way, you are returned a value from 0 to 255, and then you do the
appropriate thing based on this number.

What ifyou want to use the value to address some pixel on the hi-res screen? The width of the hi
res screen is 280 pixels and the paddle read routine just returns one byte as a result. I had this
problem when trying to interface a Koala Pad to an Artwork Editor I wrote. I didn't want to
access the screen in just bit pairs (values 0-139). I wanted to access any pixel on the screen
instead.

QUickly looking at the paddle read routine, my first thought was that it can't be improved. The
code is very tight, of course, and it only involves one byte being incremented. Counting with two
bytes would supposedly take even longer per count, and what we need to do is to count faster than
the old routine, not slower. We want to be able to count at least 280 counts in the same amount or
less time than the old routine took to do 256 counts.

Let's look at the original paddle read routine:

PREAD

PREAD2

DONE

LDA PTRIG
LDY #0
NOP
NOP
LDA .PADDLO, X

BPL DONE
INY
BNE PREAD2
DEY
RTS

;Start timer going.

;Adjust timing for first count.

;4 cycles. See how the paddle port is doing.
;2 cycles when branch fails.
;2 cycles. Paddle not done yet, so add 1 to count.
;3 cycles when branch succeeds.
;Change the 0 to the maximum count of 255.

Again, {his looks unbeatable in terms of speed. There are four instructions in the loop, none of
which is many clock cycles. To do much better, we will have to get the number of instructions per
count down to three. Three instructions per count is the minimum number possible. We need to
do the following steps, but not necessarily in this order:

September 1989 Page 3 rrhe Sourceror 5.9Lpprentice

1: Load the paddle signal value.
2: Branch ifwe are done (or not done)
3: Count the loop.

After some work, I came up with the following:

LOOP

DONE

RTSO

BIT PTRIG
LDA 4~0

TAY
CLC
ADC #1
LDX PADDLO
BPL DONE
INY
LDX PADDLO
BMI LOOP
STY YVAL
ADC YVAL
LDY #0
BCC RTSO
INY
RTS

;Start timer going.
;Load ACC and Y with O.

;3 cycles. Add odd counts into ACC.
;4 cycles. Check paddle O.
;2 cycles when branch fails.
;2 cycles.
;4 cycles.
;3 cycles when branch succeeds.

;Add odd and even counts together.
;Make Y register hi-byte of result.

The above loop counts odd counts in the accumulator and even counts in the Y register. Each
count takes a total of 9 cycles, compared to 11 cycles for the original paddle read routine. The
increase in speed will allow 312 counts in the same time that it took for 256 counts before. The
only problem with the new read routine is that there is no way out of the loop if there is no device
plugged into the game port. The original routine would have terminated anyway with a value of
255. I can't think of a way to write a routine faster than the original that handles counts greater
than one byte that will terminate if there is no device plugged in. To prevent this possible
infinite loop, a verify paddle port device routine can be called prior to calling this new routine to
make sure that there is a device plugged in.

Well, using this technique, a device such as a Koala Pad can read X-coordinates from 0 to 279,
thereby addressing the entire hi-res screen.

But wait! What about double hi-res? For double hi-res graphics, you need a read routine that
returns a value from 0 to 559. This is possible with the Apple IIGS in fast mode. The load from
COxx memory doesn't slow down the processor for very long. The net effect is that it is possible to
count fast enough to get values from 0 to 559. And with a faster processor speed (via TransWarp),
even higher count rates will be possible. Of course, with the IIGS, it is possible to just put it in 16
bit mode and use the Y register alone for·counts greater than 1 byte. Just using a 16 bit Y register
does not make it faster than this 8 bit method. The only way to improve the speed on the IIGS is
to take advantage of the diredPage register and set it so that the soft switches for the paddle port
is a one-byte address. Using a one-byte address saves a cycle. Of course, this trick can be done
using either the 8 bit or 16 bit method.

The problem with counting beyond 512 counts in 8 bit is that both the accumulator and the Y
register wrap. There would seem to be no way to detect this wrap. Fortunately, however, when
the accumulator wraps, the carry becomes set for a count pair, and then the carry is added into
the accumulator. So, considering the accumulator and the carry together, the accumulator
period is 255, whereas the Y register period is 256. Every time the registers wrap, the

%e Sourcerors.9Lpprentice September 1989

accumulator gets one more ahead of the Y register. The accumulator and Y register are out of
phase. so to speak. So, we can let the count loop wrap and then figure out how many times it
wrapped when it finally finishes.

