K
~ The Sourceror’s Apprentice

The Assembly Language Journal of Merlm Programmers

VoI 1 No 8 August 1989

Jerry, Jeff, and Junk Mail

First, the good news: Jerry is back! Jerry Kindall,
author of our popular Applesoft Connection
series, managed to crank out another
magnificent treatise for wus this month.
Additionally, Jeff Smith, a member of Roger
Wagner's technical support staff, granted us a
very useful insight into the inner workings of the
ERR.USR function in Merlin 16+. His article can
really help you get more out of Merlin and your

Now the bad news: I boogered wup
SAPP.DISPLAYER again on the quarterly disks
{sigh). What was intended to be a quick little
"convenience" program has transformed itself
into a raging monster. SAPP DISPLAYER's
problems notwithstanding, the quarterly disk
contains TXT f{iles readable by any ol' word
processor and directly incorporatable into
Merlin itself. Uh, almost - several of my
formatted files {for typesetting) snuck in there in
the guise of source code files. This is not fatal,
you'll just have to remove the tabs. My sincere
apologies. As recompense, [have decided to
extend everyone's disk subscriptions by one
quarter. You got the last one [or free,

Incidentally, the quarterly disk is not a bootable
disk - it is data only.

I Knew It Was Too Good To Last...

We here at the Ariel Cabin were purchasing Chris
Haun's DesignMaster directly from him. We were
not publishing the software ourselves, though I
have some regrets that I did not try harder to
make that happen (hey, I'm far too busy already!).
To make a long story short, I at least have an eye
for a fine piece of work: Chris is currently
negotiating with a major publisher, hence our
plans to sell the software are on hold. I am sorry
for y'all, our customers, but I'm happy for Chris
and the rest of Appledom.

By the time you read this you should have
received the first ever Ariel Publishing Junk
Mailer. It includes the prices on the Applied
Ingenuity hard drives I mentioned last month
{but did not include with the newsletter).

'\

U.S.
MAIL

I will try to keep ads out of the The Apprentice
proper since our space is always at a premium.
Hence the junk mailer. Let me assure you that
there 'tain't no junk involved, though. Just check
out the products and the prices we were able lo
extort from a few select companies!

My intro has no flow to it this month, anyway, so
I might as well plop in a quick tip right here.
Eight bit folks: I shall make my point in the
context of GS programming, but the principle
applies anywhere.

This is no major revelation, I'm sure, but I have
trouble figuring out why folks define data like
this:

PenPos adrl O

and then have to add offsets to access fields
within the data, like so:

lda PenPos+2 ; gets horizontal pos

Presumeably, the reason is that QuickDraw
needs the pointer to the beginning of the entire
data record, but you can generate more
descriptive labels and accomodate QuickDraw
like so:

PenPos
PenVert ds 2
PenHorz ds 2

Since Merlin {and APW) let you have multiple

labels for the same spot, QuickDraw is appeased
and you can still address your fields by name. Of

/

B

/ The Sourceror’s Apprentice

Vol.1 No. 8

“course, you have a little extra typing when you
define your data record. But I preler using
descriptive, easy to remember labels throughout
my code. It is worth the extra overhead to me.

System 5.0 Info???

I have in hand the early release documentation
for System 5.0. Data regarding the new
"StartTools” , "ShutDownTools", and "Tex(Edil"
calls is conspicuously absent. TI'll chase it down
post haste, but try not to be over anxious (I've had
several phone calls), the reason being that
preliminary documentation is notoriously
inaccurate and subject to change.

Some Credit Where Due

[berated Apple, Inc. 's marketing department last
month - and I standby my comments. But I want
to give some credit to Cambridge Marketing, the

To Err is Hur

producers of AppleFest (who are undoubtedly
influenced by Apple, Inc.). Cambridge caught
some flak from Apple 11 developers by
encouraging Mac products at AppleFest and by
seeming to ignore smaller companies (like us).

Well, Cambridge heard your outcries and
responded in a most positive manner. Not only
did they seek out Ariel Publishing (they called
me}, but they sent a mailer to all the small
developers they could find (but don't ask me how
they figured out who was small and who was
"bigtime"). At any rate, they have been extremely
flexible , available, and accomodating. Their
attitude has been, "We want you there. What is it
going to take to make that happen?”

