
(

rrlie Sourcerors 5ZLpprentice
"

The Assembly Language Journal of Merlin Programmers Vol. 1 NO.7 July, 1989

Apple, Inc. Left •In KC Dust
Normally, the mission of The Sourceror's
Apprentice is to provide source code examples
to y'all. It's that simple.

Due to the vast importance and significance of
the A2-Central Developer's Conference in
Kansas City, however, I'm going to deviate
from the norm (more than usual) and delve
into the world of editorial. Bear with me. We
have source code for you this month, too, but I
know that most of you are intensely interested
in the II, and I think you'll want the straight
skinny as reported and interpreted by another
developer.

So here we go.

Some of the events of most obvious import to
me were not on the schedule. No one scheduled
Barney Stone's passionate rebuke of Apple,
Inc. marketing strategy. No one scheduled
Apple employee Eric Soldan's delivery of
App.Builder, his macro-based assembly
language environment for 8 bit Apples. No one
scheduled the formation of the Apple II
Developers Association, an event of historical
importance. And no one scheduled Bill
Mensch's radical support of his 65XXX series of
chips - an impromptu pledge of megabuck
venture capital support for language
development on the IIgs.

It was a very interesting conference.

Contrary to what many of you predicted,
Apple, Inc. sent lots of people, over 20 if I
remember correctly. The only unfortunate
event of the weekend was the vitriolic
outbursts directed at Apple, Inc. marketing
that had to be fielded by the Apple employees
present. It was a little like killing the
messenger. The Apple folks present were there
because they love the II. I found them to be
quite supportive, incredibly knowledgeable,
and very patient. Apple done good by hiring
Dave Lyons, Matt Deatherage, Eric Soldan,
Jim Mensch, Tim Swihart, and the rest of the
gang.

I think Apple, Inc. was left in the dust and

outclassed by its own employees. Laser
Computers, Beagle Bros., and of course, the A2­
Central people (thanks, Tom Weishaar). Yes,
there is a little momentum building for the II
at Apple (especially on the technical side of
things - System 5.0 is GREAT, the overlay card
is hot, App.Builder will save us tons of
development time, etc.), but until the company
can figure out and execute a viable marketing
strategy, Apple II sales will shrink (at worst) or
remain static (at best). I am pleased that Apple
seems to be making good on John Sculley's
promises at the last San Francisco AppleFest.
Apple's Apple II employees are doing wonderful
things. But what is it going to take to get the
marketing department in line? I cannot
believe that John Sculley is willingly allowing
a billion dollar profit center to dribble away
because the marketing boys are feeding him a
distorted view of the market. I could get excited
about any serious ad campaign for the II, but I
want ads revealing the II series as the fantastic
general purpose computer that it is. I want
dealers who support the II in the manner it
deserves. I want a coherent strategy which pHs
the II and AppleWorks against the IBM clones,
not the Mac. Since Apple saddled the IIgs with
the desktop interface, I would very much like
to see an ad touting that interface on the II! I
want a strategy which understands the
importance of color and cost effectiveness in
educational 'computing. I want some
marketing that is based on reality, not
prejudice.

rrfie Sourceror '.s .f2Lpprentice Vol. 1 NO.7 Page 2

Well, I'm grateful to get that out of my system.
But I have one last word: Will someone
(anyone?) in Apple marketing stand up and be
counted? Explain to us your rationale, your
plan. As a student of marketing myself (I gave
a seminar on it at the conference), I can only
conclude that Apple II marketing is wandering
in the wilderness.

Here were some of the highlights of the
conference that are most likely to be of interest
or concern to Apprentice subscribers:

• The Beagle Boys really did tell all about
AppleWorks and TimeOut internal routines
and structures. They gave us the tools (and the
encouragement) to develop TimeOut
compatible applications for them to publish or
for us to publish ourselves (for a 4% royalty, a
most reasonable fee, I'd say). You won't read
any details within our pages however;
everyone present had to sign a non-disclosure
agreement. I doubt the opportunity to get at
this data will come around again (at least until
next conference). If the Beagle Bros. offer this
again, I cannot over-encourage you to be
involved.