This technique is useful for any type of timing where fast counting is critical. It allows values
from 1 to 65534 to be returned before it fails because of wrapping problems. Devices could be
designed whose maximum resistance is greater than that of the 'standard devices for any range of
input values needed. Having a faster counting method allows that maximum resistance to be
lessened.

The following code demonstrates this technique. Just POKE the paddle number in byte location 6
and then call 768. The result is returned in bytes 6 and 7. You can try it very simply from
APPLESOFT using the simple APPLESOFT example.

Have fun.

Applesoft Example

10 HOME
20 POKE 6,0:CALL 768:PRINT PEEK(6)+PEEK(7)*256i
30 POKE 6,1:CALL 768:PRINT ","PEEK(6)+PEEK(7) *256"
40 VTAB l:GOTO 20

Two Byte Paddle Read Source

ORG $300

PDLNUM EQU $06
AV EQU $06
PDLLO EQU $06
YV EQU $07
PDLHI EQU $07
ODD EQU $08
WRAP EQU $08
PDLO EQU $C064
PDL1 EQU $C065
PTRIG EQU $C070

"

PDLREAD LDA PDLNUM
CLC
ADC #PDLO
STA FASTLPO+1
STA FASTLPl+1
LDY #l
STY ODD
DEY
TYA
CLC
PHP
SEI
LDX PTRIG

iGet paddle number from APPLESOFT example
iand use it to modify the address of the LDX PDLn
iinstructions in the fast loop so it will be
itesting the correct paddle.

iPrepare everything in advance for the fast loop.
iwill be decremented to 0 for even counts.
iSet accumulator and Y-register to 0

iCarry starts cleared.
iRemember interrupt status.
iDisable interrupts.
iTrigger the paddles.

September 1989 Page 5 rrhe Sourcerors!JLpprentice

FASTLOOP ADC #l ; 3 cycles
FASTLPO LDX PDLO ; 4 cycles

BPL PDLADD ;2 cycles for no branch
INY ;2 cycles

FASTLPl LDX PDLO ; 4 cycles
BMI FASTLOOP ;3 cycles for branch
DEC ODD ;ODD=l if exited from ADC half.

;ODD=O if exited from INY half.

PDLADD PLP ;Restore interrupt status to original status.

* The table below indicates the entering values, and the process of generating
* the actual count value from the beginning data. Since the carry would have
* been added into the accumulator next odd count, the carry and the accumulator
* are added together first in the code.
* C=Carry value A=Accumulator value Y=Y register value
*
* C:
* A:
* Y:
*

001
255 255 0
254 255 255

1

o
o

o
2
o

'0

2
1

o 0
255 255
253 254

110
002

254 255 255

o
2
o

* A+C=
* A+C+Y=
* A+C-Y=

*

255 255 1
509 510 256
102

1
1
1

2
2
2

2
3
1

255 255 1 1
508 509 255 256

2 1 3 2

2
1
3

2
2
2

* ODD=. . 1 0 1
* WRAP= .. 0 0 1
* (WRAP = A+C-Y-ODD)

*

o
1

1
1

o
1

1

1
o
1

1
2

o
2

1

2
o
2

*ACTUAL= 509 510 511 512 513 514 .. 1019 1020 1021 1022 1023 1024
*ACTUAL= A+C+Y+511*WRAP (-256 if Y>127 and A<128)

ADC #0
STA AV
STY YV
SEC
SBC YV
SEC
SBC ODD
STA WRAP
LDA AV
CLC
ADC YV
PHA
LDA WRAP
ADC WRAP
PHA
LDA YV
EOR #$80
ORA AV

;Add carry value.
;AV = A+C

;ACC A+C - Y

;ACC A+C - Y - ODD

;ACC = A+C + Y
;Low byte so far.
;Add 2*WRAP (512*WRAP) + C to start hi-byte.
;1 will be subtracted later to make 511*WRAP.
;High byte so far.

