
------------ -1

%e Sourceror So YLpprentice
The Assembly Language Journal of Merlin Programmers

The Month in Pictures

Vol. 1 No.4 April, 1989

"What a dude I am!
I finished two
Apprentice's within
just a few days of
each other."

"Whaddya mean a
bug? "

"Whaddya mean the
printer gave me two
page 13's?"

"Whaddya mean I
left out TWO
paragraphs out of an
article? "

Was it the Ides of March?

I discovered one of the real pitfalls of editorship
last month: complete and total public humiliation.
It was not that bad, I suppose, but it sure felt like
it for awhile. I pictured hundreds of people
tossing their newsletters in the trash and writing
me nasty notes. That would hurt even worse than
canceled subscriptions. I've never been able to
handle nasty notes very well. It's probably
something left over from my grade school days.

Instead I got some very kind and generous
treatment. Bob Sander-Cederlof called and
offered encouragement and the comiseration that
only a former newsletter editor could. Roger
Wagner was more than patient. And Sandy
Mossberg was a class act, too. Steve Stephenson
(Genesis Software, author of the great Squirt
series of program selectors) wrote me a very
gentle note offering forth code to fix my boo boos.
I thank you one and all.

As indicated in the graphic above, under deadline
pressure I boogered up Generic Startup again. I
think I'll let that dog sleep for awhile, except to

say that if you send me a disk I'll put the repaired
file on it and send it back to you at my expense.
Quarterly disk subscribers already have the new
version.

I am going to discuss the programming
considerations in squashing the insectia in Generic
Startup a little at a time and in another place: a
new short monthly column I'm beginning called
The Gentleman's GS. Aside from requesting
attention to 8 bit programming techniques, the
most common message I've received from
subscribers is, "...programming the GS is driving
me crazy. Please go slow and take it one step at a
time."

Request granted. We'll start this month.

I also wanted to apologize to y'all and to Jerry
Kindall for leaving two entire paragraphs out of
his last installment of the Applesoft Connection. The
missing paragraphs should come right before the
sub-head "String Beans" and they read:

The next step is to call FREFAC. If we don't do that,

One of my friends told me that he was
downright irritated that I broke up Steven
Lepisto's Vectored Joystick Programming source
code. Steven~s article and source code files were
VERY long. I really had no choice, but be assured
that I'll try to avoid it in the future. The rest of his
8 bit code is included in this issue. I hope you
enjoy it.

%e SourcerorsJlLpprentice

Applesoft will eventually run· out of temporary string
descriptors (which are used to keep track of strings
generated while evaluating an expression) and give the
unwary Applesoft programmer an ?OUT OF
MEMORY error.

After calling these three routines in order, the length of
the string is in the Accumulator, and a pointer to the
string is in SPTR ($5E). The actual address of the
string will vary depending on Applesoft memory
conditions; SPTR gives us a way of finding it. From
there, it can be accessed by your machine language
program.

Vol. 1 No.4

Like I said, it was a tough month.

Page 2

The Applesoft Connection

Part 3: CALL & Ampersand

by Jerry Kindall
2612 Queensway Drive
Grove City, OH 43123
614/875-6805

GEnie: J.KINDALL
Alink: JKindall

In the first two parts of this series, I covered the nuts and bolts of passing parameters to and from
BASIC. Now it's time to put all those little technical details together.

First, though, a couple of additions to article #2. Browsing through What's Where In The Apple
shortly after submitting that article, I ran across a routine called FRESTR, a combination of CHKSTR
and FREFAC. Since the string-reading technique I presented in the string discussion calls both
CHKSTR and FREFAC in sequence, you can replace those two JSR's with one call to FRESTR at $E5FD,
which will save you three whole bytes.

The other addition is a bug correction. The input-anything routine I presented works fine, if you tried
it, but it doesn't check to make sure the variable it's been passed is a string; if you passed it a numeric
variable, it wouldn't work, but you also wouldn't get an error. I left out a call to CHKSTR. To fix this,
just insert a JSR CHKSTR immediately after line 29 of the routine. Note that I did include CHKSTR =
$DD6C at the beginning of the program, so you can just stick that line in. (How I managed to include
the equate for that routine while forgetting to call it is beyond me!)

The CALL Statement

Applesoft programmers use the CALL instruction for everything from clearing a screen line (CALL
-868) to entering the System Monitor (CALL -151) to fixing the Applesoft ONERR bug (CALL -3288).
CALL- is so flexible because it lets the programmer specify the starting address of the machine-code
routine to be executed instead of being hard-wired to an address like HOME or PRINT.

Once a machine-language routine has been activated via CALL, it can send and receive variable values
using the routines we've been talking about in the last two parts of this series. Look at the
input-anything routine in the second part of this series for an example of a CALLable routine.

The first thing a CALLed routine will usually do is call CHKCOM ($DEBE) to "eat" the comma
between the CALL address and the parameters. (If the first parameter to be read is a numeric value
from 0-255/ you can also use COMBYT at $E74C.) Without the comma, Applesoft can (and by
Murphy'S law, probably will) get very confused as to what address you REALLY mean with that
CALL. Compare CALL 768,0 to CALL 7680 and you'll see what I mean.

Vol. 1 NO.4 Page 3 'Ihe SourcerorsJ2lpprentice

Other than the initial comma, there's no particular trick to writin~ CALLable routines. The Applesoft
entry points discussed in the first two parts of this series will do all the rest of the work for you, as
long as they're called properly.

Mr. Ampersand

BASIC's ampersand command (&) can also pass control to a machine language routine anywhere in
the computer. This is done by storing a JMP to the desired routine in locations $3F5-$3F7. When
Applesoft sees an ampersand, it immediately JMPs to $3F5, which then JMPs to the desired routine.
Because $3F5 is only used to JMP to an ampersand routine, it's known as the "ampersand vector" or
sometimes the "ampersand hook". (Another example of a vector is $3DO, the DOS/ProDOS warmstart
vector. A vector's sole purpose is to JMP to another location, so that even if that other location is
changed, programs which call the vector will still work.)