• Laser Computers wowed the crowd with some
fantastic hardware (the EX2 will be shipping in
mid-August) and fantastic support for
developers. Not only do they have a hardware
purchase program for commercial developers
(there is no fee for the developer program,
either), but they also announced a developer
co-marketing project. This venture is simply
wonderful; if you can produce a four color ad
and submit it to them by September 11th, they
will reproduce the thing free in a catalog that
goes out with every single Laser computer.
Since they ship 12,000 per month, that is
nothing to sneeze at. As the Laser reps said,
'We're young and we're hungry." Contact Mike
Wagner at (312) 540-8086, extension 744. Oh
yeah, your software must be Laser compatible,
but that is not an obstacle. The Laser boys
have a semi-confidential list of ROM entry
points they support which is free for the
asking.

• Apple announced an updated BASIC.SYSTEM
1.3 which should be immedia~ely ditched.
They have had unfortunate luck with any
software with those numbers (remember
ProDOS 1.3?). They forgot an RTS in a routine
this time, allowing the code to fall through a
READ routine into a WRITE routine. DON'T
USE BASIC.SYSTEM 1.3!!! An immediate

update is forthcoming, of course. I guess I don't
feel quite so bad about my own silly boo boos
now!

• Chris Haun was showing off a version of
DesignMaster compatible with System Version
5.0. It was a ridiculously wonderful package,
and vastly underpriced. This is a full featured
piece of prototyping software that produces
your entire desktop interface including
Windows, text, buttons, lists, pop-up menus,
and much, much more. This package is so nice
that we here at the Ariel Cabin are going to buy
copies in bulk and sell them to you like a
dealer. I plan to sell the 5.0 version for $28
(including shipping), so you should be able to
get your hands on a powerful productiVity tool
at a remarkable price. Prototyping software is
all the rage on other computers because it helps
you to program faster and better. If you do
desktop programming of ANY kind on the GS,
this package is a MUST HAVE. And don't
forget that I said those things even before we
started selling the software. I hope our price
convinces you of our commitment to getting
the product into your hands.

There were many, many other valuable and
enjoyable aspects of the conference. Meeting
Bob Sander-Cederlof in person was a joy, as
was a chance to really talk with Brian
Fitzgerald and John Brooks (two of the
cleverest programmers in this plane of
existence). Their contributions to Eric
Mueller's animation seminar were terrific.

And that certainly wasn't all. I have
mentioned App.Builder twice now and not
explained it thoroughly. The long and the
short of it is that Eric of DTS put together an
incredibly powerful set of macros that make 8­
bit assembly language programming a lot like
working in a higher level language. Since the
macros are VERY intelligent. the code they
generate is qliite clean and lean. The only
drawback is that. due to a bug in APW macro
parsing routines, the only working version is
for the MPW cross-development system. Eric
cut me a deal, though, and this is what we
gonna do. I'm going to translate his work to
Merlin format, hence I think it'll be operative
on Merlin before APW!!! There is something
ironic about that ... I don't know how long the
translation will take, but when we are finished
we'll make it available to you absolutely free of
charge (assuming you provide a self-addressed,
stamped envelope and a disk). Let me stress
that App.Builder is a productiVity tool, too,

Vol. 1 NO.7 Page 3 %e Sourcerors .9Lpprentice

and it will make your work faster and easier.

I am exuberant and excited, but I have one last
prophetic warning. Momentum is building for
the II again, thankfully, but Apple has yet to
reap all the consequences of years of neglect
and exploitation. Computer markets turn
slowly nowadays, and Apple's moderate
amount of support at present will not stem the
tide in the short term. The die has already
been cast, if you'll forgive mixed metaphors,
and some very nasty things will happen in the
next year to 18 months. I think there will be

profits for those able to persevere. But we must
lobby Apple like maniacs to insure that they
persevere as well.

