
~~\%e Sourcerors .!JLpprentice
The Assembly Language Journal of Merlin Programmers Vol. 1 No.3 March, 1989

News and Passion
Those of you who do ANY assembly language
programming on the GS should be fairly
quivering with excitement; Roger Wagner
Publishing has just released Merlin 16+. I do not
have the software yet, but I've been in touch with
several of the beta testers. The most common
remark I heard was, "...blazing speed." A friend of
mine had to do a contract sort of job that was due
"yesterday", and all he could say was, "Thank God
for Merlin 16+".

I'll do a formal review for you after I've worked
with it for awhile, but the brochure Roger Wagner
sent me has some "almost too good to be true"
features listed. I can see why it has taken a long
time to develop this product. I'm sure Roger will
send you a brochure if you haven't already
received one. Probably the best feature in my
mind is that current Merlin owners can get the
new version for a whopping 65% off, $45.Y5 as
opposed to $125. This seems to me to be a nice
reward for current Merlin fans and supporters.
Thanks, Roger. (RWP, 1050 Pioneer Way, Suite
"P", EI Cajon, CA 92020 619/442-0522)

You may be a little surprised to be getting your
March issue of this newsletter so early (at least
compared with the service of the last two months).
We originally planned to publish The Apprentice in
the middle of each month ('cuz that's the way
things worked out initially), but Mr. Postman and
Mr. CopyCenter have been getting progressively
slower since last December. It seems bizarre to
me that postal service was BETTER during the
Christmas rush, but I think they geared up for
Christmas with temporaries and then laid them
off after the holidays. They must've ditched too
many in Anchorage, because things have really
been getting bottled up for me lately.

I don't like delivering a newsletter in the wrong
month, so I moved things up. I cannot express
how difficult it is to push a production schedule
forward, but we've managed to do it, at least by a
few weeks, anyway. We'll still be a little more
erratic than A+ (especially during our move at the
end of May), but things are starting to get on more
of an even keel.

I imagine that most of you are subscribers to Tom

Weishaar's A2-Central (if you're n'.~;:, you should
be), but for those who are not, A2-Central is
sponsoring an Apple II Developers Conference
July 21-22 at Avila College in Kansas City. It
looks like I'll be leading a session on ProDOS 8
programming environments which should be
pretty interesting. The biggest news to me,
though, is that Tom coerced the Beagle Bros. into
disclosing the secrets of writing TimeOut
applications. As soon as I heard that, I figured
that I'd sell my car to get to this conference. No
kidding. y'all come now, ya heah? (See? I'm
getting in the mood already.)

Speaking of Tom Weishaar, I was grateful for the
plug in the March issue (thanks, Tom!); to be
mentioned in the same sentence with Bob
SanderCederlof and Uncle-DOS, even in jest, is
probably more than I deserve at this point. So
that there are no misunderstandings or hurt
feelings (mineD, allow me to explain once more
the origins of this newsletter.

I have done some professional work in assembly
language on the Apple II, but I am not Bob S-C by
any stretch of the imagination. Bob was (oops, he
didn't die, I mean IS) a star even among the pros.
I just couldn't stand to see AAL bite the dust.

I figured two things: First, if we sat around and
waited for someone of Bob's caliber to start a

%e Sourceror s.9Lpprentice Vol. 1 No.3 Page 2

/

newsletter, we might have to wait a very long
time. Technical expertise, an entrepenurial spirit,
and gifts with the written word are tough
characteristics to find in one person. A long wait
for something like The Apprentice is not good for
the II, me thinks. There is a need for an
all-assembly language forum right now.

Second, I figured tha t my experience wi th
newsletters put me in a fairly unique situation. I
am sure that Tom Weishaar would agree with me
when I say that the publishing business can be a
tad tricky. There are a million ways to lose money
and it'is risky. In spite of Bob's prowess, AAL only
had a little over 700 subscribers. I am already a
full time publisher, and I have this publication on
a steady business footing from day one.

Disassembling AppleWorks is beyond me, I think.
It is certainly beyond the range of my desires!

My goals ARE to do the things I do well - that is,
provide a regular forum in which the superstars
can detail the cutting edge of technology
(somebody talk Dave Lyons into writing for us),

AND teach and explain things that are not
regularly covered in the popular press. For
example, even though nibble does print assembly
language listings, the explanations and
commentary are usually limited to what you need
to do to get the software running (with the notable
exception of the illustrious Sandy Mossberg). I
plan an article detailing the workings of double
high resolution graphics and a DHR DRAW
commmand. It is not a state of the art topic, but
my mail has told me that most folks are not state
of the art. That is why I felt it important to spend
so much time on the generic startup routine for
the GS. Not only is it a little shy of
straightforward, but part of the reason GS
software acts a little flakey sometimes is that
proper attention has not been paid to some of the
16 bit minutiae.

I hope I sound passionate and not defensive. Of
all the projects I have undertaken, none has
sparked my interest like The Apprentice. I believe
it has the potential to enlighten the best of us with
its right hand, and elevate the least of us with its
left.