With the ampersand, you don't need to "eat" a comma at the beginning of your routine. To turn the
input-anything routine into an ampersand routine, all you have to do is remove the JSR CHKCOM
(line 28). (Move the label INPUTANY to the next line.) Then, to "activate" the routine, store a JMP
$300 in the ampersand vector. (From the Monitor, just type 3F5:4C 00 03.)

When you enter & A$, Applesoft will jump to $3F5, which will jump to $300, the start of our routine.
From there everything proceeds as usual.

Hook It Up

Most well-written ampersand routines contain code to hook themselves up. This way you don't have
to hook them up by hand by going into the Monitor or with POKEs. This is done by adding a "front
end" to the ampersand routine, which stores the appropriate JMP at $3F5-$3F7 and exits via an RTS.
This means that ampersand routines must usually be BRUN to install them, whereas a CALLable
routine can simply be BLOADed.

Let's add such a front end to our input-anything routine. Just after the ORG, add the following code:

28 HOOKUP LDA #$4C iJMP opcode
29 STA $3F5
30 LDA UNPUTANY ilow byte of INPUTANY
31 STA $3F6
32 LDA #/INPUTANY ihigh byte of INPUTANY
33 STA $3F7
34 RTS igo back to BASIC

But there's still a major problem with the ampersand version of our input-anything routine. (Don't
you just love it?)

Now, when our input-anything routine is BRUN, this short front end gets executed, hooks up our
ampersand routine to the ampersand vector, and exits to BASIC. The actual input-anything routine
isn't executed until an ampersand is encountered in a program.

Since the front end isn't used after the routine has been installed, it can run in a non-permanent
memory location. For example, we could have the above front end actually residing in the latter part
of the keyboard buffer (normally a very unsafe place for a machine-language routine) as long as we
made sure that our actual input-anything routine is safely in page 3.

Passing The Buck
I

)(
,----------------------------------,..,.,

%e SourcerorsJlLpprentice Vol. 1 No.4 Page 4

What happens if we want to install and use two different ampersand routines? (Let's assume for a
moment that the two routines we want to use don't use the same area of memory. We'll deal with
memory conflicts a little later.) Say we want to use both our input-anything routine and a
string-swapping routine. We install the string-swapping routine first and it hooks itself up to the
ampersand vector. Then we install our input-anything routine and it hooks itself up to the ampersand
vector too. Now, when we enter an ampersand command, which routine will get control?

Well, since our input-anything routine was the last routine to install itself, it would get control. We
have essentially lost track of any ampersand routine installed earlier. This gives Applesoft
programmers huge Excedrin headaches as they try to figure out a way to allow all their ampersand
routines to work together.

But don't be unduly consternated, there is a way to extricate ourselves from this quandary. When we
install our ampersand routine, we can save the address of any previously installed ampersand routine.
If the ampersand call isn't for our routine, we can pass it on.

This brings up another problem. How can we tell if an ampersand call is for us? The best way is to
check for some character or series of characters immediately after the ampersand character. Since
we're writing an input-anything routine, let's use the word INPUT. The advantage of using INPUT is
that since it's an Applesoft command word, it's only one byte long, and so we can check for it with one
instruction.

Therefore, if we find the word INPUT, we know the call's for us; otherwise, we pass it on to any
previously installed ampersand routines. A typical call to our input-anything routine will look like &
INPUT A$. Now that we've solved THAT problem, let's figure out how to avoid the other problem I
glossed over just a minute ago.

Memory Conflicts

Page 3 of RAM is a popular area of memory for CALL and ampersand routines, and this is another
thing that frequently causes Applesoft programmers to have headaches. Their favorite ampersand
routines often compete for the same area of memory.

One solution to this dilemma is to ask BASIC.SYSTEM for some memory and move your routine there.
Since we can't be sure when we're writing the routine exactly where BASIC.SYSTEM will put our
memory, we have to make the ampersand routine relocatable. With our little input-anything routine,
this is simple -- it's already relocatable, since we didn't reference any addresses within the program
code itself.

If you can't easily make the routine relocatable, you will have to relocate it. See Karl Bunker's
"Relocation Without Dislocation" in the February, 1989 issue of The Sourceror's Apprentice for much
more information about relocating your programs.

There's only one drawback to this technique. Since BASIC.SYSTEM allocates memory 256 bytes at a
time, our little input-anything routine will end up wasting about 200 bytes of space. Stick a half-dozen
short routines up there and that wasted memory begins to add up. We won't worry too much about
that, since there's little we can do about it, but it's something to be aware of.

Fruits Of Our Labors

The routine below is an ampersand-driven version of our input-anything routine. Take a look at it,
then I'll detail exactly how it differs from our first version.

1 * The Applesoft Connection
2 * Yet Another Input-Anything - v2.0
3 *

Vol. 1 NO.4 Page 5 rrhe Sourcerors Ylpprentice

* Applesoft, Monitor, and BASIC. SYSTEM Routines

* Ampersand-driven, self-installing version
* Jerry Kindall -- March, 1989

*

* Installation Routine

* Page 0/2/3 Locations

ihook up our routine

iwe need 1 page of RAM
iallocate it
ino RAM available
iprotect our memory
iset up pointer for move

iallocate memory
ioriginal HIMEM MSB
ifix input buffer for BASIC
icheck for string
isyntax check for comma
iget pointer to variable
iinit string space & pointer
imove string to string pool
iget an input line

itemporary pointer
iprompt printed by GETLN
iPointer to string variable
iholds new string descriptor
ikeyboard buffer
iampersand vector