I was going to pass on AppleFest SF this year, but
thanks to Cambridge, we'll be there. Come see us
in booth #844.

9 TO

EFRR.USR is Divine

Jeff Smith
1525 Graves Ave. #141
El Cajon, CA 92021

Editor; The new Merlin 16+ is a really big
package. I am still digging through all of the
new features and support files. I was
overwhelmed enough, initially, that I didn't
give Jeff's article the attention it deserved. I
regret that, because I think all of us (well,
especially me, anyway) would be working a
little smarter right now if I had. This
ERR.USR thingamajig is slickern anything!

Working with the Toolbox can be confusing
sometimes, especially when an error happens.
Both HodgePodge and Generic StartUp capture
errors by tossing the error number and a
meaningless value for X to the SysFailMgr.
This leaves you staring at that obnoxious
zipping apple message, and you can't do diddly
except reboot. By setting X to different values
everywhere, you can sort of figure out where the
code went wrong. (As long as you don't forget
where you were in the count...)

Wouldn't it be nice (as much as I hate to admit
it) to go back to the bad old days of AppleSoft,
where programs not only gave an error, but

also gave the exact line number where the error
occurred? Might there be be some way to get X
set to the line number of your Source Code?

And, while we're making wishes, let's add a
couple more, How about the ability to print the
actual file name of the source code, for those of
us that are working with Link files? And
maybe we could find some way of displaying
the secondary line number for errors in Put
files. And, most off all, put the bloody thing in
a dialog box so that pressing any key sends you
back to Merlin or your program launcher
instead of locked onto never-never land.

Further enhancements immediately come to
mind. Perhaps a way for it to display its
message even when the dialog manager isn't
started up. And there ought to be a simple way,
using conditional assembly, to have it remove
every trace of this error stuff when the program
is all polished off and perfect.

Putting it all that way, I can't believe anyone
out there programs without ERR.USR!

Page 2 \

J

Vol.1 No.8 Page3

‘The Sourceror's Apprentice \

HOW TO USE IT:

Note: Unfortunately, Merlin.16+ uses a very
different format for its USR files than it used
to, now that it's truly a 16 bit program. Thus,
this routine ONLY works with Merlin, 16+,

1. Since Merlin. 16+ is shipped with ERR.USR
being run as the Startup {file in the Parm file,
you should have it in memory already. Il you
changed the Parms to run some other USR
function, type "-ERR.USR" from the main menu
or the command box to activate its magic. This
MUST be performed before any assemblies are
performed. Failure here embeds a pair of zeros
in your code, causing spectacular crashes.

2. Copy both of the error handling routines
(CheckDiskError and CheckToolError) to
somewhere within your program. You only
need this handler at one point in the whole
program.

3. Copy the macros into the start ol each
segment of the code, unless they are Put file
segments, In that case, only copy the macros
into the first (main) segment. Be sure you get
all of the macros, including the KBD statement.

4. Finally, copy the ToolError and DiskError
subroutines into each of the segments of code
that you put the macros in. You'll probably

want these to go somewhere near the end ol

each listing. Be sure to embed the correct
filename in each of the STR statements there.

5. Change line 428 to point to your system shut
down entry point so that the dialog box can
have somewhere to jump to.

6. Now, everywhere you want to check for
errors, use the following syntax:

_InitCursor ;For
Example. ..
CheckToolError
or:
Close CloseParms ;For
Example... N
CheckDiskError

One last note: If you write a program using
Skeleton, you don't need to do any of that
(except steps 1 and 5). It's already set up and in
place. Check it out.

WORKING WITHOUT A QUIT:

Il you're working in an environment where you
can't use a JMP to your system shutdown and
quit (like writing an NDA), then re-write the
CheckToolError Macro to read like this:

Flag¥YN: KBD "Assemble with line
numbers embedded? (l=Yes/0=No)"

CheckToolError MAC
DO Flag¥N ;Do 1f
FLAG = 'Yes' :
USR
BRK
BRK
FIN

EOM

This then crashes to the monitor with A equal
to the error number, Y equal to the Put file line
number (or O if there is none), and X equal to
the primary line number. With this way of
doing it, you don't need any code in your
program to handle the error except this macro.
This technique doesn't look half as pretty, but
it DOES do the job very well.