I invite your comments. Now back to our
regularly scheduled program...

The Applesoft Connection: Part 2 by Jerry Kindall

In the first part of "The Applesoft Connection" I discussed how to pass numeric parameters to and
from Applesoft variables. In this, the sequel, I want to show you one trick with numeric parameters,
and then move on to strings.

Three-Byte Integers

One of the trickiest parts of writing MicroDot was figuring out how to deal with three-byte integers.
I needed three-byte integers for the RANDOM module, which is a set of MicroDot commands for
working with random-access data files. RANDOM has a command for moving ProDOS' file pointer
to a specified byte in a file, and another command for reading the file pointer's position into an
Applesoft variable.

Well, since ProDOS supports files up to sixteen megabytes in length, the file pointer is three bytes
long. Everything I had read about Applesoft told me that only two-byte integers can be handled
easily by Applesoft. It was time to dig into the Applesoft source code, provided with Merlin in the
form of SOURCERORFP.

I found that with a little work, I could do what I wanted. The only drawback is that you can't return
a three-byte integer to an Applesoft integer variable. You must use a real variable. Remember, a
three-byte integer allows you to handle numbers from zero to 16,777,215 (sixteen megabytes).

Some of the Applesoft routines used in the program below were covered in the first part of "The
Applesoft Connection." There are, however, a couple of new ones lurking about. They are FL03 and
QINT.

Vol. 1 No.3 Page 3 %e Sourceror So .f2Lpprentice

)
/

FL03 ($EBA6) is actually an alternate entry point into the FLOAT routine at $EB93, which was
covered in part 1. FLOAT has several entry points which are used by other routines in Applesoft.
You might notice a distinct similarity between the way FL03 is called and the way FL02 (covered in
part 1) is called (see lines 64-66),

QINT'($EBF2) is the Applesoft INT command. It converts a floating-point value in the FAC to an
integer, also stored in the FAC. QINT (Quick INTeger) is also used by GETAOR and COMBYT,
covered in part 1.

Another new routine is TYPERR at $0076. It's similar to IQERR and SYNERR covered in part 1. It
issues a ?TYPE MISMATCH error.

iwe must have a comma
ievaluate numeric formula
iget integer value

icheck highest byte (#4)
iif # < 16777215 it's OK
inegative equivalent?

iget number: 10
mid
hi

icheck for numeric
i?TYPE MISMATCH
icheck for a comma
iget pointer to variable
i?ILLEGAL QUANTITY
imove FAC to variable
iconvert integer to FAC
iconvert FAC to integer

ivariable name
ivariable pointer
ifloating-point accumulator

FAC+4
FAC+3
FAC+2

FAC+1
:OK
t$FF
:OK
IQERR

CHKCOM
FRMNUM
QINT

$006A
$0076
$OEBE
$OFE3
$E199
$EB2B
$EBA6
$EBF2

$81
$83
$90

LOA
LOX
LOY

RTS

LOA
BEQ
CMP
BEQ
JMP

JSR
JSR
JSR

VARNAM
VARPNT
FAC

CHKNUM
TYPERR
CHKCOM
PTRGET
IQUERR
MOVMF
FI,.03
QINT

1 * The Applesoft Connection
2 * Three-Byte Integers
3 *
4 * Routines by Jerry Kindall
5
6 * Zero page locations:
7
8
9

10
11
12 * Applesoft routines:
13
14
15
16
17
18
19
20
21
22
23 * GETNUM3 routine
24 *
25 * Evaluates Applesoft expression and
26 * returns a three-byte integer in
27 * Acc, X-reg, Y-reg (lo/mid/hi)
28
29 GETNUM3
30
31
32
33
34
35
36
37
38
39 : OK
40
41
42
43

(

%e Sourcerors .9lpprentice

* Pass a 3-byte integer back to an
* Applesoft real variablei value in
* Acc, X-reg, Y-reg (lo/mid/hi)

Page 4Vol. 1 No.3

iconvert integer to FAC

i?TYPE MISMATCH

istore number: 10
mid
hi

imove value to variable

imust be real
ireject integer

icorruna check
ifind variable
imake sure it's numeric

izero fractional part

TYPERR

*$98

VARPNT
VARPNT+1
MOVMF

FL03

VARNAM
:TM

FAC+3
FAC+2
FAC+1

fO
FAC+4

CHKCOM
PTRGET
CHKNUM

JMP

LDA
STA

STA
STX
STY

LDX
SEC
JSR

LDX
LDY
JMP

LDA
BMI

JSR
JSR
JSR

PUTNUM3

:TM

44
45 *'PUTNUM3 routine
46 *
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Three-byte integers may come in handy for other applications as well. For example, you could write
a utility to POKE or PEEK any address in the Apple IIgs's memory range by using a combination of
these routines and native-mode machine code.

Stringing Along

Numbers can be entertaining, but we've had our fun with them, so let's turn to strings. A lot of the
concepts and routines we have covered work with strings just as well as they do with numbers, but
there are definitely some new tricks to learn.