Oh yeah, the KC Royals game was fun, too. Bo
went 3 for 4, but the good guys lost.

On a non-conference note, we here at the Ariel
Cabin are so impressed with Applied
Ingenuity's hard drives (combined with their
competitive pricing), we have asked to become
a dealer. We've included a price list. And you
thought you couldn't afford a hard drive!

Making a List
(and checking it twice!)

By Ross W. Lambert, Editor

I was tempted to hold this article until Christmas just so the headline would be timely.
Fortunately, I have a little bit of a Christmas present for you, anyway: the Apple ngs™ List
Manager is easier to use than I imagined.

Although the Toolbox References are cryptic and ambiguous regarding the List Manager, and
although Gary Little calls it rarely used (Exploring the Apple JIgs, p. 194), and although the
Apple IIGS Source Code Sampler confounds the issue with extraneous code (take a lesson from
educators, DTS, one major point per lesson), I was pleasantly surprised to discover that the
List Manager is a friendly sort of beastie.

The List Manager's utility stems from its fleXibility. Imagine a situation wherein users are
reqUired to make selections from a constantly and Widely varying list (maybe based on
product availability or some such changeable thing). It's a nightmare to program and fom1at
if you attempt to convert the items to buttons or other controls, and a nightmare to use if you
don't ('What was the name of that item, again?").

The List Manager, however, handles these situations with ease. In fact, every time you use
SFGetFile, the scrolling list of files is coordinated by the List Manager and its co-authority,
the Control Manager.

Using the List Manager in its wildest permutations can get a little hairy (it can handle lists of
graphical objects as well as textual lists), but in its plain vanilla form the animal is quite
tame. We shall examine but one simple application of lists. Fortunately, the simplest is also
the most common.

As is the usual case with toolbox routines, one of the most difficult tasks is seLling up the
associated data records. There are three discrete structures reqUired by the List Manager, the
list record, the item records (also called member records), and the item strings themselves.

Here's what the "List Record" looks like for one of my lists:

%e SourcerorS.J2lpprentice

ListRecord

Vol. 1 No.7 Page 4

PA
DA
DA
DA
DA
ADRL
ADRL
DA
DA
ADRL
ADRL
ADRL

30,30,102,230
listSize
listview
listType
listStart
$0000
$0000
listMemHeight
listMemSize
MyList
$0000
$0000

iRECT in which list should fit
itotal number of items in list
itotal items in sight at once
ibits 0 & 1 flag parms
ifirst member to highlight
ihandle to list control
idrawing routine (0 = default)
iheight of list members in pixels
isize of member's data record
iPointer to member data
ifour bytes for application use
iscroll bar color table (0 = default)

Most of the data is pretty straightfolWard. but a few items beg explanation. The item listType
has two bit-sized flags. each of which controls something about the list. Bit zero flags the type
of string in use. A zero tells Mr. List Manager that you want to use Pascal strings (which have a
leading length byte). A one says. "Hey. I want C strings!". which, of course, end with a $00
terminator.

Bit one flags the type of selection allowed. Unlike SFGetFile, programmer designed lists inay
permit selection of a range of items and/or multiple unconnected items. Setting bit one to a
one permits single item selection only, while a zero permits the range type of selection rules.
All of the other 14 bits must be set to zero. See p. 11-12 of Toolbox Reference Manual, Volume
One for more information.

Figure 1. listType selection flags

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

)
_ reserved and - 0 . . ~

o Multiple/range selection
1 = Single selection mode

o Pascal strings
1 = C strings

The listStart field merely determines the number of the item that you want to appear at the
top ofthe list. This is normally item one, although ifyou want the user's last choice at the top,
you could do it that way. too.

The item commented as the "handle to the list control" is really just space prOVided for the List
Manager to fill in. I do not make any use of this handle at present.

listMemHeight is simply the height of the font used to display the list. If you're using the
system font. plop in a 10. On a related note, you'll notice in my RECT dimensions that the
height of my list is defined to be equal to listView * listMemHeight+2, or 7 * 10 + 2 which is
72. The plus two snuck in there so that the last item in the window does not rest on the line at
the bottom of the list; it is purely aesthetic.