4t$4C
AMPVEC
PTR
AMPVEC+1
PTR+1
AMPVEC+2

: LOOP

#END-INPUTANY imove code up in memory
INPUTANY,Y
(PTR) ,Y

$lA
$33
$83
$9D
$200
$3FS

ttl
GETBUF
:EXIT
OLDHI
PTR+1
#0
PTR

$B1
$B7
$BEF5
$BEFB
$D539
$DD6C
$DEBE
$DFE3
$E3D5
$ESE2
$FD6A

LDA
STA
LDA
STA
LDA
STA
RTS

ORG $2000

LDY #PASS-INPUTANY+4 isave old amper vector
LDA AMPVEC+1
STA (PTR),Y
INY
LDA AMPVEC+2
STA (PTR),Y

LDY
LDA
STA
DEY
BPL

:EXIT

: LOOP

INSTALL LDA
JSR
BCS
STA
STA
LDA
STA

CHRGET
CHRGOT
GETBUF
OLDHI
GDBUFS
CHKSTR
CHKCOM
PTRGET
STRINI
MOVSTR
GETLN

PTR
PROMPT
VARPNT
DSCTMP
BUF
AMPVEC

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64 * Input-Anything Routine
65
66 INPUTANY CMP #$84 icheck for INPUT token
67 BNE PASS
68 JSR CHRGET iskip to next character
69
70 JSR PTRGET i find variable
71 JSR CHKSTR
72
73 LDA 1$80 icontrol-@
74 STA PROMPT ino prompt
75 JSR GETLN iget input line
76 TXA isave string length
77 PHA
78
79 JSR GDBUFS imake good Applesoft string
80
81 PLA iremember length
82 JSR STRINI imake space & descriptor
83
84 LDX #BUF iget address of input buffer
85 LDY #/BUF
86 JSR MOVSTR imove it. to string pool
87
88 LDY #2 imove descriptor to variable
89 : LOOP LDA DSCTMP,Y
90 STA (VARPNT) ,Y
91 DEY
92 BPL : LOOP
93
94 RTS
95
96 PASS JSR CHRGOT ire-get character
97 JMP PASS ithis gets modified
98
99 END *

rrhe Sourcerors5lLpprentice Vol. 1 No.4 Page 6

The first real difference is at line 31. Instead of having an ORG of $300 as did our original routine, the
new routine has an ORG of $2000. $2000 is a pretty standard load address for ampersand routines,
probably because that's also the standard load address for SYS files. The memory at $2000 is no longer
needed after the routine has actually been installed.

Lines 35-37 request one page (256 bytes) of RAM from BASIC.SYSTEM. This is the minimum amount
of memory you can ask for. If the carry flag is set on return, no memory is available, so we exit
without installing our routine. Otherwise, the accumulator holds the high byte of the address of our
memory. In line 38, we store this in BASIC.SYSTEM's "original HIMEM MSB" location. This protects
our routine in case some doofus comes along and does a FREBUFR call, which would otherwise free
up the memory where our routine resides and allow it to be overwritten.

After doing this, we set up a pointer to our memory space and move the actual input-anything routine
to our memory (lines 39-47). Then lines 49-54 copy the address of the old ampersand routine to line
97's JMP statement so that unrecognized ampersand routines can be passed to the next one in the
chain. This is an example of self-modifying code, a practice which is generally frowned upon, but in
this case it's the easiest way to do what we're trying to do. Since we don't know where the routine
will end up, we have to figure out where that JMP statement is during runtime, which is done using a
pointer and an index register. After doing all that, we hook up the ampersand vector to point to our
newly installed routine (56-61), then we exit to BASIC.

Ii Vol. 1 No.4

(rCc~\

Page 7 rrfie SourcerorS.9Lpprentice

The only thing different about the input-anything routine itself is in lines 66-68. When an ampersand
routine is called, the accumulator contains the character that follows the ampersand. In this case,
we're checking it to see if it's INPUT. If it's not, we exit through PASS (line 96), which calls CHRGOT
(to reset the various status flags which CHRGET sets and our CMP instruction changed) and JMPs to
the next ampersand handler on the chain. If it's our routine, we call CHRGET to advance to the next
character in the statement. From there things proceed as usual.

More Still To Come!

In the next article in this series, I'll discuss the seriously underused USR function, which is powerful in
a whole different way from the ampersand command. Until then, don't let the bit-bugs byte!

Random Bytes

Robert C. Moore
The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland

Professor Moore works in the Space Department in his
lab. His handiwork has flown on board the
Apollo-Soyuz mission and will be aboard the
GAL/LEO mssion to Jupiter. A multi-talented person,
Bob is also an outstanding pianist.

Not only are Bob's random number generators
statistically sound (as far as this non-mathematician
can ascertain), but the two RANDOM routines are
completely relocatable and easy to use. With just a
little careful planning when you define your equates,
MULTIRAND is also easily relocatable.

Fortunately for Apple II assembly language
programmers, several good random number
generators exist. Among these are two highly
recommended routines: one published by Don
Lancaster [Ref. 1] and another published by David
G. Sparks. [Ref. 2] Both of these programs are
excellent. Lancaster's program requires 35 bytes
and generates a random byte in 374 microseconds;
Sparks's program, which is compatible with
Applesoft, requires 256 bytes and executes in
approximately 27.9 milliseconds. Sparks's
program generates a random real variable value
for Applesoft BASIC.

I have developed a pseudo-random number
(PRN) generator subroutine that is fairly
well-behaved (its period is greater than thirty
million), very short (as few as thirty-one bytes),
and very fast (67 microseconds on a standard
Apple lie or / / c). It uses the technique of
generating a pseudo-random sequence with a
feedback shift register.