WORKING MULTIPLE LINK FILES:

When you're writing a program with multiple
LNK files, there's one trick to keep in mind.
Merlin.16+ command files are rapidly
becoming far more sophisticated that just
typing in a list of names.

Remember the KBD statement, that asks you,
every time you assemble your file, if you want
the line numbers embedded? Well, with link
files, that's going to happen over and over...and
over,

The trick? Put just the KBD line in your
command file. Now Merlin only asks you once,
and ignores all the other places where that line
is in your listings. This speeds up assemblies a
lot.

ANOTHER USEFUL THOUGHT

ERR.USR went through many variations
during the 3 months I've been playing with it.
One permutation, which some of you might
want to consider because it's easier to use in

- e

Page 4 \

/ The Sourceror's Apprentice Vol. 1 No. 8

most situations, is (o combine the
CheckToolError macro with the Tool Macro.
Change it on your disk-- it's in the UTIL.MACS
file. The advantage to this technique would be
that every single tool call you made would
automatically check for and handle your
problems.

Tool MAC

LDX #]11

JSL SE10000

DO Flag¥N ;Do
if FLAG = 'Yes'

USR

JSL ToolError

FIN

<<<

The disadvantage (and the reason [have
CheckToolError separate) is that you can't
handle errors that you know are going to
happen, but wish to ignore. (As an example,
look at the new Generic.Startup listing. After
starting up both the Event Manager and
Quickdraw II Ross lets by the error about the
tools already being started up! You'd never get
past this!)

HOW DOES IT WORK?

Remember how we want X to be set to the
current line number so we can display it? Well,
that's exactly what ERR.USR does. It looks at
zero page locations $D6-$D7 where Merlin. 16+
keeps the current line number. Then it embeds
an $A2 (LDX) and the actual two-byte line
number.

Next, ERR.USR looks at the PutFlag ($06). If the
flag is set, ERR.USR recognizes your file as a
PUT file. It embeds a $A0 (LDY) and the two
byte line number within the PUT file pointer
($D4-$D5). If the PutFlag is clear, then it
embeds LDY and two O's,

That's all there is to it.

Now, when an error happens, your code jumps
to Tool Error and Disk Error with the error in
A, the primary line number in X, and the
secondary line number in Y. This short
subroutine just checks the carry to be sure there
IS an error. If not, it exits, and your program is
none the wiser.

If there IS a problem, ToolError JSL's to the
subroutine that really does the dirty work. Why
does it JSL, even though we know we aren't
coming back this way in this lifetime? Because

we want (on the stack) the address of the string
in the STR statement that follows it. This way,
by just looking at the last two bytes on the
stack, we can even have our dialog lell us what
Source Code the error is in BY NAME!

ShowToolError gets entered with information
everywhere, It converts the line numbers in X
and Y to decimal (replacing the Put line number
with "MAIN" if set to 0). It converts the error
number in A to ASCII hex, so it can send each
character to the screen. And it grabs the last
two bytes off the stack and stores them into the
dialog box data parameters so that the text in
our STR statement gets displayed in the dialog
box.

Then ShowToolError checks the environment
to see if the Dialog Toolbox has started up. If
not, it uses the text screen and the Tool Locator
Toolkit to put up a box with the information in
it. If so, it puts up a Stop Alert dialog box to tell
you where you failed.

Then clicking on OK {or pressing Return) shuts
down all of your tools and exits via the system
QUIT handler (or even back to Merlin. 16+ if
you launched with the new '=' commmand!).

Back to the drawing board, as they say. But at
least, this time, you know exactly where your
problem is. Thanks to ERR.USR!

Editor: Jeff tells me that, like me, he
accompanied his school-teacher wife to a
remote and beautiful area, the Yosemite
National Park. While living there for five
years, he claims to have, "...fiddled to my
heart's content, learning assembly language
Jor fun and profit. I found the first
immediately, and the second came last August
when I landed a job as Technical Support for
Roger Wagner Publishing.”