;Bit 7 on if Y<128.
;NOT(Boolean(Y>127 and A<128))

%e Sourcerors!JLpprentice September 1989 Page 6

ASL
PLA
SBC #0
TAY
PLA
SEC
SBC WRAP
BCS PADDO
DEY

PADDO STA PDLLO
STY PDLHI
RTS

iPlace logical in carry.
iHigh byte so far.
iCarry CLEAR when Y>127 and A<128.
iHigh byte so far.
iLow byte so far.
i512*WRAP was added before, so subtract WRAP
ito make it +511*WRAP.

iOPTIONAL store result.
iCount value range is 1 to 65534.

Super Slick StuftFrom Synesis Systems

ore

Dear Ross,

00 •leS rom teve

Here's another tidbit (or three) you might wish to share with the GS programmers in the
group to get more power out of Merlin 16. I was inspired by your July issue to show
another way to do direct page addressing and some macros and a pseudo op that I find
useful.

First of all, a couple of little macros that I think really ought to be built-in instructions:
TKB and TSD. I use these little guys constantly; they make sense, they're obvious, and
they help make source code readable (William D. Mensch, are you listening?).

Now, how about a good use for the pseudo opcodes DUM and DEND? Many times in a
program you need to access a variable. And most of us tend to group related variables in
a stash area. But when that stash is hot inside of your own code space (like in a direct
page or a Memory Manager acquired memory block), it seems difficult to come up with
an easily modifiable method. The usual method is to equate the first variable and then
define each of the others relative to the previous one. But you don't want to be around
when you need to insert another in the middle of the list or change the amount of space
one of the early ones uses; it ain't a pretty sight! On the other hand, using DUM and
DEND makes it totally painless! See lines 87-91 in my example; the usual method is
shown in the comments area.

I've found yet another valuable way of using DUM and DEND when it comes to direct
page indirect long addressing (see lines 99-103) Warning! This method is not for the
feint of heart! To see the traditional, consetvative method, you may refer to page 8 of the
July issue (Editor: Steve must have faith in my objectivity. He is referring to your fair
editor's piece on the List Manager. His comment is okay, though, because I am a
traditional conservative in every sense of the term - I just didn't know it spilled over

September 1989 Page 7 rrhe SourcerorsJ2Lpprentice

into my programming/} In the course of writing a Desk Accessory (with no direct page),
I found the need to create one's own dpage as required. The idea is not new (look through
any Apple reference materials), but typically you see it done with hard coded addressing
such as LDA [3],Y. This is very difficult to read, modify, or maintain. What I espouse is
meaningful labels, wherever possible.

So, to put these concepts together into an example, I selected pages 8 and 9 f rom the July
issue as the guinea pig (sorry Ross).

This first toolbox call LNextMember) returns the address of the selected member.
Since the result is returned on the stack, is there any need to pull it off and store it in
your dpage just so you can dereference it? By leaving it on the stack (for awhile) and
temporarily making the stack into the dpage, you can deref it in place. To make a 'mini'
dpage, all you need is TSD. But you must also remember the stack pointer has already
bumped to the NEXT location, so you may use TSC INC TCD and thereafter refer to stuff
in the stack/dpage as zero-relative. OR, you can use DUM 1 and give the stuff in the
stack some meaningful labels!

When you are through accessing the stuff in the stack, just reset D and the stack pointer.

There are several ways to reset the stack pointer but simply pulling it into an unused
register is usually most efficient; I came up with a simple macro that does this for me (it
assumes a 16-bit Acc, the mini dpage starts with DUM 1, and ends with the label
':dpage'). In this example, the 'fix:stk' macro (line 121) pops 4 words after restoring D.
The macro decides how many words to pop (line 22) by looking up the value of ':dpage' (
in this example, it equals $B) and subtracting the initial offset (1) and width of D(2) and
dividing the resulting number of bytes (8) by 2 (resulting in 4). This value becomes the
LUP value in the macro. Using this DUM/DEND method and the transparent 'fix:stk'
macro it is very easy to modify the routine. For instance, I give myself another long
variable in my mini dpage by simply pushing more space (lines 95-96) and naming it
(line 103). Note in lines 119) that you may do all sorts of other stuff with this mini dpage
in place; however, be careful not to branch out of this routine without exiting though
'fix:stk' (or equivalent).

