
rrfie Sourcerors.9Lpprentice
rhe Assembly Language Journal of Merlin Programmers Vol. 1 NO.2 February, 1989

Philosophy 101, Screw Ups, and AlertWindow

Tom Weishaar, editor of A2-Central/Open-Apple once called Apple Viewpoints a "...miserable little weekly
newsletter for developers ..." I tend to be a little easier on the poor shmucks (Hey, MONTHLY
newsletters are tough to publish. I can't begin to imagine the hassles with a weekly. I picture their staff
wandering the halls at Apple's corporate HQ buttonholing anyone with a pulse to ask, "Will you
PLEASE write a guest column this week?" I'm waiting for the views of a janitor to slip into print.) At
any rate, Apple Viewpoints is indeed pretty slim pickins for Apple II developers._ ../

This last week, though (February 6th), Jean-Louis Gassee did their weekly guest column and entitled it,
"Algorithms Always Break Down". Gassee has always struck me as a fairly deep thinker, so I dug right
in. Even though he mentioned the Mac (I think his target was the Mac OS) and not the Apple II, his
main point still reflects a uniquely Apple II worldview:

"This is my point: Sometimes, just sometimes, beauty - and ultimately cost-effectiveness - can come from
restraint."

I would like to add that I would rather have a program (or even a computer) which does a few things
exceedingly well than one which does many things without distinction. There are occassions on which I
like the IIc+ better than the GS, for example.

Just a little philosophizing for you to do with what you will.

I tend to wax a little philosophical when I booger something up. I've been doing a lot of waxing the last
few days (and boy, do I have even MORE respect for Bob Sander-eederlof and Tom Weishaar). The
Generic Startup code we printed in Volume 0, Number 0 was, as Don Lancaster might put it, "fatally
flawed". I can think of different ways to say it.

At any rate, we got straightened out by the completely revised Apple II Technical Note suite recently
released by Developer Technical Support. Kudos to Jim Mensch, Matt Deatherage, and the rest of the
gang for finishing a monumental task. Wish I'd had them three months ago, but I know quality takes
time. T'ain't perfect (I'll show you what I mean later), but the new notes still bring together a lot of
stray information.

Anyway, back to Generic Startup. The first and most critical bug lives at line 332 of our old code, where
we had

332 -DisposeHandle ProgID

I am afraid we understood the issue here, but printed erroneous code anyway. One of our readers
thought we should have used DisposeAll, but that was not really the error. You MAY use
DisposeAll if you have garnered memory space using an auxiliary ID, but you certainly would NOT
pass it your program 10. If you did that, the very space in which you were operating would be
deallocated. You would be trashing your own program, bombing your own buildings, blowing up
your... I hope you get the picture. Under normal circumstances, DisposeAll requires an auxilliary ID.
It then deallocates all of the memory attached to that particular ID (usually direct page space and data
blocks).

In our case, we allocated additional memory using our unmodified user ID (our intention was to keep
the code as simple as possible). In such instances, you must use DisposeHandle for each and every
handle you've acquired. What you've messed up, ya gotta clean up. DisposeHandle requires, of

%e Sourcerors.9Lpprentice

course, a handle to dispose of.

Vol. 1 No.2 Page 2

Line 332 should be changed, then, so that we are passing our handle:

332 -DisposeHandle DPptr

The only memory we allocated in our startup routine was all grabbed with the handle DPptr (beginning
at line 98 on p.8). Our bug, then, was the result of passing an inc:orrect parameter.

The remainder of the problems or changes in Generic Startup had to do with error checking (we didn't
always need to when we did) and the manner with which we dealt with ROM tools.

The ToolBox Reference manual states that, "...you don't need to keep track of where a particular
function is or even whether Wisin ROM or RAM. A tool set called the Tool Locator...takes care of the
necessary bookkeeping functions." (Volume 1, p. 1-1)

In spite of that pronouncement, every example startup routine I've looked at (including our old one) has
treated the ROM tools as a separate case. They are all started without being loaded bya LoadTools
call. Although this works, of course, I think there is a better way.

First of all, as we mentioned in Volume 0, Number 0 there is the often overlooked matter of minimum
versions for NDA support. Even some of the ROM tools have minimum versions required for fully
confident support of NDAs. .

In our old code, we approached the issue by doing version calls for each ROM tool. A better approach,
in my view, is to start the Tool Locator and then use LoadTools to pull in ALL of the tools, even the
ROM based tools. This at least saves us some code in that LoadTools checks version numbers (based
on the contents of the tool table data). And it seems to be the process Apple's toolbox designers
envisioned. Heck, it might even extend the compatibility of your programs. Who knows what will or
won't be in ROM next year?

In this month's Generic Start/ShutDown code, I started up two more tools than last time: the Font
Manager and Quick Draw Auxiliary. I did this to support two of the more useful toolbox calls ­
LEText2 and AlertWindow. LEText2 permits the easy display of text within a box. The text is
automatically justified and wrapped, too, so it is pretty useful.