The listMemSize parameter refers to size of the item record you have provided for each item
in the list. More on that in a minute. '

Vol. 1 NO.7 Page 5 rrfie Sourcerors .!lLpprentice

MyList is a pointer to the item records Ijust referred to. Let's look at it:

* Item Records

MyList

ADRL Item1
DFB 0
ADRL Item2
DFB 0
ADRL Item3
DFB 0

* String data

Item:\. str 'Item number 1 '
Item2 str 'Item number 2 '
Item3 str 'Item number 3 '

icontains address of string
irequired flag byte

iand so on up to liitSize ...

listMemSize in our case would be five, this because each item record has a long pointer (4
bytes) to the associated string, and a required one byte flag for use by Mr. List Manager. Five is
therefore the smallest possible item record. You may make each item record larger if you
want. S0r:r;te folks tuck in little flags for their own use.

.As you can see, setting up a list 'tain't no big deal. You can even read in your data from disk or
slide it in from a resource (a new feature in System 5.0 - Don't fret, we'll get to them soon
enough).

Creating a list is also pretty tame stuff. Here's a fragment from a program I just finished:

iheight of system font
iPointer to string + memFlag

iresult space

30
102
30
230

pha
pha
PushLong W1Ptr
PushLong #ListRecord
CreateList

PullLong ListHandle

listYtop
listYbot
listXtop
listXbot

585 **
586 * *
587 * Setup List Manager Stuff *
588 * *
589 **
590
591 SetupList
592
593 listSize 16
594 listview 7
595 listType %00000010 imultiple and range selection

allowed, Pascal strings (leading len byte)
596 listStart = 1
597 listMemHeight = 10
598 listMemSize 5

byte
599
600
601
602
603
604
605
606
607
608
609

rrtie Sourcerors flLpprentice Vol. 1 No.7 Page 6

610
611 RTS
612
613 ListHandle
614 ADRL $0000

Creating a list is really just a matter of pushing a long result space, passing a window pointer
and the address of your list record, and then calling _CreateList. Keep in mind, however, that
_CreateList just arranges memory. Nothing is displayed on screen yet.

Which brings me to my next point: the List Manager works hand in hand with the Control
Manager. In fact, a list is really a complicated set of controls. Therefore the mechanism to
reveal an existing list is simply to call_DrawControls.

The question remains, though, when do you call_DrawControls .? The answer is: it depends.
Since I use TaskMaster most of the time, I draw the controls in the routine TaskMaster calls to
fill in the content of my window. Note that if you try to draw a list that does not exist your
program will die!

Here's a snippet:

~MoveTo #15i#15
~DrawString #MsgAddr

PushLong W1Ptr
DrawControls

DrawContent

MsgAddr str

iand program bank
imust end with RTL!

irefresh controls

ipush TM's data bank on stack
ipush current program bank
ipull back to make data bank = prog

ifirst pass?
inope
iyep, so set flag

'Here is a list for you to play with:'

PrintSelection

ListFlag
:cont
ListFlag
:cont2

jsr

phb
phk
plb

lda
bne
dec
jmp

:cont

:cont2

drawout plb
rtl

755
756
757
758
759

bank
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778

You probably noticed the JSR PrintSelection in line 769. I'll tell you more about that
routine in a few paragraphs.

Now that the Control Manager has displayed our list, we must figure out how to operate
the thing. This is our Christmas present, however; the Control Manager already knows
what to do!