I'd like to make it clear that my wife
accompanied me to the Bering Strait. It was
only after dragging her out there that I said,
"Okay, honey, I'm gonna quit my job and start
writing newsletters.”

I just wanted to set the record straight. And if
you read this, Tammy, they never believe me,
anyway.

4 Vol.1 No.8 Page5b ‘The Sourceror's Apprentice

The Applesoft Connection, Part IV
A USR-Friendly Function

By Jerry Kindall

SnailMail: 2612 Queensway Drive
Grove Cily, OH 43123

GEnie: A2 JERRY
AppleLink PE: A2 Jerry
Internet: JerryK@cup.portal.com

Introduction

In previous installments of this series, I've covered most of what there is to know about
passing parameters to and from Applesoft within your assembly language programs.
There's still at least one area left for us to explore, though, and that's what I want to get
into this time. I want to look at the seriously underutilized Applesoft USR function
and see what it can do for us,

N We've seen how the ampersand command is a user-defined command (maybe
"programmer-defined” is a better term). USR is a user-defined function. If the
difference between commands and functions isn't clear, consider the differences
between the HOME command and the PEEK function. HOME is a verb; it tells the
computer to do something. PEEK is closer to an operation than a verb. You can't just
use the word PEEK in a program like you'd use HOME, you have to assign a PEEKed
value to a variable, or print it. You use PEEK in an arithmetic expression; HOME is a
command. That's the difference between commands and functions.

The USR Function
A typical USR function looks something like this:

Y = USR (X)
or: PRINT USR (X)

You'll notice that like other functions such as PEEK, USR accepts (in fact, it requires) a
parameter in parentheses after the word USR. What you put in the parentheses can be
as simple as a numeric variable or a constant, or as complicated as any Applesoft
numeric expression. The following statements are all completely legal:

= USR (0)
= USR (PEEK (6502))

USR ((K~ 3) + 2 * Vv / 55.5 + PI)
USR (Q + USR (V))

It

KoK KK
|

E—— T]

/ ‘The Sourceror's Apprentice Vol.1 No.8 Page 6 \

Note that in the last example, the USR [unction is used as part of a parameter to itsell!
This is perfectly legal; when you understand how Applesoft does its thing, you'll
understand why this works.

Similarly, USR can be a part of any legitimate Applesolt expression. In other words,
not only can you put a complex expression inside the parentheses, you can build one
around it, too, like the following: '

Y = USR (0) + 3
Y = USR (PEEK (6502)) * PEEK (6503) / 256
Y = USR (1) + (USR (2) - USR (3))

Again, in the last example, you can see how you can have multiple USR functions in the
same expression. The only limit is that you can have only 16 sets of parentheses open
at one time (otherwise, Applesoft will give you a ?PFORMULA TOO COMPLEX error).
Other than that, USR behaves exactly like any other function.

The reason I'm going to the trouble of showing you all this (it doesn't really have much
to do with showing you how to use USR in your assembly language programs, does it?)
is to give you a feel for what kind of power USR gives you. Applesoft handles all the
dirty work of evaluating the expressions for you. Because of this flexibility and its
almost ludicrous ease of use, USR is ideal for machine-language routines which return
a single numeric value.

Using USR

Installing a USR routine is similar to installing an ampersand routine. It involves
getting an area of memory for the code, relocating the program if necessary, and setting
up the USR vector. I won't cover this again here; for more information, see Part 3 of
The Applesoft Connection (published in the April, 1989 issue of The Sourceror’s
Apprentice)., The only difference is that instead of connecting your routine to the
ampersand vector at $3F5-$3F7, you need to connect it to the USR vector at $0A-$0C.
To keep things simple in this article, all the USR routines in the next few pages run at
$300.

When your USR routine receives control, its argument (the expression in parentheses)
will be in the Floating Point Accumulator (FAC) at $9D-$A3. Applesoft automatically
places it there for you; there is no need to call FRMNUM ($DD67). You can start your
USR routine by calling GETADR ($E752) to convert the floating-point number to a
usable form (see part 1 of The Applesoft Connection in the January, 1989 issue of The
Sourceror's Apprentice). You can also start out with a call to QINT to convert the FAC
to a 3-byte integer (see part 2 of The Applesoft Connection in last March's issue of The
Sourceror's Apprentice).