Figure 1 illustrates the shift register concept. A
25-bit shift register is shown; it can shift its
contents to the left. The input data for the
rightmost bit of the shift register are supplied by
exclusive-ORing data bits from the register itself.
By selecting data bits 7 and 25 (see Figure 1) for
feedback to the input of bit 1 (i.e., on the next shift
BITt will receive BIT7 EOR BIT25), a maximum
length sequence of register data will be generated,
provided the initial contents of the shift register is
not zero. [Ref. 3] A maximum length sequence

The most notorious problem with random number
generators is that many of them do not produce
sufficiently random outputs. Some of them begin
to repeat the sequence of random numbers after
only a short while. These are said to have too
short a period. Others have output numbers that
are not well-distributed over the possible range of
values. For these, certain values or patterns of
values are much more likely to occur than other
values or patterns.

Frequently an assembly language programmer
needs a random number. Random numbers are
useful in simulations, where statistical "Monte
Carlo" techniques are used. They also are useful
in educational programs in which particular data
(e.g., multiple choice answers) are selected at
random from a large pool of possibilities. Many
random number generators are available;
however, most of them have serious problems.

/

J1--'"

%e Sourceror sYlpprentice

~rection of shift

Vol. 1 NO.4 Page 8

~5 124l23122 21 20 1 9 18 171 6 1 5 14 13 121 1 10 9 8 7 6 5 4 3 2 1 ~

'D-))
./.J.

FIGURE 1: A 25-BIT PSEUDO-RANDOM NUMBER (PRN) SHIFT REGISTER

has a period of 2"n-1, where n is the number of
bits in the shift register. For n=25, 2"n-1 is
33,554,431. This period is sufficiently large for
most random number applications.

The period of this particular PRN shift register,
33,554,431, has the following integer prime
factors: 1801, 601, and 31. If we shift the PRN
register once each time we wish to generate a new
bit, the period of the resulting bit sequence will be
33,554,431.

However, we wish to generate random bytes, not
just random bits. Let's say we take our random
byte from the rightmost eight bits of the PRN
register. By shifting only one bit at a time, seven
of those eight bits will be identical (but shifted
one bit to the left) to seven of the bits in the most
recent random byte. This correlation between
succe~sivebytes is not good. If, however, we shift
by more than one bit at a time, the correlation
between successive random bytes will be reduced
significantly. If the number of shifts is coprime
with the PRN register period (i.e., it does not
equal any of the integer prime factors of the PRN
register period), the overall period will rema"in the

same; that is, all possible 25-bit patterns (except
the all-zero pattern) will occur before the first
"seed" pattern repeats.

For my design I chose to shift the register seven
times each time I request a new random byte. The
reasons for this choice will become apparent when
you study the subroutine. This means that only
one bit of the new number is retained from the
previous one. Following seven shifts, the PRN
register of Figure 1 will look like the one shown in
Figure 2, where the original bit numbers have
been preserved.

This will result in an acceptable (to me, at least)
sequence of random bytes. But how do we
implement such a structure in assembly language?
Here's my method. First, I set up four one-byte
integer variables in which to store my PRN data.
(I'll be using only 25 of the 32 bits in these four
bytes.) Variable R1 will hold bits 1 through 8 of
the PRN shift register, with bit 1 in its
least-significant bit. Similarly, variable R2 will
hold PRN bits 9 through 16, variable R3 will hold
PRN bits 17 through 24, and the LSB of variable
R4 will hold PRN bit 25. This is illustrated in
Figure 3.

~rection of shift

~ 8 17 1 6 15 14 1312 1 1 1 0
7 6 5 4 3 2 1

9 8 7 6 5 4 3 2 1
12$5 1!4 f~

$
~1

$ $ ~
22 20 1 9

'D-1)
./.J.

FIGURE 2: PRN SHIFT REGISTER FOLLOWING SEVEN SHIFTS

rrhe Sourcerors.9LpprenticeVol. 1 No.4

MSB

Page 9

LSB LSB MSB LSB MSB LSB

FIGURE 3: PRN REGISTER IMPLEMENTED IN FOUR 1-BYTE VARIABLES
PERIOD = 33,554,431

Now we can implement the PRN algorithm with
the following sequence of assembly language
instructions:

iGet original bits

iBit 25 to carry
iShift left 8 bits

iNow bits 18-25 in AC
iRl holds bit~ 1-7
iSeven bits at once
iShift right by one

LSBMSBLSB

If your application requires a longer period, you
may wish to use the design that is shown in
Figure 4. [Ref. 4] This PRN shift register has a
period of 2,147,483,647. The following subroutine
shifts the PRN register of Figure 4 eight times,
then returns the new random byte in R1 and the
accumulator.

You can quickly verify that this simple routine
will transform the condition illustrated by Figure
1 into the condition which is illustrated by Figure
2. Notice that the routine has no loops or
branches; it just falls straight through to the RTS.

If variables R1 through R4 are located in page
zero, this subroutine executes in 66.5
microseconds. With the variables in regular
memory (perhaps stored at the end of the
subroutine), execution time is 80.2 microseconds.
These speeds are quite good. On return to the
calling program, the random byte is found in
variable R1 and the accumulator. The contents of
the X and Y registers are not modified. The PRN
register, variables R1 through R4, must be
"seeded" once with any nonzero value prior to the
first call to RANDOM.

MSBLSBMSBLSB

iReturn to caller

RANDOM ROR R4
LDA R3
STA R4
LDA R2
STA R3
LDA Rl
STA R2
LDA R4

17-24
ROR
ROL Rl
EOR Rl
ROR R4

bit
ROR R3
ROR R2
ROR A
STA Rl
RTS

MSB

FIGURE 4: PRN REGISTER WITH PERIOD =2,147,483,647
(From Reference 1.)

%e Sourcerors!JLpprentice

But what if your narrower range does not extend
fro~ zero through 2A n-1? In that case a simple
logic mask operation will not suffice. The
following subroutine, MULTRAND, will work
with either of the RANDOM subroutines
described above. It will return a random integer in
the range 0 through LIMIT-1, where LIMIT is the
8-bit integer parameter that is passed to the
routine in the accumulator.