You may go back over your code and find (as I did) many places that you pulled a handle
off the stack from a tool call, stored it in an absolute location within your program,
copied it to you dpage just to deref it, and never used it again! What a waste of program
space and dpage, not to mention all of the extra steps in copying the value.

Sincerely,

Steve Stephenson

P.S. With an Apple IIGS, Merlin 16+, and an understanding wife, life doesn't get much
better!

Steve's Sample Code

1

2

3

4

xc

xc

mx %00

%e Sourcerors5lLpprentice September 1989

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

84

85

86

87

0000: 00 00 00 00 88

0004: 00 89

0005: 00 90

91

92

93

8000: 94

94

94

8000: 48 94

8001: 48 94

94

94

94

94

94

94

94

94

8002: F4 00 00 94

94

94

94

94

94

8005: F4 00 00 94

94

94

94

94

rei

tr

tr adr
*---

* some of my useful macros

do 0

tkb mac ;Transfer K to B

phk ; reset B K using stack

plb

«<
tsd mac ; Transfer S to 0

tsc ; reset 0 S using Acc (C)

tcd

«<

fix:stk mac ;undo mini dpage

* requires use of 'dum l' & ':dpage dend'

pld ; restore d

lup #:dpage-3/2 ;calc number of words to pop

pia ; (just pop and throwaway)

«<
fin

*---

* some constants for this example

dum 0

itemptr adrl 0 ; (itemPtr equ 0)

selected dfb 0 ; (selected equ itemPtr+4)

itemNum dfb 0 ; (itemNum equ selecetd+1)

dend
*---

Example

-NextMember #O;#ListRecord

PHS 2

DO 1

PHA

PHA

ELSE

PHA

FIN

«<
PxL #O;#ListRecord

DO 2/1

PHL #0

IF #=#0

PEA #AO

ELSE

PHW]1+2

FIN

PHW #0

IF #=#0

PEA #0

ELSE

IF MX/2

LDA)1+1

PHA

September 1989 Page 9 %e SourcerorsJZLpprentice

94 FIN

94 LDA J 1
94 PHA

94 FIN

94 «<
94 «<
94 DO 2/2

94 PHL #ListRecord

94 IF #=#ListRecord

8008: F4 00 00 94 PEA #AListRecord

94 ELSE

94 PHW] 1+2

94 FIN

94 PHW lIListRecord

94 IF #=#ListRecord

800B: F4 4B 80 94 PEA #ListRecord

94 ELSE

94 IF MX/2

94 LDA J1+1

94 PHA

94 FIN

94 LDA]l

94 PHA

94 FIN

94 «<
94 «<
94 DO 2/3

94 PHL] 3

94 DO]0/4

94 PHL] 4

94 FIN

94 FIN

94 FIN

94 FIN

94 «<
94 Tool $OB1C

800E: A2 1C OB 94 LDX #$OB1C

8011 : 22 00 00 E1 94 JSL $E10000

94 «<
94 «<

8015: 48 95 pha ;push long space

8016: 48 96 pha ; for deref use

8017: OB 97 phd ;save current d

8018: 98 tsd ;reset dpage

8018: 3B 98 tsc ; reset D = S using Acc (C)

8019: 5B 98 tcd

98 «<
99 dum 1 ; (offset for stk ptr)

0001: 00 00 100 :d dw 0 ;the saved d

0003: 00 00 00 00 101 :entry adrl 0 ;the extra space

0007: 00 00 00 00 102 :listptr adrl 0 ;the selected member ptr

103 :dpage dend

rrFie Sourcerors.fZLpprentice September 1989

104

801A: A7 07 105 Ida [:listptr] ;deref the list ptr

801e: 85 03 106 sta :entry to get the entry's ptr

801E: AO 02 00 107 Idy #2

8021: B7 07 108 Ida [: listptr] ,y

8023: 85 05 109 sta :entry+2

110

8025: AO 05 00 111 Idy #itemNum ;offset to item number

8028: B7 07 112 Ida [:listptr] ,y ; get the number

802A: 8D 49 80 113 sta ItemSelected

114

802D: AO 06 00 115 Idy #6

8030: B7 03 116 Ida [:entry],y ;get 6th char in the entry

8032: 8D 47 80 117 sta keep (for something to do)