Applesoft always requires some sort of parameter with the USR instruction. If your
routine doesn't need an input parameter, you can just ignore what's in the FAC, but
whoever uses the USR function will need to use a parameter anyway. (Usually USR (0)
is used in such cases -- the value inside the parentheses won't make any difference.)

When your routine is finished executing, put your numeric result (if any) into the FAC
using SNGFLT, FLOAT, GIVAYF, or the unsigned-integer GIVAYF clone. (See part 1 of

/ Vol.1 No.8 Page7 ‘The Sourceror's Apprentice N

this series; also see part 2 if you want to pass a 3-byte integer back to Applesoft.) After
you have done this, you can simply RTS back to BASIC. There's no need to find the
variable and move the data to it; all you need to do is put your result into the FAC and
return.

Like I said, Applesoft itself handles all the dirty work for you. Nice, isn't it?

An INKEY Function

Let's take a look at a simple USR routine. If you've used any other BASICs besides
Applesoft, particularly Microsoft, you've probably seen INKEY$. INKEY$ is a special
string variable which is usually null, except when a key is pressed. This allows you to
easily check for a keypress without stopping the program. The Commodore 64's GET
works similarly (it's different from Applesoft's GET).

Our sample USR routine has a similar function. USR (0) will always return 0, except
when a key has been pressed, in which case the ASCII value of the key pressed is
returned. The USR routine will always clear the keyboard strobe after reading a
character, so that once a character is read, it won't be read again. The actual USR
routine (lines 25-33) is ridiculously simple.

* The Applesoft Connection

1
2 * INKEY - A USR Function
3 %
4 * by Jerry Kindall -- August, 1989
5
6 ORG $300
-
8 USRVECT = $0a
9 KEYBD = $C000 ;keyboard input
10 STROBE = $C010 s keyboard strobe
11 SNGFLT = SE301 ;float a 1l-byte value into FAC
12
13 * Hook up INKEY routine
14
15 INSTALL LDA #$4C ; JMP
16 STA USRVECT
17 LDA #INKEY
18 STA USRVECT+1
19 LDA #/INKEY
20 STA USRVECT+2
21 RTS
22
23 * The actual INKEY routine
24
25 INKEY LDA KEYBD
26 BPL NOKEY ;no key pressed
27 AND #3$7F ;convert to lo ASCII
28 BIT STROBE ;clear the keyboard
29 TAY
30 JMP SNGFLT ;return the key wvalue
31

-) ,
Vol.1 No.8 Page 9 ‘The Sourceror's Apprentice \

FAC, and exit by converting it to floating point format.

This can be a handy little routine to have in your arsenal, when you need it. Not only is
the syntax simpler (X = USR (Y) vs. that horrendous formula), it's also quite a bit faster
than two PEEKSs, a multiplication, and an addition.

With a little effort you should be able to dream up all sorts of short, simple, and uselul
USR routines. For example, how about a USR function that, given a number, returns
the address of that line in the current Applesoft program? It's quite simple as long as
you know about FNDLIN ($D61A), which expects a line number in LINNUM and returns
the address of the corresponding line in LOWTR ($9B). But I'll leave that, as they say, as
an exercise for the reader.

Passing Strings

USR will also accept a string argument. For this reason, we probably should have
included a JSR CHKNUM ($DD6A4) at the beginning of our PEEK2 routine. (We don't care
what we're passing our INKEY routine, so it wouldn't really be needed there.)

Although Applesoft doesn't check to see if the argument is a number or a string before
calling your routine, it does make sure your result is numeric after your routine has
finished. So if you accept a string parameter, you have to make sure that VALTYP ($11)
contains a zero belore your USR routine exits.

As it turns out, there's a routine called GETSTR at $E6DC which calls FRESTR (thus
making sure the argument we received is a string and freeing the temporary string
pointer), stores a zero in VALTYP, and puts the string length into the Y register. I'd
suggest always using GETSTR within USR routines when you're accepting a string.