AlertWindow greatly simplifies the construction of alert boxes. It is worth some attention - certified
developers are really the only folks that know much about it since they receive updated information
with each of the new system disks. Those of you trying to learn GS programming via the popular press
are going to be nearly a year behind the times. There is not a book available today that documents the
new AlertWindow call (I know, because I have them ALL - I think). The call became available on
System Disk 3.2 which was released in August. That just isn't enough time to include it in a new book.
That's where we in the newsletter industry come in handy. We can provide immediate gratification,
especially now that Apple is going to charge at least $600 for the gratification of being a Certified
Developer. But that's a different column. Today I'll expound on the AlertWindow call immediately
following the revised Generic Start/ShutDown code below.

Note !hat there is a bit of a trick involved in getting the Font Manager started. The Font Manager
searches for the FONTS subdirectory on the boot disk; it must find the fonts, obviously. But such a
search can generate a VOLUME NOT FOUND error if that disk is not in a drive. Such a situation
shouldn't crash the system, of course, so the program must screen error $45 when starting the Font
Manager.

I also wanted to mention Mohawk Man's Check4Error subroutine (similar to APW's ERRORDEATH
routine). This routine is intended primarily for debugging puposes. If your program crashes, the
routine will print the error number and the location of the error. That is why MM loaded the X register
with a number before calling it; the number is a sort of ID to which you can refer in case of a crash. In

Vol. 1 No.2 Page 3 %e Sourcerors .9Lpprentice

your own polished and debugged software, such an error handler should be replaced by something a
little more elegant - like maybe the Mac's bomb (snicker, snicker),

imaximum x value
; minimum x value
; maximum y value
iminimum y value

ifull 16-bit mode
;generate relocatable output
iname of output file (link file)
irun MACGEN to generate this file

iattributes for memory allocation
i (lockd, fixd, pg alignd, & fixed bk)
;our Direct Page pointer location
itotal number of direct pages needed
iallows default ($80 for 640 mode)

off

320
o
200
o

%00

o
$800
o

%11000000_00000101

mx
rel
dsk generic.start.l
use gen.strt.macs

1st

mac

* *
* Generic Start v 2.0 *
* By Mohawk Man, Ross Lambert,*
* and Eric Mueller *
* 11/15/88 *
* *
* Revised by Ross W. Lambert *
* 2/15/89 *
* *
* This program is public *
* domain... *
* *

maxx
minx
maxy
miny

DPPtr
TotalDP
scrnsize

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 * Stuff for Merlin
19
20
21
22
23
24
25
26
27
28 *
29 * Our equates:
30 *
31
32
33 Attr
34
35
36
37
38
39
40 * These establish full screen environment for QD (320 mode)
41
42
43
44
45
46
47
48
49
50 *
51 * One macro for fun (maybe move to a macro library):
52 *
53
54
55 IncDP

Start up tool sets. NOTE: If there is not an error handling routine
for a particular tool set, it is because the start up call for that
tool set does not return any errors.

load all tools - let Tool Locator worry about ROM vs. RAM

fJfz.eSourcerors J1lpprentice
(
/1(,

'j

Page 4Vol. 1 No.2

;we're outta here

;tell user we crashed

;was error VOLUME NOT FOUND?
;if not, we be dead
;get the boot volume for the tools
;'Okay' picked?
;if so, try to load the tools again

;if the tools loaded okay, start them

;next, get direct page memory for tools

;retrieve our program ID

;start the Memory manager

; recommended by Apple, Inc.

;make the program bank = data bank

;start the Tool Locator via macro

;this label now global if any other
;module needs it.

;add number of pages in variable
;)1 to our current dircect pg ptr.

ProgID

EarlyShutDown

*$45
AhortStart
GetBootVol
#1
LoadTools

1)1
DPAddr

DPAddr

-NewHandle fTotalDP;ProgID;fAttr;fO

pla
sta

jmp

_ADBStartUp

_IMStartUp

-MMStartUp
ldx f1
jsr Check4Error

cmp
bne
jsr
cmp
beq

phk
plb

ent

_TLStartUp

lda
clc
adc
sta
EOM

startup the needed tools

StartTools

AbortStart
-MoveTo f50;f90
-DrawString fMSGb

LoadTools -LoadTools IToolTable
bcc StartTools

StartUp

56
57
58
59
60
61
62
63
64 *
65 *
66 *
67
68
69
70
71
72
73
74
75
76 *
77 *
78 *
~~, *
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98 *
99 *

100 *
101
102
103
104
105
106
107
108
109 : 1
110
111
112
113
114
115
116
117
118 : 2

%e Sourceror So 5tpprentice

iuses a direct page

istart Up line edit tools

istart the Dialog manager

istart the Control Manager

iControl Mgr. needs direct page

idraw screen/ 0 = whole scrn

istart the Menu Manager

ievent manager used one page

istart the Window Manager

igo find out what else is wrong ...

iQD uses three pages

istart Quick Draw Auxiliary
irequired for LETextBox2
iLongStatText2 (both are useful)

ialready started?
iif so, ignore it

istart Miscellaneous Tools
irecommended by Apple to insure
ifuture compatibility

iget handle and store in our dir. pg
ilong indirect load gets new dp address
ifor tools
istore it