Using TaskMaster's event code, I branch to my routine that handles a mouse down in
the content area of a window. Once there we find and track a control (which we have to
do whenever there's a control in a window), and if the user selects an item, handle the

Vol. 1 NO.7 Page 7 %e Sourcerors .9l.pprentice

selection (you don't even have to do that much). By the way, the fragment below
assumes that our list is the only control in the window. If you need to check for a hit in
the list (as opposed to a button or some other control), the Control Manager "part code"
for a list is $88.

exit rts

pha iresult space
PushLong #FControlHandle
PushLong EventWhere
PushLong W1Ptr
FindControl

onControl PHA ipush it back on stack
PushLong EventWhere iand position-via TaskMaster's records
PushLong #-1 idefault action proc
PushLong FControlHandle iand handle to found control
_TrackControl itrack the bugger
PLA istill on a control?

ifind out if we clicked on a control

iif so, tell us what we picked

iif not, leave
iCMP $88 here if you need to distinguish

isave TM's databank
ipush prog bank
ipull down into data bank register

exit

PrintSelection

beq

plb
rts

jsr

PLA iA has code for control clicked in if any
BNE onControl

from other controls
phb
phk
plb

InContent158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
list
180
181
182
183
184
185
186
187
188

As I mentioned earlier, you don't really need to handle item selections until the user is
all done with the list. The dynamic duo (the List Manager and the Control Manager)
will keep track of what is selected and what is not. In my examples, I wanted to let the
user know what item has just been selected (redundant, since it is highlighted in the
list, but it is to prove a point).

The point I'm talking about is the technique for determining which item is selected.

The _NextMember call does this job. The only tricks involved are to push a long word
result space, the number of the item to start searching with, and the address of the list
record (see lines 797-801 below). NextMember searches the list from the item number
you provide to the end of the list. -If it finds a selected item, it returns a pointer to the
item record (also called a member record) of the next selected member found.

790
791
792
793
794
795

PrintSelection

phd
ida DPAddr
tcd

isave TM's direct page
iget our DP
iput into DP register

-MoveTo #125i#125
-DraWString #ClearLine iyes, I'm lazy - these are spaces
-MoveTo #20i#125
-DrawString #SelectStr
NDrawString MemberHandle

PushLong W1Ptr
SetPort

pha
pha ilong word result space

GetPort
PullLong OldGrafPort

Page 8Vol. 1 NO.7

irestore DP for TaskMaster

iget the pointer the handle points to
#2
[MyDP] , Y

[MyDP]
MemberHandle
MemberHandle+2

MemberHandle
MyDP
MemberHandle+2
MyDP+2

rts

PushLong OldGrafPort
SetPort

pld

ldy
lda
tax
lda
sta
stx

pla
sta
pla
sta

pha
pha iresult space
PushLong #0 isearch from beginning
PushLong #ListRecord ipass list record location

NextMember iscan list for selected item

796
797
798
799
800
801
802
803
804
805
806
807
808 :cont
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

%eSourceror SJ2Lpprentice

In lines 801 to the end I indulge in some weirdness because I want to find and display
the actual text of the selected item. If you go back to the item record section, you 'n see
that an item record contains a pointer to the actual string data. Hmmm ... if
_NextMember returns a pointer which points to a pointer, doesn't that make the value
it returned a handle? Yes. in a manner of speaking. And no - you only need to consider
it a handle jf you're looking for the. string data like I did above. In that case, I
dereferenced it and used the result to print some text.

A reasonable alternative might be to make your item records 6 bytes long and use the
extra byte to hold the number of the item. The value returned by _ NextMembe r plus 5
would yield the item number. Hence the new structure:

* Item Records

MyList
ADRL Item1
DFB 0
DFB 1

icontains address of string
irequired flag byte
iitem number

Vol. 1 NO.7 Page 9 %e Sourcerors .9Lpprentice

ADRL
DFB
DFB
ADRL
DFB
DFB

Item2
o
2
Item3
o
3

;item number

iand so on up to listSize ...
i item number

And the new code:

797
798
799
800
801
802
803
804
805

pha
pha iresult space
PushLong #0 isearch from beginning
PushLong #ListRecord ;pass list record location

NextMember iscan list for selected item

PullLong MemberPointer
lda MemberPointer+5 iretrieves item number selected
sta ItemSelected

Remember that ifyou change the size of the item records, you also need to update your
list record such that listMemSize is set equal to the correct size.