This program does not use the X and Y registers.
It requires 39 bytes of program storage and
executes in less than 100 microseconds. It
implements the same PRN algorithm that Don
Lancaster used, but executes in much less time
than his implementation. (This is because
Lancaster's implementation is more
general-purpose than mine.)

The random byte that is returned by either of
these RANDOM subroutines will be in the range
from 0 through 255. Sometimes it is convenient to
have random integers that are restricted to a
narrower range. For example, to get a random
integer in the range from 0 through 7, you could
obtain a random byte and then mask off all but
the least-significant three bits using an AND #$07
instruction.

;Return toRTS
not done

caller

Vol. 1 NO.4 Page 10

MULTRAND works by forming the integer
product of LIMIT and a random 8-bit integer R1
which is obtained by calling RANDOM. 'Th;
most-significant half of the product is passed back
to the calling routine; the least-significant half is
discarded.

I have ,found these random byte generation
subroutines to be very useful in writing assembly
language programs for computer-aided education.
Perhaps you, too, will find many uses for them.

REFERENCES
1 Don Lancaster, Assembly Cookbook for the
Apple II/lIe (Indianapolis, Indiana: Howard W.
Sams & Co., Inc., 1984) pp. 345-361.

2 David G. Sparks, "The Last Word on Random
Numbers in Applesoft...," Call -A.P.P.L.E, vol. 12,
no. 4, April 1989, pp. 44-47.

3 Neal Glover, Practical Error Correction Design
for Engineers, (Broomfield, Colorado: Data
Systems Technology Corporation, 1982), pp. 41-44.

4 Don Lancaster, op. cit.

in R1
LDA t8 ;Initialize

loop counter
STA COUNTER
LDA to ;Initialize

the product
SHIFMULr LSR LIMIT ;Multiplier
bit to carry

BCC SHIFPROD ;If zero,
just shift

CLC ;Else add
multiplicand

ADC R1 i to the
product.
SHIFPROD ROR A ;Shift the
product right

DEC COUNTER ; Decrement
loop counter

BNE SHIFMULT iGo back if

When the MULTRAND subroutine returns to the
calling routine the COUNTER holds zero. The X
and Y registers are unused and therefore their
contents remain intact. The random byte, in the
range from 0 through LIMIT-1 (LIMIT was the
integer that was passed in the accumulator) is
returned in the accumulator. The MULTRAND
subro.utine requires two local 8-bit integer
variables: LIMIT and COUNTER, both of which
are cleared to zero before MULTRAND returns
control to its caller.

;Multiplicand

;Use limit as

;Return to caller

;Retrieve bits 28-21

;Retrieve bits

;Eight bits at once

;Save bits 28-21
;Shift left 8 bits

;Save bits 31-24
;Shift left three

;Shift left one bit

;Retrieve original

;Save original R4
; on the stack.
;Shift R3 left 8

MULTRAND STA LIMIT
multiplier

JSR RANDOM

RANDOM LDA R4
PHA
LDA R3

bits
STA R4
PLA

R4
ASL R3
ROL A
PHA
ASL R3

bits
ROL A
ASL R3
ROL A
ASL R3
ROL A
PHA
LDA R2
STA R3
LDA R1
STA R2
PLA
STA R1
PLA

31-24
EOR R1
STA R1
RTS

The Gentleman's GS:
A Polite Introduction to the 16 Bit II

Vol. 1 No.4 Page 11 %e Sourceror5Ylpprentice

I used to work at a wilderness camp modeled
after the famous Outward Bound program. One
of my favorite activities was when we took
campers rappelling, which is essentially walking
down a sheer cliff while attached to a climbing
rope. The hardest part for all of our students was
the first step backwards over the edge of the cliff.
It was easy to understand why - you have to hang
your buns out over a 100 foot drop, not something
any of us are very used to.

Programming the GS is a little like rappelling.
Few people are used to it. Like rappelling,
though, I think that most people find it quite
enjoyable once they get into it. You. can go a
tremendous distance with a little effort during a
rappel. Likewise on the GS.

And like I used to do with our budding
rappellers, I want to change your mindset:
rappelling and the GS are both incredibly fun.
The GS is not nearly as dangerous, either.

There are plenty of guides, too. As I've mentioned
before, Gary Little's Exploring the Apple llGS
(Addison-Wesley) is a terrific introductory guide
to the GS. So is Ron Lichty and David Eyes'
Programming the Apple llGS in Assembly Language.
Both are first rate.

Still, a large number of Apprentice subscribers
have requested a column such as this one to help
clarify some of the less obvious issues. I know
that Merlin programmers get frustrated always
having to convert source code from APW to
Merlin format. We'll help you through that
process here.

And still other folks I know are struggling with all
of the new terminology being bandied about.
Think of it as meeting a few new (and powerful)
friends. Let's proceed with the introductions...

A lot of people start getting sweaty at the
mention of "event driven" programming. Relax.
In some sense, all software with any user interface
is event driven. Just keep in mind that the
desktop metaphor means that the user should be
able to do just about anything they wish anytime
they want to. If you're sitting at your own desk,
for example, you can move papers around, open a
drawer, and go back to your paperwork with ease.
So too, in the desktop interface scheme. From a

programmer's standpoint, all it means is that we
have to check the mouse and keyboard every so
often to see what the human in control (henceforth
known as HIC) wants to do. This occassional
checking is often done in something called an
"event loop" in GS lingo.

The only exceptions are activities that are
impossible, illogical, or inconvenient for the user
if interrupted (printing, for example). Such
actions are called "modal" and should be avoided
unless absolutely necessary. But they are
necessary at times, so don't break out in hives
worrying about them.

It should be encouraging, too, that Apple
developed a toolbox rou tine called TaskMaster
that checks and handles zillions of events for us
automatically. One call does it all. TaskMaster
doesn't even exist on the Mac (yet), so we have
something they don't. Neener neener neener.