One important fact to remember is that Applesoft stores string variables in two parts. One is called
the "descriptor" and is stored along with the variable's name in the variable table. The descriptor
holds the length of the string and the address of the actual text contained by the string. The actual
string text is stored in high memory, in a place called the string pool.

The first routine we need is called FRMEVL and lives at $007B. It's closely related to FRMNUM
($0067), discussed in the first part of this series. FRMEVL evaluates an Applesoft formula and puts
the result into the FAC. Unlike FRMNUM, though, FRMEVL will handle both numeric and string
expressions. (FRMNUM actually calls FRMEVL and then jumps to CHKNUM to make sure the
result is numeric.) As with FRMNUM, the formula evaluated by FRMEVL can be any legal
Applesoft string expression.

After calling FRMEVL, we must make sure to call CHKSTR at $006C to make sure that the formula
we just evaluated was a string. (As far as I know, there's no string equivalent of FRMNUM to
evaluate an expression and check for a string result in one step.)

\ '

-:-----------------~-------------------------------~1

Vol. 1 NO.3 Page 5 erne sourcerorSJ2Lpprentice

String Beans

To pass a string back to an Applesoft variable, we again use PTRGET to find the variable's address.
Then we call CHKSTR to make sure that the variable is indeed a string. VARPNT will point to the
string variable. Remember, this isn't the actual string itself, it's the descriptor, which holds the
length of the string and the address of the string's actual contents. In short, when you're dealing
with strings, VARPNT acts as a pointer to a pointer. GS programmers might recognize this use of
VARPNT as an 8-bit precursor of the "handle."

The next step is to load the length of the string into the Accumulator and call STRINI (STRIng Init) at
$E3DS. STRINI will collect garbage if necessary, get space for the new string in the string pool, and
create a descriptor for the string in DSCTMP at $9D. (If you have been paying close attention you
probably noticed right away that DSCTMP is at the same address as the FAC. When dealing with
numbers, this location is called the FAC; when dealing with strings, it's called DSCTMP, for
TeMPorary DeSCriptor.)

Then we load the X and Y registers with the current address of the string (low byte into X, high byte
into Y). A call to MOVSTR ($ESE2) copies the string to its final resting place in the string pool.

All that remains is to copy the string's new descriptor to the variable. Remember that strings come
in two parts; MOVSTR takes care of the text part, but we still need to take care of the descriptor.

String Routines

Here are some subroutines similar to ones I used in MicroDot. MicroDot has a "pathname buffer" at
$280 which is used to hold a file's pathname so that it can be operated on. The MicroDot string
routines are designed to move strings to and from th.is pathnar'lebuffer. Not only does the string
need to be moved, it must be converted to the ProDOS format, which involves putting a length byte
at the beginning of the string.

* 'Routines by Jerry Kindall

ilength byte followed by text

ipointer to string result
iholds new string descriptor
ipointer to string variable

iissue an error
icheck for string
iApplesoft formula evaluator
isyntax check for comma
iget pointer to variable
iinit string space & pointer
imove string to string pool
ifree up temp string pointer

$280

$5E
$9D
$83

$D412
$DD6C
$DD7B
$DEBE
$DFE3
$E3D5
$E5E2
$E600

* Pathname buffer

* Zero page locations:

* Applesoft routines

PATH

SPTR
DSCTMP
VARPNT

ERROR
CHKSTR
FRMEVL
CHKCOM
PTRGET
STRINI
MOVSTR
FREFAC

1 * The Applesoft Connection
2 * String Routines
3 *
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

JSR CHKCOM iskip past comma
JSR PTRGET iget variable address
JSR CHKSTR imake sure it's a string

LDA PATH i get length
JSR STRINI iget space & descriptor

LDX fPATH+1 ifirst byte is the length
LDY #/PATH+1 iSO we really want PATH+1
JSR MOVSTR imove it to string pool

%e SourcerorS.9lpprentice

;1

Page 6Vol. 1 NO.3

imove descriptor to variable

i?STRING TOO LONG

istring length

iskip past length byte

iCopy string to PATH

iset length byte

icheck for null string

ilength must be < 64

iskip past comma
ievaluate string expression
imake sure it's a string
ifree up the memory

: LOOP

#2
DSCTMP,Y
(VARPNT) , Y

RTS

JSR CHKCOM
JSR FRMEVL
JSR CHKSTR
JSR FREFAC

CMP *64
BGE :ERR
STA PATH

CMP 10
BEQ : NULL

LDY 10
LDA (SPTR),Y
STA PATH+1,Y
INY
CPY PATH
BNE :GET

RTS

LDX f176
JMP ERROR

routine

LDY
LDA
STA
DEY
BPL

27 * GETPATH routine
28 *
29 * Evaluates string expression and
30 * places result into PATH
31
32 GETPATH
33
34
35
36
37
38
39
40
41
42
43
44
45 :GET
46
47
48
49
50
51 :NULL
52
53 :ERR
54
55
56 * PUTPATH
57 *
58 * 'Passes pathname in PATH back to
59 * an Applesoft string variable
60
61 PUTPATH
62
63
64
65
66
67
68
69
70
71
72
73 :LOOP
74
75
76
77
78

A Practical Routine

To round out our discussion of strings, here's yet another Input Anything routine, using the
string-handling techniques described thus far. The string is read with the standard GETLN routine
at$FD6A.