118

8035: 119 -Drawstring :entry ; display the string

119 PHL :entry

119 IF #=:entry

119 PEA A]1

119 ELSE

119 PHW :entry+2

119 IF #=:entry+2

119 PEA]1

119 ELSE

119 IF MX/2

119 LDA J1+1

119 PHA

119 FIN

8035: AS 05 119 LDA :entry+2

8037: 48 119 PHA

119 FIN

119 «<
119 FIN

119 PHW :entry

119 IF #=:entry

119 PEA]1

119 ELSE

119 IF MX/2

119 LOA]1+1

119 PHA

119 FIN

8038: AS 03 119 LDA :entry

803A: 48 119 PHA

119 FIN

119 «<
119 «<
119 Tool $A504

803B: A2 04 AS 119 LDX #$A504

803E: 22 00 00 El 119 JSL $EI0000

119 «<

September 1989 Page 11 %e Sourceror sYlpprentice

By Jay Jennings, A2-Central

The Return of the Source Code Monster

;undo the mini dpage

& ': dpage dend'

; restore d

; (just pop and throwaway)

; (just pop and throwaway)

; (just pop and throwaway)

; (just pop and throwaway)

«<

fix:stk

* requires use of 'dum l'

pld

pla

pla

pla

pla

«<

:done

119

120

121

121

121

121

121

121

121

121

122

tart II:
uel

8042: 2B

8043: 68

8044: 68

8045: 68

8046: 68

8042:

e e

..e eric

Editorial Preface: One of the most enjoyable things about being an editor is that I always
get the last word. Just watch. .. but don'tforget to pay attention to Jay 'cuz the new startup
and shutdown callsfor System 5.0 are mucho easier.

If you gaze back through the mists of time (or dig out your back issues) you'll see that one of
the first programs published in the Sourceror's Apprentice was GENERIC STARTUP. That
program was designed to make programming the IIgs much easier by leaving the worry of
loading and starting tools to someone else. That "someone else" consisted of Ross Lambert,
Eric Mueller, and myself. Even after all the shouting and discussions ended, we remained
friends (although we all moved to different states). We felt the GENERIC STARTUP routine
was needed because there was so much confusion about which tools had to be started and in
what order. (Editor: Fortunately, after having a good laugh or two, Apple JI DTS issued
Apple JIGS Tech Note #12 which straightened everyone out. At least until things changed
again...)

It's time to update the GENERIC STARTUP routine. But this time I'm going it alone. (Editor:
Because no one else would work with him?) The reason for a new routine is to take
advantage of some of the new features prOVided for us in System Disk 5.0 for the ngs. The
new startup routine takes advantage of two new tool calls. STARTUPTOOLS and
SHUTDOWNTOOLS.

%e Sourcerors5Zlpprentice September 1989

The StartUpTools call loads and starts all the tools that we need. It knows which ones to
use because we pass it a pointer to a table of tools and version numbers. The call looks in
ROM for the tool and if it can't find it (or the version number isn't high enough), it pulls the
tool from the System Disk. One of the nice things about this tool call is that we no longer
have to allocate direct page space for our tools. The call takes care of that for us.

The first thing we'll look at is the format of the StartStop record.

First is a flag word that must be set to zero. The System Disk 5.0 pre-release docs don't say
what this flag is for and I have no idea. so just trust me. Set it to zero. (Editor: Would you
trust a guy who makes Joe Isuzu look Wee George Washington>?)

Next is a word the specifies what video mode we want QD II to start up in; 320x200 or
64Ox200. This also set some parameters for the Event Manager (like clamping values).

Third and fourth in the list are a couple empty places that will be filled in when you
actually make the StartUpTools call. Don't worry about them as the ShutDownTools call
will use those.

The fifth parameter in the table is the total number of tools that you want to start up.

Finally, we have a list of tools to start. We also specify the minimum version number that
we need to work with.