Ah yes, the toolbox. The notion of a toolbox
shouldn't be intimidating either. Every time
you've done a JSR COUT on an 8 bit Apple you've
taken advantage of a routine that exists in your
computer's ROM. In the same vein, the famous
toolboxes are ROM routines. There's just more of
'em and they're quite a bit more sophisticated.
They do more.

The increased sophistication and capabilities come
at a price. One of the new costs is that the
routines need data. One of the primary tasks for
GS programmers is developing the sets of data
required by particular tool calls. Then we must
tell the tools where the data is. And since some
tools send us messages back, we also have to
create a place for messages. By convention, the
toolbox sends and receives messages on the stack.
Creating space for the toolbox messages involves
pushing dummy arguments on the stack.

It is really pretty amazing to me the amount of
work that one tool call can do. Remember my
discussion of AlertWindow a couple of months
ago? One call and your GS will display an alert
with an icon and buttons. It will track the mouse
and handle button selection, returning control to
you with the number of the button selected on top
of the stack. That seems more like a high level
language to me than assembly code!

%e Sourceror SJZLpprentice

(You may start those tools which are indented at
that time or any time thereafter. The numbers in
paretheses are the tool numbers.)

The toolboxes have a few other requirements, too.
For example, they ALL need to be explicity started
up at the beginning of a program. Unfortunately,
you cannot run around and start up whatever you
want whenever you want. Some of the toolbox
routines are interdependent. These
interdependencies were really the main
motivation behind the now-mangled Generic
Startup code we published. This was enough of
an issue that Apple Developer Technical Support
finally came out with the following chart in a tech
note:

Page 12

(#6)
(#14)
(U6)
(#15)
(#20)
(*21)

(#8)
(#25)

Vol. 1 NO.4

Next Month: Generic Startup revisited.

The tech note adds: "Although you may start the
sound-related tools any time after the
Miscellaneous Tools, we recommend you start
them after most of the Desktop-related tools."

The list above does not comprise ALL of the
toolsets available, but it does outline the proper
order for the most common.

Event Manager
Window Manager
Control Manager
Menu Manager
LineEdit
Dialog Manager

either
Sound Tools then
Note Synthesizer
or
Note Sequencer then (#26)
MIDI Tools (#32)

Standard File Operations (#23)
Scrap Manager (#22)
Desk Manager (#5)
List Manager (#28)
Font Manager (#27)
Print Manager (#19)

(H)
(#9)

(#11)
(#2)

(HO)
(#29)

(#3)
(#7)

(H7)

(#4)

(H8)

Tool Locator
ADS Tools
Integer Math Tools
Text Tools

Memory Manager
SANE
ACE

Miscellaneous Tools
Scheduler
System Loader

QuickDraw II
QuickDraw II Aux

Vectored Joystick Programming:

8 Bit Source (continued)

Refer to article in Vol. 1 No.3, March, 1989
53 *---
54 *
55 * To use these routines:
56 * 1) call initjoystick to intialize the routines and determine if there is a
57 * joystick present. Only has to be done once.
58 * 2) at top of main loop, call updatejoystick to get current state of stick.
59 * 3) sometime after calling updatejoystick, call dojoystick to process state
60 * of stick and return vector and trigger values.
61 *
62 * If stick isn't present, updatejoystick and dojoystick only process button
63 * presses (a la the apple keys). If you wish, you can allow for installing a
64 * joystick on the fly by having the user press a key then based on that key,
65 * call initjoystick again. If the stick is ever unplugged on the fly,
66 * updatejoystick and dojoystick will fall back to reading only buttons,
67 * leaving the stick itself in a centered state.

68 *---
69
70 * Hardware locations.
71

rrhe Sourcerors Ylpprentice

i- if valid key press present
iaccess to clear keypress
;speed register of IIgs
;reset paddle timers
itimer for paddle 0 (+ when done)
itimer for paddle 1 (+ when done)

- if button 0 pushed
; - if button 1 pushed

ilast state of stick
;positive if it's really there

Page 13

set if no keypress processed or recognized else clear.
if zero flag set, holds a 0 else holds stick state byte.

$cOOO
$c010
$C036
$c070
$c064
$c065
$c061
$c062

1
1
1
1

t"z"+l
:0
i"a"

:0
t$df

keypress
:x

ent
apple_id
It-1
stick_temp
ltO
stickstate
trigger
stick live
updatejoystick
stick live

stick_last ds
stick_live ds
stick_temp ds
stickstate ds

initjoystick
jsr
Ida
sta
Ida
sta
sta
sta
jsr
Ida
rts

keypress equ
keystrobe equ
gs_speed equ
resetstick equ
rdstickx equ
rdsticky equ
buttonO equ
button1 equ

dokeystick
Ida
bpI
cmp
bcc
cmp
bcs
and

Vol. 1 No.4

72
73
74
75
76
77
78
79
80
81 *---
82
83 * Variables.
84
85
86
87
88
89
90 *---
91
92 * Initializes some variables and determines if stick is really plugged in.
93 * Returns A.reg=$FFOO if stick not available else A.reg = $0000.
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109 * Read keyboard looking for joystick equivalent keys.
110 *
111 * Output:
112 * zero flag
113 * A. reg
114 *
115 * Note that only if a key is recognized is the keyboard strobe cleared. This
116 * allows another routine outside of this one to see if the keypress was meant
117 * for it.
118 *
119 * Currently supports eight motions, a fire button, and a combination fire
120 * and motion button (to show how it can be done) .
121 * Also supports P for pause (waits for another keypress), and ctrl-J for
122 * reinitializing the joystick (if it has been reconnected after first running
123 * the initialization routine) .
124
125
126
127
128
129
130
131
132

Page 14Vol. 1 No.4

button press
button press and down motion

F
M

down
up
left
right

X
E
S
D

; ctrl-J

; end of table

'W', 'R',' Z', 'e'
'X', 'E',' Sf f'D'