We then call GDBUFS ($D539), an Applesoft subroutine that masks off the high bits of all the
characters in the input buffer. From there, we're back in familiar territory.

Vol. 1 NO.3 Page 7 %e Sourcerors.Ylpprentice

To use this routine in your Applesoft programs, use the statement CALL 768,A$. A$ will hold the
entered string, including any commas, colons, and quotes, up to 255 characters worth. You can, of
course, use any string variable in place of A$.

;holds new string descriptor
;pointer to string variable
;prompt printed by GETLN

;fix input buffer for BASIC
;check for string
;syntax check for comma
;get pointer to variable
;init string space & pointer
;move string to string pool
;get an input line

jmove it to string pool

jmake good Applesoft string

;check for comma
;find variable

jget address of input buffer

;no prompt

jsave string length

jmove descriptor to variable

;remember length
jmake space & descriptor

;get input line

$9D
$83
$33

$200

12
DSCTMP,Y
(VARPNT) ,Y

$D539
$D06C
$DEBE
$DFE3
$E3D5
$E5E2
$F06A

ORG $300

JSR CHKCOM
JSR PTRGET

LDA #$80
STA PROMPT
JSR GETLN

TXA
PHA

JSR GOBUFS

PLA
JSR STRINI

LOX IBUF
LDY I/BUF
JSR MOVSTR

LOY
LOA
STA

DSCTMP
VARPNT
PROMPT

GDBUFS
CHKSTR
CHKCOM
PTRGET
STRINI
MOVSTR
GETLN

1 * The Applesoft Connection
2 * Yet Another Input Anything
3 *
4 * Routine by Jerry Kindall
5
6 * Zero page locations
7
8
9

10
11
12 * Input buffer
13
14 BUF
15
16 * Applesoft & Monitor routines
17
18
19
20
21
22
23
24
25
26
27
28 INPUTANY
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 :LOOP
49

%e Sourcerors .!JLpprentice

50
51
52
53

DEY
BPL : LOOP

RTS

Vol. 1 No.3 Page 8

Coming Attractions

The next installment of The Applesoft Connection will tie everything we've looked at so far together,
as we begin writing some real live ampersand routines. We'll take an in-depth look at the CALL
statement and the ampersand statement and learn how to integrate machine language routines with
both. See you then!

Custom Joystick: Vectored Joystick Programming

Stephen P. Lepisto
GEnie: S.LEPISTO
2130 S. Fairway
Pocatello, ID 83201

Custom Joystick is a joystick read routine that I've
developed over the last two years to address the
problem of reliably reading a joystick on the
Apple II computer. I currently have two principle
versions: one for all 8 bit Apples including the IIgs
in emulation mode and one specifically for the
IIgs. The listing talked about here is the 8 bit
version. The coding differences between the two
versions are not insignificant but both behave in
the same way and accomplish the same task.

The original way of reading a joystick on the
Apple II series computer was the use of a Monitor
routine called PREAD located at $FB1E. You
called it with the X register holding a number
indicating which paddle you wanted to poll. It
would return with a value in the A register from
0-255, depending on where the paddle was
situated. A joystick on the Apple is essentially a
combination of two paddles, one is for the x axis
(left and right) and the other is for the y axis (up
and down). So to deal with a joystick, you needed
to call PREAD twice, once for each of the two axes
on the stick. Well, that is the ideal situation.

In the real world, there is this quantity called
time. It takes time to do anything. And this most
definitely true when trying to read a joystick
using PREAD. To put it simply, the timing
circuits that are used to read a paddle take a finite
amount of time to to do their thing. They also
need to "breathe" between timing cycles (and

allow a capacitor to discharge). Because of these
timing constraints if you call PREAD once for one
paddle then immediately call PREAD for the other
paddle, you will most likely get erroneous (i.e.,
bad) results for the second paddle because the
timing circuits may not have fully recovered from
the first read. So one usual technique for using
PREAD is to call PREAD for paddle 0, wait at least
three milliseconds then call PREAD for paddle 1.
Some programmers have even found it necessary
to call PREAD twice for each paddle to get the
right results. All of this calling and waiting takes
time. Sure the whole process may not take more
than 14 milliseconds on a 1 Mhz Apple but in
machine language, you can do a whole heck of a
lot in 14 milliseconds.