Listing 1 - New System 5.0 StartUp Procedure

StartStopRec
dw 0
dw $80
ds 2
ds 4
dw 12

iFlag word - must be set to zero
ivideo mode for QDII - 0=320 / $80=640
iresFileID - used by ShutDownTools
idPageHandle - used by ShutDownTools
inumber of tools to start up

dw 3,$0300 iMisc Tools
dw 4,$0300 iQuickDraw II

dw 5,0 iDesk Manager
dw 6,$0300 iEvent Manager
dw 14,$0300 iWindow Manager
dw 16,$0300 iControl Manager
dw 15,$0300 iMenu Manager
dw 18,$0206 iQD Aux
dw 20,0 iLineEdit
dw 21,0 iDialog Manager
dw 22,$0104 iScrap Manager
dw 23,0 iStandard File Tool set
dw 27,$0204 iFont Manager
dw 28,0 iList Manager
dw 34,0 iTextEdit Tool Set

September 1989 Page 13 %e Sourceror 5!JLpprentice

Notice that there are two very important tool sets that aren't on the list. The first is the
Tool Locator and the second is the Memory Manager. We still have to start those manually
because the new StartUpToo1 call needs the program's UserID to work. And we need the
Tool Locator to start the Memory Manager. This makes the startup routine very simple.

Listing Ib - What Should Have Come:: Before Listing 1

StartUp ent
_TLStartUp

pha
_MMStartUp

PullWord ProgID

PushLong #0

;start the Tool Locator
;check for a tool error here
;result space
;start the Memory Manager
;check for tool error here
;get our user ID

;result space

PullLong SSRec

PushWord
pea
PushLong
ldx
jsl

rts

ProgID ;push our program ID
#0 ;define the next reference
#StartStopRec ;address of tool table
#$1801 ;_StartUpTools number
$E10000

;check for a tool error here
;reference to StartStop record

SSRec ds 4 ;space for StartStop reference

That's all there is to it! This one tool call allocates direct page space for the tools, loads, and
starts them. Because of the magic of System Disk 5.0 we trade pages of code for just a few
lines.

Before we move on to the shut down routine, there's one line above that may need a little
more explanation. The line PEA #0 defines the type of reference that we use in the next line
(PushLong #StartStopRec) of the program. By pushing a zero we're stating the reference is a
pointer (we pushed the address of the table next). Ifwe used a one as a reference that means
the next line would be referring to a handle. And by using a two we state the reference is a
resource ID. Thus we can put our tool table in the resource fork of our program if we so
desire (and can find the info t9 do that).

Shutting down the tools is even easier than starting them. It takes just a few lines of code.

Listing 2 - System 5.0 Shutdown Procedure

ShutDown ent
pea,

,Py:$llLc>ng
ldx
jsl

#0 ;define the next reference
#StaJ,:,"tStopRec ;address of tool table
$#1901 ;_ShutDownTools number
$E10000

~-----------------------'"

%e Sourcerors.fZLpprentice September 1989

1

PushWord ProgID
MMShutDown
TLShutDown

{Quit code goes here}

ishut down the Memory Manager
i ~ •. and the Tool Locator

Our first line of code defines the StartStop record reference just like in the startup code. A
zero means we'll use a pointer, a one means a handle, and a two means look for the tool
table in the resource fork.

You can get more information on this (and all the new tool calls) by getting the ngs Toolbox

Reference Volume 3 from APDA. I believe they're still selling the beta docs but that's much
better than having no docs at all.

Ask Mike ochip
Dear Mike.

Jeff at Roger Wagner Publishing thought I
should write to you. We've spent the last hour
figuring out how to get Merlin 16+ to print
slashed zeros on an Imagewriter. Perhpas
there are other readers who might like to do
this.

In the Parms file on line 252 there is a define
string of 15 bytes (DS 15) which is the printer
init string. This string needs to be changed.
One way is to tuse the Ctl-O command. This
allows you to type in the code characters
directly. Here's how:

1) Change the Define String command (DS) to
ASC and then delete the 15.

2) The type a quotation mark (", indicating
high bit set), then type CTRL-O (your cursor
will disappear) and push the escape key (your

'/ cursor will return).

3) Now push the D (it is uppercase) key.

4) Press CTRL-O (again your cursor will
disappear) and push CTRL-@ (that's CTRL,
SHIFT, @; and your cursor will reappear).

5) Press CTRL-O (again your cursor will
disappear) and push CTRL-A (it will reappear).

September 1989 Page 15 rrhe Sourceror s.9Lpprentice

6) Type CTRL-O (cursor gone) and push the
escape key (cursor back).