Here's a simple example. The USR routine below returns a one-byte "checksum" of all
the characters in a string. The number can be used for error detection, or for indexing
into a hash table. The checksum can detect transpositions as well as missing, added, or
incorrect characters. Any two arbitrary strings have less than a 1/2% chance of
producing the same checksurm.

1 * The Applesoft Connection

2 * CHKSUM -~ A USR Function

3

4 * by Jerry Kindall -- August, 1989

5

6 ORG $300

7

8 USRVECT = $0A

9 SPTR = S5E ;string pointer
10 FRESTR = SE6DC ;see text above for info
11 SNGFLT = SE301 ;conv a byte to floating
12
13 * Hook up CHKSUM routine
14
15 INSTALL LDA #8$4C ; JMP
16 STA USRVECT

o

/ ‘The Sourceror's Apprentice Vol.1 No.8 Page 8 \

32 NOKEY LDY #0 ;return 0
33 JMP SNGFLT

A Two-Byte PEEK Function

How many times have you needed to PEEK a two-byte value from an Applesoft
program? Most BASIC programmers resort to a clumsy two-byte PEEK formula that
goes something like NUM = PEEK (ADR) + PEEK (ADR) * 256. Some programimers use
DEF FN to set up a user-defined function that formula in programs that use it a lot. But,
since we're studying the USR function, we'll write a USR routine to do the same thing. In
this one, not only do we pass a value back, we get a value from the executing Applesoft
program,

1 * The Applesoft Connection

2 * PEEK2 - A USR Function

3 %

4 * py Jerry Kindall -- August, 1989

5

6 ORG $300

7

8 USRVECT = $0A

9 LINNUM = $50 ;holds integer of FAC
10 FAC = 59D ;floating point accumulator
11 GETADR = SE752 ;convert fac to integer
12 FLO2 = SEBAO ;convert integer to floating
13

14 * Hook up PEEK2 routine

15

16 INSTALL LDA #S$4C ; JMP

17 STA USRVECT

18 LDA #PEEK2

19 STA USRVECT+1
20 LDA #/PEEK2
21 STA USRVECT+2
22 RTS
23
24 * The actual PEEK2 routine
25
26 PEEK2 JSR GETADR ;make it integer
27 LDY #0
28 LDA (LINNUM),Y ;get low byte
29 STA FAC+H2
30 INY
31 LDA (LINNUM) , Y ;get hi byte
32 STA FAC+1
33 SEC ;float it
34 LDX #8590
35 JMP FLOZ2

Once again, the PEEK2 routine is sweet and simple. We start off with a call to GETADR
to convert the contents of the FAC to an integer value, in LINNUM. Then, using indirect
indexed addressing, we get the two bytes starting at the specified address, stuff it in the

4 The Sourceror's Apprentice Vol.1 No.8 Page 10 \

(
17 LDA #CHKSUM

18 STA USRVECT+1

19 LDA #/CHKSUM

20 STA USRVECT+2

21 RTS

22

23 * The CHKSUM routine in the flesh

24

25 CHKSUM JSR FRESTR

26 LDA #0 ;init checksum

27 CpY #0 ;check length

28 BEQ EXIT ;it's zero

29

30 DEY

31 LOOP CLC

32 ADC (SPTR),Y

33 ASL ;shift left for next char
34 ADC #0 ;pick up overflow bit
35 DEY

36 CPY #SFF ;compare to length

37 BNE LOOP

38

39 EXIT TAY ;pass our number back
40 JMP SNGFLT

Pass the Parameters, Please

USR's capabilities are pretty hip (editor: Jerry must've been hanging out with Jay
Jennings at the A2-Central Conference), but being able to pass only one parameter in
each direction can sometimes be limiting. With a little work, though, you can pass
even more parameters to and from your USR routines, although it won't be automatic.

When your USR routine gets control, TXTPTR (Applesoft's program counter) will be
pointing to the character following the closing parenthesis. All you need to do is call
the appropriate routines discussed in the first three parts of this series to parse these
parameters.