The advantage of using the PREAD approach is
that you can get a value from 0-255 for each axis
which gives you a large enough range to be useful
on a graphics screen (i.e., if your range is large,
you get better resolution of positioning over a
large area). So if you were to hold the joystick in
the center, then the cursor would be in the center
of the window or screen (depending on how the
program did that sort of thing). Move the stick to
the left and the cursor would move a
corresponding distance to the left until the stick
was all the way to the left in which case the cursor
would be all the way to the left of the window.
This is called a position-oriented use of a joystick.

Now, on graphics screen where the resolution is a
good deal larger than 256 (the range returned by

Vol. 1 No.3 Page 9 %e SourcerorsJ2Lpprentice

PREAD), position-oriented cursor moves are
much more difficult because it becomes next to
impossible to hit certain points on the screen.
Enter the vector-oriented use of a joystick.

A vector-oriented joystick is one in which the the
stick tells the program which direction to move
the cursor. The program then moves that cursor
at a constant rate until the joystick stops giving
directions, usually by centering. the stick. This
gives you eight directions to move a cursor and
the size of the screen is no longer a.Jimitation.
Since a vector-oriented joystickonly needs enough
information to distinguish between the eight
directions and a center point, it is possible to use a
shortcut in reading the joystick. That is where my
routines come in.

My routines offer support for a vector-oriented
use of a joystick which can accurately read a
joystick much, much.fa.ster· thaoysing PREAD.
This gives your program mor~ time to d?:what it
is supposed to be doing. As a/bonus, my routines
can even tell if a joystick is plugged in or not
allowing automatic control over such things.

Let me be the first here to dispel any
misconceptions about my routines being the only
way to read a joystick. They're not. Many other
programmers have found ways to read thesti.ck
and in many of those approaches canrehlrn
values up to 512 or more. What I feelmy/stick
read routine offers is speed and small spac~./I'1l\

also offering my code in the public domain so
more programs can take advantage of another
peripheral input device, namely, the joystick.

The listing accompanying this article contains a
set of six routines that are used for support of a
vector-oriented use of a joystick. Two ate
necessary: Apple_ID and ReadStick. The other
four, although useful in their own right, are not
essential for reading a stick. Briefly, the routines
are:

ReadStick : Reads the joystick in a custom way,
accessing the hardware directly.

UpdateJoystick : Used to update the current state
of the joystick (it calls ReadStick).

DoJoystick : Used to convert the resuits of
UpdateJoystick to useful information. Keyboard
equivalents are also handled at this point.

Dokeystick: Handles certain keys that are used as
equivalent movements of the joystick. This way,
if a joystick is supported, so is a set of keys that
mimic the joystick.

InitJoystick : Initializes some variables needed by
the other routines. It also determines if the
joystick is present or not.

Apple_ID : Used to identify the type of Apple II
computer these routines are being run on.

Specific details on each routine

What follows is a detailed description of each
routine.

ReadStick

This is the heart of my joystick routines. Using a
different method than PREAD to read the paddle
circuits, I am able to poll two paddle circuits at
the same time. This saves time and allows for
quicker access to the joystick, giving better
response.

The first thing I do upon entry is set the interrupt
disabl~ flag. Wouldn't do to be interrupted while
reading the stick. Next, I call a routine that will
slow the Ilgs processor to 1 MHz if that is the
computer the routines are being run in. It is my
understanding the the IIc+ will automatically
reduce its speed to 1 MHz for 5 milliseconds if
any address in the range $C070-$C07F is accessed,
so this case is automatically handled.
Unfortunately, the Transwarp card was made
with a part that has turned out not to. be
completely reliable so slowing it down can
sometimes hang the system (which is not a good
thing) so I don't support it. The two reasons I
slow down the CPU is so I can maximize the range
returned by the polling without adding to the
complexity of the routine and so the routine
behaves the same on all Apples.

Next thing that happens is I access $C070, which
initializes the paddle timer circuits (Actually, any
address in the range $C070 to $C07F will reset the
paddle circuits but twiddling with anything other
than $C070 may introduce possible conflicts with
other hardware). Then I immediately enter the
polling loop which checks each paddle timer in
turn looking for an end to it all. As it polls each
timer, it increments the appropriate index register.
This is how the hardware can be converted into a
number for the program's use. Note that there is
an escape hatch after the INY. This is in case there
is no stick present. If the escape hatch weren't
there, the routine would be stuck in an infinite
loop. As it is, we now have an easy way of
determining the presence of a joystick.

When all is done, I update the state variable.

Now why, you may ask, do I use a set of bits in a
byte to remember direction? Well, the routine
here is based on one I discovered when I was
translating a program from the Commodore 64 to
the Apple II. The C64 uses a digital joystick (one
in which each direction is determined by a switch
in the stick itself) and the switches in the stick are
converted directly to bits within a status byte. It
was more convenient to continue using the bits
approach so I didn't have to modify a significant
portion of the program being translated. I have
since found it useful to continue to deal with the
Apple joystick this way because I like it that way;
it's neat and clean.