7) Next push the Z (uppercase) key.

8) Press CTRL-O (cursor gone) and push CTRL-@
(CTRL, SHIFf, @: cursor will reappear).

9) Press CTRL-O (again your cursor will
disappear) and push CTRL-@ (CTRL, SHIFf, @:
cursor reappears) .

10) Type closing quotation mark. (")

11) Then type in a comma, and 00 (that's two
zeros seven times. This fills out the string to
15 bytes.

That's it. Save the modified parms file and do
an OA-A on the source file to assemble it. It
will automatically replace the binary file in
the main directory. You can then reboot
Merlin to activate the new panl1s.

Now I have another question. I would like to
order back issues Vol 1 No 1 through Vol 1 No
3. How do I order these back issues and how
much do they cost?...

Thanks for your time and help.

Sincerely,

Gerald D. Schultz II
Playa Del Rey, CA 90392

Gerald -

You've provided all the help - thank you.

Back issues are now $3.00 each. which
includes postage for USA subscribers. Non
USA subscribers please add $1.50 US per back
issue (we've gotten stung on foreign postage.

. folks - sorry to raise the price for non-USA
people, but we really have to watch our
checkbook around here.)

Dear Mike,

I am the Kansas math teacher who called the
other night...

Specifically, ,my needs are as follows:

1) How to write floating point routines to do
the basic math functions, addition,
subtraction, multiplication, division, logs,
trig functions, exponential functions, etc.

2) Are there algorithms for exact (digit by digit)
results of the above functions? If you know of a
source please tell me.

T.L. Warkentin
Lakin, KS

Dear T.L.,

I apologize for taking so long to keep my
promise to write back to you. I had to dig
through a bunch of boxes (we've just moved
and will be moving yet again/) so it took much
longer than I thought.

The book you need is called "6502 Assembly
Language Subroutines" by Leventhal and
Saville. The good folks at A2-Central carry it.
(913/469-6502 or write P.O. Box 11250,
OverLand Park, Kansas 66207). It contains
numerous routines for all kinds of things,
including floating point arithmetic.

Your question is more subtle than it might
appear on the surface - floating point math is
not very easy in assembly language. Many, if
not most programmers who use the Apple II
make use of the Applesoft floating point
routines in ROM. I strongly recommend this
for most purposes. Another book available
from A2-Central, "Assembly Language for the
Applesoft Programmer" by Finley and Myers,
provides a ton of worthwhile information,
including an entire chapter on floating point
arithmetic. That chapter (#8) is entitled
"Using Applesoft Floating Point
Subroutines", I think that it is just what the
doctor orderedfor your situation.

Box 398
Pateros, WA

•1lis
98846

I•1

509/ 923-2025

'Ilie Sourcerorls .9Lpprentice
Copyright © 1989 by Ross W. Lambert
and Ariel Publishing
All Rights Reserved

Subscription prices in US dollars (Canadian and
Mexican subscribers add $5 per year, all other
non-North American subscribers add $15 per
year):

subscription payment at any time. MY LIABILITY
FOR ERRORS AND OMISSIONS IS LIMITED TO
THIS PUBLICATION'S PURCHASE PRICE. In no
case shall I or my contributors be liable for any
incidental or consequential damages, nor for ANY
damages in excess of the fees paid by a
subscriber.

Back issues are availabe for $3.00 each. Non
North American subscribers add $1.50 each.

1 year ...$28 2 years...$52
Please direct all correspondence to:

Ross W. Lambert.... Editor & Publisher
Tamara Lambert..... Subscriptions
Jay Jennings, Eric Mueller, Robert
Moore, Jerry Kindall ... Contributing
Editors
Rebecca Lambert... Stamp licking

WARRANTY and LIMITATION of LIABILITY

I warrant that the information in rr'fie .9lppretttice
is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full
refund of their last

Ariel Publishing
P.O. Box 398
Pateros, WA 98846

5091 923-2025

rr'fie Sourceror's .9lpprentice is... a product of the
United States of America.

We here at Ariel Publishing freely admit our
shortcomings, but nevertheless we strive to bring
glory to the Lord Jesus Christ.

Apple, Apple II, IIgs, BASIC,SYSTEM and ProDOS are
registered trademarks of Apple Computers, Inc.