GS assembly code seems to be self-replicating at times. A simple procedure can easily
expand into 500+ lines, or so it goes for me. I found it refreshing to discover that I could
make use 'of the list display capabilities in the toolbox with such· a small expenditure of
time and energy. I hope you can make use of this, too.

- Ross

An o iGinal Letter
By Steve Stephenson

Editor: It is probably hard to appreciate
Steve's idea here on nested ORCs unless you've
ever had to write code that required it. I had a
contract job once that required some custom
quit code for ProDas 8. The tricky part was
that I had to install different versions based
on the type of host machine (yuk) , hence I had
to write code that would be loaded at $2000+,
relocated to the dispatcher space, and then
pulled down and run at $1000. Since there
were several versions (all of which had to be
aRCed at $1000), it got messy. Steve's ideas
would have helped me a lot way back when.

Dear Ross,

The other day one of my friends asked me
about nesting orgs with Merlin. I have had
some experience in that area and whipped up
this little code fragment and uploaded it to our
local BBS for him. Later I realized that this is
an area of Merlin that leaves a little to be
desired and that it is not adequately treated in
the documentation; just the kind of thing to
share with others who may run into the same
situation. The end result is this letter and the
code that might interest you...

%e Sourcerors !lLpprentice Vol. 1 No.7 Page 10

First of all, the situation: You are writing a
program that will sit on the disk in a single
file: it has several sections that will be moved
to other areas of memory (other than where it
is loaded) at runtime; some of these sections
need to be modified for some reason (perhaps
for different computer models); you are
therefore trying to reference those areas at
runtime.

Now the problem: Although Merlin supports
the concept of ORG ADDR to let the various
sections attain their respective runtime
addresses, the only pseudo op that Merlin has
to return to the previous address is ORG. And
actually that is a misnomer; ORG does NOT
return the PC address back to the previous
address (prior to ORG ADDR), instead it returns
the PC to an address relative to the INITIAL
ORG. This is very similar conceptually to the
Basic.System GETBUFR and FREEBUFR in
that you may incrementally go deeper with the
GETBUFR call, but FREEBUFR pops ALL.
Merlin's method is entirely satisfactory if you
only want to change the address once and come
right back, but you need another method to
nest more than one level with any degree of
flUidity.

The solution: Don't use ORG; instead always
use ORG ADDR. How simple! Gee, wish I had
thought of that... but no so fast. How do you
know what address to use? Well, the method I
use is to calculate and reset back to the
previous level's relative address when I finish
a nested section. To calculate the address, you
will need three labels. I always name the
section (PRIOR to the re-ORG) so I have an

address that is relative to the previous section.
The re-ORG it wherever you need (using
absolutes or constants). Then insert another
label for the start of the section; this one will
be relative to the nested section's addresses.
After the code of the section, add another label
as an end marker (also relative to this section).
To calculate for the reset, subtract the end
marker from the beginning marker to
determine the number of bytes used and add
that to the address that existed prior to
entering this section. What you will have is the
address that you would have had if you'd not
changed the ORG,

Referring to the source code will make this
MUCH clearer. ..

On a totally different subject... I have enclosed
a disk with a program I put together for fellow
Merlin-16 programmers. I thought you and
your readership might be interested. Feel free
to do whatever you wish with it.

Sincerely,

Steve Stephenson

Full-time, Independent, Free-lance Apple II
Assembly Language Programmer (Currently
specializing in the IIGS)

Editor: The program Steve was referring to is
called Dialog Maker. It is an exceptional
public domain dialog creation utility which
generates Merlin 16 source. I'll put it on the
quarterly disk and copy it for anyone that
sends me a disk and SASE.

tr adr
org $1000

Start
:a nop ;$1000
:b nop ;$1001

nest1 ;$2002 ($1004)
org $3000

n€st1:beg ;$3000
:a nop ;$3000 ($2002) ($1004)
:b nop ;$3001 ($2003) ($1005)

1000: EA
1001: EA

2000: EA
2001: EA

3000: EA
3001: EA

2 *===
3 * How to run nested orgs with Merlin
4 *===
5

6
7

8

9
10 *---
11 zl ;$1002
12 org $2000
13 zl:beg ;$2000
14:a nop ;$2000 ($1002)
15:b nop ; $2001 ($1003)
16 *---
17
18
19
20
21

Vol. 1 No.7 Page 11 %e Sourcerors .9lpprentice

Elapsed time = 14 seconds.