'F', 'M'
o

to

t$7f
t'P'
:Oa
keystrobe

dokey_char
t-1

keypress
:waitkey
keystrobe
:x

t$Oa
:1
initjoystick
:x

key_table,y
:x
dokey_char
: 2
joyxlate_tbl,y
keystrobe

-1, 0, +1 depending on x position of stick,
-1, 0, +1 depending on y position of stick.
- if button event occured else +.

dfb %00101,%01001,%00110,%01010
%00010,%00001,%00100,%01000
%10000, %10010

jsr
jmp

rts

cmp
bne

Ida

iny
Ida
beq
cmp
bne
Ida
sta
rts

sta
ldy

Ida
bpI
sta
bmi

and
cmp
bne
sta

key_table dfb
dfb
dfb
dfb

133 :0
134
135
136
137
138 :waitkey
139
140
141
142
143 :Oa
144
145
146
147
148 : 1
149
150
151 :2
152'
153
154
155
156
157
158
159
160 :x
161
162
163
164 dokey_char ds 1
165
166 * Key equivalent table:
167 *
168 * Current order is:
169 * W diagonal up left
170 * R diagonal up right
171 * Z diagonal down left
172 * C diagonal down right
173
174
175
176
177
178
179 * Values in this table correspond in position with the keys in key_table.
180
181. joyxlate_tbl
182 dfb
183 dfb
184
185
186 * Processes last joystick read or current keyboard read (if any) and returns
187 * information about the joystick.
188 *
189 * Output:
190 * joyvectx
191 * joyvecty
192 * trigger

%e Sourcerors .9Lpprentice

;has the state changed?
;branch if not

before next updatejoystick, current state of stick. Bit 4
reflects current position of button, set if button down.

;read and interpret keys as joystick
;branch if key equivalent pressed
;button equivalent key not pressed
;else clear motion vectors

rrhe SourcerorsYlpprentice

; right

;up

; down

; left

;update state variables

;yes - which way?

Page 15

joyvectx
joyvecty

stickstate

: 3

: 4

:5

: 2

itO
stickstate
HOOllOOOO
:skipchange

stick_temp
: 6
stick_temp
itO
itO

stickstate
stickstate

:a
itO
joyvectx
joyvecty
stick live
: 6

stickstate

dokeystick
: 1

stickstate
H11000000
:nochange.2
stickstate
HOOllOOOO
:skipchange
n
:skipchange

193 * stickstate
194 *
195 *
196
197 dojoystick ent
198 jsr
199 bne
200 bpl
201 lda
202 sta
203 sta
204 bit
205 jmp
206 :a
207 lda
208 : 1
209 sta
210 lda
211

12 cmp
213 beq
214 sta
215 ldx
216 ldy
217 ror
218 bcc
219 dey
220 : 2
221 ror
222 bcc
223 iny
224 : 3
225 ror
226 bcc
227 dex
228 : 4
229 ror
230 bcc
231 inx
232 :5
233 stx
234 sty
235· : 6
236 lda
237 asl
238 asl
239 eor
240 and
241 beq
242 ldy
243 lda
244 and
245 beq
246 ldy
247 bne
248 : nochange
249 ldy
250 lda
251 and
252 beq

Vol. 1 No.4

Page 16Vol. 1 NO.4

and 7

iUP

idown

ielse indicate button was pressed

ibutton not down: 8

flOO
:3
*,00000010

43

stick live
:5
fl6
: 2
*'00000001

button state

40

stick live
stickstate
4%00110000 iisolate button bits

ishift them to bits 6

ent
stick live
:5
reads tick
*255
: 1
*-1
:1a

4-1
: 9

40

trigger
stickstate
*,00110000
stickstate

ora

ora

lda

cpy
bcs

sta
lda
and
asl
asl
bit
bmi

cpy
bee

lda

lda
bmi

sta
lda
and
sta
rts

ldy
:skipchange

sty
tya
lsr
bee

rrhe Sourcerorsf2l.pprentice

253
254
255
256
257
258
259. : 7
260
261
262 : 8
263
264 : 9
265
266
267
268
269
270
271
272 * Get values from joystick and convert to bit positions
273 * in 'stickstate'.
274 *
275 * The "dead space" around center is about 65%.
276 *
277 * Output:
278 * 'stickstate'
279 * bit 0 = 1 if stick is up
280 * bit 1 1 if stick is down
281 * bit 2 1 if stick is left
282 * bit 3 1 if stick is right
283 * bit 4 1 if button pushed
284 * bit 4 1 if button 0 pushed
285 * bit 5 1 if button 1 pushed
286 * bit 6 previous state of button 0
287 * bit 7 previous state of button 1
288
289· updatejoystick
290 bit
291 bmi
292 jsr
293 cpx
294 bne
295 lda
296 bmi
297 : 1
298
299 :la
300
301
302
303
304
305
306
307
308
309
310 :2
311
312
313

Vol. 1 NO.4 Page 17 %e Sourceror's !JLpprentice

cpx #16 ;left
bcs : 4
ora HOOOO0100

cpx noo ; right
bcc :5
ora HOOO01000

tax
lda buttonO
bpl : 6
txa
ora HOO010000
tax

lda button1
bpl : 7
txa
ora H00100000
tax

stx stickstate
rts

;always branches (it had better!)