DoJoystick

This is the routine in which keyboards are read,
buttons events are processed, and vectors are
determined. Although it is quite feasible to use
the data from UpdateJoystick directly (the
handling of the status byte is a lot like handling
the status byte from reading the mouse), I use
DoJoystick to do the work for me. What this
routine does is convert the bits in the status byte
to vectors in the x and y directions. These vectors
can then be added directly to a cursor position to
change it in the direction the stick is pushed.
Also, the state of the buttons is used to return
event codes such as button up and button down,
which are useful in mimicking mouse button
events if you have a program that can use both
input ·devices. And in addition to all of that, it
calls DoKeystick to handle keyboard equivalent
joystick moves.

DoJoystick should be called once per pass through
your main loop and it should be called after
UpdateJoystick. See the section on
implementation for further details.

The vectors produced by DoJoystick are two
variables, one for the x direction (left and right)
and one for the y direction (up and down). The
vectors are set to -1, 0 or +1 depending on the
direction of the stick. By simply adding these
vectors to the cursor position, you get a change in
position (or not if the stick is centered in that
direction). Two other variables are produced: one
that tells the code of the button event that just
happened and the other which is set to minus if a
button is pressed else it is set to plus (this gives a
quick test of a button down event). The button
event codes are 0 =no button pressed

1 =button down event
2 = button up event
3 = button still being held down

%e Sourceror's .9Lpprentice

In PREAD, the routine polls one paddle circuit,
incrementing a single index register in the
process. Because of this dedication, the range of
numbers is 0-255. In my routines, I'm polling two
paddle circuits at the same time so the range is a
lot less.

When the polling is done, I reset the speed of the
computer to its former state and restore the
interrupt disable flag. Upon exiting the routine,
the X register holds a value from 0-145
(representing the x axis on the stick) and the Y
register holds a value from 0-145 (representing the
y axis on the stick). In the case where there is no
stick present, the X register will hold 255 and the
Y register may hold 255 (the Y register has a slight
priority over the X register in the routine so it will
hit 0 as part of the escape hatch before the X
register will. In any event, I have found that the X
register is the one to always use to check for the
presence of a stick).

UpdateJoystick

This routine is used to update the status of the
joystick. You call it once per time through your
main loop. If you call it more often than that you .
stand the chance of missing some button actions.
The routine is designed so that it remembers the
state of the buttons through two reads (so you get
a previous state of the buttons and a current state)
and it adds the current position of the stick to the
remembered state. In addition, UpdateJoystick
will determine the presence or absence of the stick
and set a flag appropriately. Once the flag is set
(meaning the stick isn't there), UpdateJoystick will
only read the state of the buttons. There is a way
to deal with installing a joystick on the fly which I
will detail in DoKeyStick.

So, how does UpdateJoystick do all this wonderful
stuff? .First of all, if there is a stick present, it calls
ReadStick to get the current position of the stick.
Then it determines if there is a stick present or not
and sets a flag indicating that status. If a stick is
determined to be present, the values returned by
ReadStick are converted to bit positions in a state
variable. Each bit corresponds to one direction,
using four bits in all. If a stick isn't present, it
simply jumps to the section that looks at the
buttons. After all that, the state of each button is
determined and a bit in the state variable is set
accordingly. .

Note that near the top of the list of compares, I get
the current state variable, shift it left twice and
mask out all bits but bits 6 and 7. This is how I
remember the previous state of the two buttons.

Vol. 1 No.3 Page 10

Vol. 1 No.3 Page 11 %e SourcerorsYlpprentice

How to use my routines

Further discriminations on individual machine
types aren't necessary for the joystick routines.

5: Apple III (emulation)
6: Apple IIc
7: Apple IIgs

255: unknown Apple

1: Apple II
2: Apple 11+
3: Apple lIe
4: Apple lIe (enh)

This routine simply identifies what type of Apple
II c?mputer the routines are being run in. It sets a
vanable to a number from 1-7 which identifies the
machine:

Okay, enough of the boring details. Now on to
how to actually use these things!

Incorporating these routines into your own
programs is really quite simple. These routines
are best dealt with as a separate file that is linked
into your own code. This avoids any problems

InitJoystick

This is the very first routine your program needs
to call before accessing the others. It will
determine what type of Apple II the routine is
being run in, initialize the internal variables used
by the other. routines, and will call UpdateJoystick
to d~termine the presence ~r absence of a joystick.
It w111 then return a value In the A register so the
calling program can act on the absence (or
presence) of the joystick. The value returned has
the negative flag set or cleared (test only for that
flag): set if the stick is missing, cleared if it is
present. It is suggested that the calling program
not take specific action if a stick is missing; let the
joystick routines handle that problem
automatically. This way a user can add a stick
during the program's execution, press control-J
and begin using the stick as though the program
started out that way. This gives the best
transparent operation of an input device. In any
event, always calling DoJoystick will allow the
keyboard equivalents to operate properly so you
shouldn't have to filter calls to it if the stick isn't
present. I supply the value to the calling routine
so it can take possible action prompting the user
that a stick isn't present and how to take
alternative OccHon.