I'd suggest enclosing the additional parameters in parentheses, using CHKOPN
($DEBB), CHKCLS ($DEBS), and CHKCOM ($DEBE) to keep Applesoft from becoming
confused when trying to evaluate these additional expressions. (For example, X = USR
(8), 2 + 3isn'tasclearas X =USR (3}, (2) + 3or X=USR(3), (2 + 3).)

Here's an example: A substring search routine might be called with a statement like X =
USR (1),(A%$,B$), where 1 would indicate the starting character position of the search,
A% would be the string to search, and B$ would be the string to search for. The answer
would be passed back to X. And, of course, because it's a function, you could include any
kind of mathematical manipulations you wanted in the same expression with the USR
call. For many types of routines, it's more elegant than using the ampersand or CALL.

Peaceful Coexistence? S

4 Vol.1 No.8 Page 11 The Sourceror's Apprentice N

In Part 3 of this series, I described the de-facto protocol for writing ampersand routines
so they'd be compatible with any other ampersand routines which follow the same
rules. Unfortunately, no such standard has arisen for USR routines. What this means
is that most USR routines "take over" the USR vector and assume that they are the only
USR routine in memory. They make no attempt to determine if the USR call is for
them, nor do they pass on any calls to previously-installed ampersand routines. I must
admit that I've been guilty of this practice myself (the MicroDot GARB module is a USR
routine). For the most part, this practice has caused no problems because hardly
anyone uses USR.

Unfortunately, there's no logical or elegant way to allow USR routines to coexist in
memory without conflicts. It's easy enough to relocate your USR routine in high
memory, and also easy to save the previous USR vector, but how can you tell whether or
not a particular call is for your routine, so you can pass it on if it isn't?

One way might be to check the value passed to the routine. Each routine would have a
number associated with it: USR (1) would call one routine, USR (2) a different one, and
so on. Unfortunately, this is not very mnemonic, and it means that any additional
parameters must be passed after the USR function itself, as described in the section
above.

Another way would be to check the character or token after the USR function, then call
CHRGET to skip over it. For example, USR (X) INPUT would call one routine, and USR
(X) PRINT would call another. This would work, but it's delinitely not elegant.

There doesn't seem to be an easy solution to this problem, and that's undoubtedly one of
the reasons that the ampersand has received so much glory while USR has languished
in obscurity.

The End for Now

This article is the last installment of The Applesoft Connection. I've had a good time
writing this series, and I hope it's been of benefit to some of you. Who knows, maybe
someday I'll get an idea for another Applesoft Connection article and add a fifth part to
the series. And of course, I plan to continue submitting articles to The Sourceror's
Apprentice, so I won't vanish/éritirely.

Until we meet again, may your power supply run cool and your disk drives recalibrate
quietly!

Ariel Publishing

Box 398

Pateros, WA 98846

509/ 923-2025

The Sourcerors Apprentice

Copyright © 1989 by Ross W. Lambert
and Ariel Publishing
All Rights Reserved

Subscription prices in US dollars (Canadian and
Mexican subscribers add $5 per year, all other
non-North American subscribers add $15 per
year):

1 year ...$28 2 years...$52

Ross W. Lambert.... Editor & Publisher
Tamara Lambert..... Subscriptions

Jay Jennings, Eric Mueller, Robert
Moore, Jerry Kindall ...Contributing
Editors

Rebecca Lambert... Stamp licking

WARRANTY and LIMITATION of LIABILITY
| warrant that the information in The Apprentice

is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full
refund of their [ast

subscription payment at any time. MY LIABILITY
FOR ERRORS AND OMISSIONS IS LIMITED TO
THIS PUBLICATION'S PURCHASE PRICE. Inno
case shallil.or my contributors be liable for any
incidental or consequential damages, nor for ANY
damages in excess of the fees paid by a
subscriber.

Please direct all correspondence to:

Ariel Publishing
P.O. Box 398
Pateros, WA 98846

509/ 923-2025

The Sourceror's Apprenticeis a product of the
United States of America.

We here at Ariel Publishing freely admit our
shortcomings, but nevertheless we strive to bring
glory to the Lord Jesus Christ.

Apple, Apple 11, ligs, BASIC.SYSTEM and ProDOS are
registered trademarks of Apple Computers, Inc.

.

N