;branch if done reading

;escape hatch if stick not plugged in

;branch if done reading

;delay tactics to compensate for
;the inx/bne :2

;reset timers on all paddles

horizontal movement (0-145)
stick is attached.
vertical movement (0-145)

: 2

: 5
rdstickx
: 1

slow down
resetstick
itO
to

rdsticky
:4

sei

nop
nop
nop

inx
bne

lda
bpl
iny
beq
lda
bpl

jsr
lda
ldx
ldy

314 : 3
315
316
317
318 :4
319
320
321
322 :5
323
324
325
326
327
328
329 : 6
330
331
332
333
334
335 :7
336
337
338
339
340 * Read apple joystick, returning values for left/right, up/down directions.
341 *
342 * Output:
343' * x.reg = value for
344 * 255 if no
345 * y.reg value for
346 *
347 * Timing: minimum (both x,y read 0) = 90 (116) cycles
348 * maximum (both read 145) = 3992 (4018) cycles
349 * If no stick plugged in = approx. 6989 (7015) cycles
350 * Times in parentheses are for IIgs (extra time required for saving speed).
351
352 readstick
353 php
354
355
356
357
358
359 :1
360
361
362
363 : 2
364
365
366
367.
368
369
370 : 3
371
372

(

l

Page 18Vol. 1 NO.4

4 = lIe3 III
7 = IIgs

ibranch if still reading

icompensation for not doing the iny/beq :5

icall for IIgs and eIIe (c=1 for eIIe)
ialways Apple II
i always Apple 11+
i I
i always Apple III (emulation mode)
i I
imust be lIe, elle, IIc, or IIgs

1

:x
oldspeed
H80
gs_speed
gs_speed

machine id
17

rdstickx
: 3

machine id

:x
gs_speed
oldspeed
t$7f
gs_speed

$fbb3
$fb1e
$fbcO
$felf
$38
$ea
$ad
$ea
$8a
$06

(1-7) :
2 = II+
6 = IIc

machine

ora
sta

rts

jsr
plp
rts

rts

equ
equ
equ
equ

cmp
bne
Ida
and

Ida

nop
nop
nop
Ida
bmi

slow down
Ida
cmp
bne
Ida
sta
and
sta

idbyte_1
idbyte_2
idbyte_3
idrtn
ii 1
iiplus_1
iiplus_2 ..
iii 1
iii 2
notiiplus_1 ..

373 : 4
374
375
376
377
378
379 :5
380
381
382
383
384
385
386
387
388
389
390
391
392
393 :x
394
395
396 speed_up
397'
398
399
400
401
402
403
404 :x
405
406
407 oldspeed ds
408
409
410 * Apple ID routine
411 * Date: 3/28/88
412 * by Stephen P. Lepisto
413 *
414 * This routine will identify which Apple it is currently
415 * residing in and set a global machine ID byte
416 * appropriately. It will also determine various things about
417 * what the machine is capable of.
418 *
419 * machine id
420 * 1 - II
421. * 5 eIIe
422 * 255 unknown
423
424
425
426
427
428
429
430
431
432
433

%e Sourcerors .9Lpprentice

Vol. 1 No.4 Page 19 %e Sourcerors.9tpprentice

hii_2
set_id ;is a III
unknownapple

;elle
set id ;is lIe
hiie_3
unknownapple

hiplus_1
unknownapple
idbyte_2
hiplus_2
set id ;is a II+

r'"

not be a II, II+, or III

;IIc

;unknown apple type

;is elle
; IIgs

;is a II
;II+

;is some form of IIc
;IIe

ialways lIe
imust be elle or IIgs
ialways any IIc
ioriginal IIc
illc with 3.5 ROM
;IIc with memory expansion
;IIc with revised mem expansion
;must be IIgs or elle

machine id

Jt6
idbyte_3
set id
H
hie 3

idrtn
set id
1t7

1255
set id

idbyte_1
itnotiiplus_1
:1 imust
U iII
hi_1
set id

Sea
$eO
$00
$ff
$00
$03
$04
$eO

434 iie_3
435 eiie 3
436 iic3
437 iic 4
438 iic35- 4
439 iicex 4
440 iicrev 4 ~

441 iigs_3
442
443 app1e_id ent
444 lda
445 cmp
446 beq
447 ldx
448 cmp
449 beq
450 inx
451' cmp
452 bne
453 lda
454 cmp
455 beq
456 inx
457 cmp
458 beq
459 bne
460 : 1
461 ldx
462 lda
463 beq
464 ldx
465 cmp
466 inx
467 beq
468 cmp
469 bne
470 sec
471 jsr
472 bcs
473 Idx
474 set id
475· stx
476 rts
477
478 unknownapple
479 ldx
480 bne

%e Sourceror s !JLpprentice

rrfie Sourcerors !JLpprentice
Copyright (C) 1989 by Ross W. Lambert and Ariel Publishing.

Vol. 1 No.4 Page 20

All programs in The Apprentice are in the public domain and may be freely copied and distributed, but NOT sold. Apple User
'Groups and other important folks may reprint articles upon request. Just gimme a call at 907/624-3161 or drop me a line at the
address(es) below.

Until May 28, 1989:

P.O. Box 266
Unalakleet, AK 99684

After May 28th:

P.O. Box 398
Pateros, WA 98846

Our phone after May 28th will be 509/923-2025.

American prices in US dollars:

1 year..$28 2 years..$52

Canadian and Mexican subscrbers add $5 per year. All other non-North American subscribers add $15 per year (covers first
class postage).

Edi tor and Publi sher Ross W. Lambert
Technical Editor Eric Mueller
Technical Editor Jay Jennings
Subscription Services Cindy Eckels
Stamp Licking '" Rebecca Lambert

WARRANTY AND LIMITATION OF LIABILITY

I warrant that the information in Tne Apprentice is correct and useful to somebody somewhere. Any subscriber may ask for a
full refund of their last subscription payment at any time. MY LIABILITY FOR ERRORS AND OMISSIONS IS LIMITED TO
THIS PUBLICATION'S PURCHASE PRICE. In no case shall I or my contributors be liable for any incidental or consequential
damages, or for ANY damages in excess of the fees paid by a subscriber.

The Apprentice is a product of the United States of America.

Apple, Apple II, and Apple IIGS are registered trademarks of Apple Computers, Inc.

Ariel Publishing
P.o. Box 266
Unalakleet, AK 99684

BULK RATE
U.S. POSTAGE PAID
Ariel Publishing, Inc.