DoKeystick

This routine is called by DoJoystick to see if any
keys that mimic the joystick have been pressed.
This version of DoKeystick polls the keyboard
directly. It is entirely possible to replace the
keyboard location with a variable you supply
from your own program that holds the last
keypress from your own keyboard polling
routine. Note that you will have to change the
wait for keypress loop for pausing (or cut it out
altogether).

In any event, the table at the end of the routine
holds the keypresses that are recognized as
equivalents to the joystick. Currently, they are
defined as WERSDZXCina diamond shape. Note
that the high bit is cleared on these.. Also note the
presence of two other keys, F and M which will
mimic a button press and a combination button
press and stick movement (as an example of how
to do it) respectively. .

Two other keypresses are currently supported. in
line in the routine. These are P for pau~e· and
c?ntrol-J w~ich will call InitJoystick. The. pause
SImply walts for another key befo.r~.exiti l1g.
Control-J is used when the joystick has. become
unplugged during the program's executi(}t\(in
which case, UpdateJoystick will have. set aflag
saying the stick is no longer present) or :whena
joystick has been plugged in after the program is
running (same deal with UpdateJoystick). By
pressing Control-J, the initialization procedure is
done which resets the internal flag determining
the presence of the stick.

Note that in this version of DoJoystick, I treat both
buttol1s as one button, again to make it easier to
mimic a mouse button.

By adding keypresses to the table, you can mimic
any joystick action or combination of a.ctions.
Note that key equivalents are always available
even if the stick isn't present. Also note. that
keypresses take precedent over joystick actions.

And finally, in this version, the keyboard strobe is
cleared if a recognized key is processed.
Otherwise the keyboard strobe is not cleared
leaving the keypress in the keyboard port so
another routine can read it. This allows the
presence of more than one key read routine.

button_state: a byte which holds a code based on
what type of button event last happened.

machine_id : a byte that indicates what type of
Apple II the routines are being run in. This does
not need to be communicated to the main
program unless you wish to use it.

Calling procedures

Using these routines is very straightforward. The
very (irst routine you need to call is InitJoystick.
This sets up the joystick routines for action and
determines the type of Apple being run on (a code
for which is stored in machine_id). You need only
do this once. InitJoystick will return a value in the
A register which indicates whether or not a
joystick is present. If the value is negative (i.e.,
the high bit is set) then there is no joystick
present. Otherwise, the high bit will be clear
indicating there is indeed a joystick to work with.
I recommend not using this value in your own
code unless you wish to explicitly handle the case
where a joystick isn't present and needs to be or
you wish to inform the user that it is possible to
plug in a joystick while the program is running
and then press control-J to activate the stick.

Okay, once the joystick has been initialized, you
use the other two routines, UpdateJoystick and
DoJoystick to actually use the joystick.
UpdateJoystick will read the current state of the
stick and put that information into a state variable
internal to the routines. A call to DoJoystick will
convert that state information into something
your program can use. This is the routine that
updates the four variables described earlier. Then
your program can use the information in
whatever way you have designed.

%e Sourceror's .J2Lpprentice

with possible duplicate labels and other conflicts.
You may need to establish four variables in such a
way that the joystick routines and your main
program can access them equally. If not then you
will have to indicate that these variables are
external to your code. See the next section for
more details. At the beginning of your program
file or files, you add only three externals (if you
are going to link the joystick routines into place),
more if you are going to access the variables in the
joystick file:

InitJoystick ext
DoJoystick ext
UpdateJoystick ext

Then you call these as needed. See the section on
how to call these routines for more details. The
joystick file is completely self-contained as it
stands now so all you have to add to your linker
command file (if you need to) is:

asm joystick8.s

and add to the linking section:

Ink joystick8.1

to make the file part of your program.

Once the code is in place, you need to do
something with the results that come out of the
routines. That is covered in the section dealing
with results.

What variables are needed by Custom Joystick

Vol. 1 No.3 Page 12

Custom Joystick uses five variables that a calling
program will need to know about. These
variables are already included in the joystick file
and are marked as entry points. You can move
these to your own equates file and put at the
beginning of the joystick file a PUT EQUATES
command so the joystick routines can gain access
to those variables. The variables needed are:

joyvectx : a byte which holds the current vector
for the x direction

joyvecty : a byte which holds the current vector
for the y direction.

trigger : a byte whose high bit determines
whether a button was pressed or not.

What .to do with resulting information

DoJoystick returns four values stored in four
variables. These variables are joyvectx, joyvecty,
trigger, and button_state.

Joyvectx and joyvecty are vectors. These contain
-I, 0, or +1 depending on the position of the
joystick. By adding these to a cursor position, for
example, you can cause that position to change
based on the position of the stick. For example:

jsr DoJoystick
Ida joyvectx
cIc
adc cursorx

Vol. 1 No.3

sta
ida
clc
adc
sta

cursorx
joyvecty

cursory
cursory

Page 13 %e Sourceror sYlpprentice

Trigger is used for those times when you only
need to know if the button is pressed or not, say,
for a fire button in a game. Button_state is used
for those times when more sophisticated
situations call for more sophisticated button
actions.

will update cursorx and cursory based on the last
position of the stick. Note that you should add
some code that checks for boundaries.