End Merlin-16 assembly, 14 bytes, 0 errors, 53 lines, 11 symbols.

=$3002
=$2000

($1008)
($1009)
($100a)

NEST2
Zl:BEG

Zl:END =$200A
NEST2:BEG=$4000

;$100c
;$100d

; $2008 ($100a)
; $2009 ($100b)

; $3002 ($2004) ($1006)

NEST1:END=$3006
Zl =$l002

NESTl =$2002
NESTl:END=$3006

nop
nop

nop
nop

=$2000
=$3002

:a
:b
zl:end
* $200a-$2000 = $a + $1002 = $100c

org zl:end-z1:beg+z1
*---

Reality
:a
:b

: a n op ; $3004 ($ 200 6)
: b nop ; $3005 ($2007)
nest1:end ;$3006 ($2008)
* $3006-$3000 = 6 + $2002 = $2008

org nest1:end-nest1:beg+nest1
*---

*---

*---
nest2

org $4000
nest2:beg ;$4000
:a nop ;$4000 ($3002) ($2004) ($1006)
: b nop ; $ 4001 ($3003) ($ 2 005) ($1 007)
nest2:end ;$4002 ($3004) ($2006) ($1008)
* now to "un" org back one level, ~ount up the number
* of bytes at this nested level and add the address
* of the beginning of the nested area (using address
* relative to previous level). In this case,
* nest2:end - nest:2beg {$4002-$4000} = 2 bytes,
* nest2's address is $3002, so the next pc address
* will be $3004

org nest2:end-nest2:beg+nest2
*---

NEST1:BEG=$3000
NEST2:END=$4002

Zl:BEG
NEST2

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

NESTl =$2002
NEST2:BEG=$4000
Zl:END =$200A

Zl =$1002
NEST1:BEG=$3000
NEST2:END=$4002

100e: EA
100D: EA

Symbol table, alphabetical order:

2008: EA
2009: EA

3004: EA
3005: EA

Symbol table, numerical order:

509/ 923-2025

•Inglis
98846

I•1
Box 398
Pateros, WA

rrhe Sourceror's .9Lpprentice
Copyright © 1989 by Ross W. Lambert
and Ariel Publishing
All Rights Reserved

Subscription prices in US dollars (Canadian and
Mexican subscribers add $5 per year, all other
non-North American subscribers add $15 per
year):

subscription payment at any time. MY LIABILITY
FOR ERRORS AND OMISSIONS IS LIMITED TO
THIS PUBLICATION'S PURCHASE PRICE. In no
case shall I or my contributors be liable for any
incidental or consequential damages, nor for ANY
damages in excess of the fees paid by a
subscriber.

Please direct all correspondence to:

Ross W. Lambert.... Editor & Publisher
Tamara Lambert..... Subscriptions
Jay Jennings, Eric Mueller, Robert
Moore Tech Editors
Rebecca Lambert... Stamp licking

WARRANTY and LIMITATION of LIABILITY

I warrant that the information in fJ'/ie J'lpprentice
is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full
refund of their last

1 year ...$28 2 years...$52 Ariel Publishing
P.O. Box 398
Pateros, WA 98846

5091 923-2025

fJ'lie Sourceror's J'lpprentice is a product of the
United States of America.

We here at Ariel Publishing freely admit our
shortcomings, but nevertheless we strive to bring
glory to the Lord Jesus Christ.

Apple, Apple II, IIgs, BASIC.SYSTEM and ProDOS are
registered trademarks of Apple Computers, Inc.