Differences between Custom Joystick and
Joystick GS

The use of trigger and button_state are equally as
straightforward. For example:

bit trigger
bmi button pressed
else button isn't pressed

and

The differences between the two principle
versions of Custom Joystick are:

1) Joystick GS doesn't have Apple_ID in it since it
assumes you will be running on a IIgs.

2) Uses machine instructions specific to the 65816
processor.

ida
beq
cmp
beq
cmp
beq

se

button state
no button pressed
#1
button down event
#2
button up event
button is still being held

3) Requires the four variables, joyvectx, joyvecty,
trigger, and button_state to be words instead of
bytes (if you move them outside of the file).

4) Accesses the softswitches in the IIgs through
Bank $EO.

Other than that, the logic of using the GS version
is the same as for the 8 bit version.

2 = button up
3 = button still down

-1, 0, +1.
-1, a, +1.
(set by apple_id in this file).

;a1l 8 bit code, thank you very much

1
ent

1

(These should be byte values)
if button is down
state of button(s).
a = no button pressed
1 = button down

direction of x coordinate:
direction of y coordinate:

- type of Apple being run in

1st off
rel
dsk joystick8.l

xc
xc
mx %11

ent
ds

button state
ds

joyvectx ent

1
2
3
4
5
6
7
8
9 * Requires the following labels external to this file (preferably direct

page) :
10 *
11 * trigger
12 * button state ~

13 *
14 *
15 * joyvectx
16 * joyvecty
17 * machine_id
18 *
19 * These variables are defined here arbitrarily so the file can be assembled.
20 * See documentation on ways to deal with these variables.
21
22· trigger
23
24
25
26

Page 14Vol. 1 No.3

1

1

1

ds
joyvecty ent

ds
machine id ent

ds

27
28
29
30
31
32
33

34 *-------------------.------------------------------
35 * Joystick read routine (8 bit version) for the Apple '11 computer
36 * by Stephen P. Lepisto
37 * Date: 1/3/88
38 * Assembler: Merlin 16 '13.50+.
39 *
40 * Reads a standard analog joystick in a custom way. Returns values that
41 * are 0-145 which is useful for vector-type motion. Also reads the buttons
42 * and sets a global variable accordingly. Combines both buttons into one.

43 *
44 * Note that these routines assume that there will be one call to dojoystick
45 * for every call to updatejoystick. Updatejoystick adds to the state of the
46. * stick until dojoystick clears it so you can call updatejoystick more than
47 * once before you call dojoystick.
48 *

%e Sourcerors.9Lpprentice

49 * Dokeystick: returns 0 if no joystick equivalent keys are pressed else
50 * returns a byte that looks like stickstate (see updatejoystick for
51 * specifics).
52 *

Custom Joystick will continue next month.

FiOm Woz's new jokebook (The Official Computer
Freaks Joke Book, Bantam Books, $3.50):

- CONSULTANT: Someone called in at the last
moment to share the blame.

- A fellow had trouble with his head. A team of brain
surgeons agreed to remove his brain, examine it, then
put it back later. They performed the operation, but
when they came to put his brain back, he wasn't there.
The man had disappeared. A month later he returned
to the happy doctors.

"Where have you been since we removed your brain? "

All programs in THE APPRENTICE are in the pUblic domain and
may be freely copied and distributed. Apple User Groups and
other important folks may reprint articles upon request. Just
gimme a call at 907/624-3161 or drop me a line at the address
below.

American prices in US dollars effective January 1, 1989:
1yr..$28. 2yrs..$52, Canada and Mexico add $5, all others add $1 0

Back issues are available at $3.00 each.

"I became a consultant at IBM. " WARRANTY AND LIMITATION OF LIABILITY

- How many computer salesman does it take to screw
in a light bulb?

"I'll have to get back to you."

I warrant that the information in THE APPRENTICE is correct and
useful to somebody somewhere. Any subscriber may ask for a full
refund of their last subscription payment at any time. MY
L1ABILITYFORERRORSANDOMISSIONSISLIMITEDTOTHIS
PUBLICATION'S PURCHASE PRICE. In no case shall I or my
contributors be liable for any incidental or consequential
damages, nor for ANY damages in excess of the fees paid by a
subscriber.

- Keyboard Prayer:
Our programt who art in MemorYt Hello by thy name.
Thy Operating system comet thy commands be donet at
the printert as it is on the screen. Give us this day our
daily Datat and forgive us our I/O errors as we forgive
those whose logic circuits are faulty. Lead us not into
frustrationt and deliver us from power surges. For
thine is the Algorithmt the Applicationt and the
Solutiont looping forever and ever. Return.

Please direct all correspondence to:

Ariel Publishing, Inc.
P.O. Box 266
Unalakaleet, Alaska 99684 USA

THE APPRENTICE is aproduct of the United States ofAmerica.