B
Check4Error

PageS

-MenuStartUp ProgIDiDPAddr

-DialogStartUp ProgID

IncDP $100

IncDP $100

-LEStartUp ProgIDiDPAddr
ldx *7
jsr Check4Error

IncDP $100

-RefreshDeskTop fO

-CtlStartUp ProgIDiDPAddr
ldx #6
jsr Check4Error

IncDP $100

-windStartUp ProgID
ldx *5
jsr Check4Error

ldx #4
jsr Check4Error

-EMStartUp DPAddrif20i#minxi#maxxi#minYi#maxYiProgID
BCC cont1
CMP #$0601 rignore already started error
SEQ cont1

IncDP $300

ldx
jsr

_QDAuxStartUp

-QDStartUp DPAddri*scrnsizeifOiProgID
BCC :4
CMP #$0401
BEQ :4

STA DPAddr

_MTStartUp

ldx *2
jsr Check4Error

Pull Long DPptr
LDA [DPptr)

Vol. 1 NO.2

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134 : 3
135
136
137
138
139
140
141:
142 : 4
143
144
145
146
147
148
149
150
151
152
153
154
155
156 cont1
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

%eSourcerors.J1LEP_1i_e_n_tu_·_e V_o_I_,1_N_o_,2__P_a9_e_6_

'Press any key for shutdown ... '
'Premature shutdown: LoadTools failure ... '

Your program would continue here.
This trivial example is mostly to prove
that it all works!

(
(

a keypress

for SysFailMgr
nUmber for a sec
a hex number
error code

iprompt for boot volume
iOK?

iuser wants to cancel, so quit

inecessary for "AlertWindow"
iAOK - continue
iVOLUME NOT FOUND (needs FONTS
isubdirectory on boot volume)

iuses one direct page

iscrap mgr for NDA support

ishow arrow in case needed for
iTLMountBootVol dialog

istart the Desk Manager

icarry set if there was an error
iotherwise, get outta here

iread keyboard for
iclear high word
ikeypress?
iif not, loop back
iclear strobe

ichange background of text block
iX & Y coordinates
iprint 2nd message (press a key)

iif a key is pressed, shutdown

error code on stack
isave our error
ichange code to
isave and store

theisave

ProgIDiDPAddr

ShowCursor

STR
STR

BNE mo err
JSR GetBootVol
CMP U
BEQ doFontMgr
JMP ShutDown

ldx #8
jsr Check4Error

IncDP $100

-SetBackColor #13
-MoveTo #20i#90
-DrawString #MSGa

LDAL $COOO
AND t$OOFF
CMP t$0080
BCC RDKEY
STAL $C010

JMP ShutDown

phx
sta ErrCode
-Hexlt ErrCode
PullLong ErrCode

_ScrapStartUp

_DeskStartUp

Check For Errors After
Making A Tool Call

doFontMgr
-FMStartup
BCC AOK
CMP t$45

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201: mo err
202
203
204 AOK
205
206 *
207 * Startup procedure is finished.
208 *
209 *
210 *
211 *
212 *
213
214
215
216
217
218
219 RDKEY
220
221
222
223
224
225
226
227
228
229 MSGa
230 MSGb
231
232
233 *
234 *
235 *
236 *
237
238 Check4Error bcs YepError
239 rts
240
241 YepError
242
243
244

Vol. 1 .No. 2 Page 7 rrfte SourcerorS.52lpprentice

-TLMountVolume #25;#50i#Prompt1i#VolNamei#OKMsgi#CancelMsg
iask the user for the boot volume

iglobal label so other modules can die here.:)

'Insert the volume: '
18

Get Boot Vol GBVParms

ispace for volume name

iget the name of the boot volume

iuse customized death message
ioh! we're dead!

iretrieve the result
iand get outta here

ikill this 1st so NDAs are history

iWindow Mgr must be shut down before
ithe Control Mgr

irelease handle acquired by ProgID

ipointer to space for the volume name

4

#EndDMsg-StartDMsg

, at location $'

'Error $'

pia
rts

-DisposeHandle DPptr
-MMShutDown ProgID

DeskShutDown
-FMShutDown
-ScrapShutDown
-DialogShutDown
-LEShutDown
-MenuShutDown
-WindShutDown
-CtlShutDown
-EMShutDown
-QDAuxShutDown
-QDShutDown
-MTShutDown
-IMShutDown
=ADBShutDown

PushLong #DeathMsg
_SysFailMgr

dfb
StartDMsg

asc

245
246
247
248 DeathMsg
249
250
251
252
253
254 ErrCode ds
255 asc
256 EndDMsg
257
258
259 *
260 * Get the boot volume
261 *
262
263
264 GetBootVol
265
266
267
268
269
270
271
272
273
274 GBVParms adrl VolName
275
276 Prompt1 str
277 VolName ds
278
279 OKMsg str 'OK'
280 CancelMsg str 'Cancel'
281
282
283
284 *
285 * A Generic ShutDown Routine
286 *
287
288 ShutDown ent
289
290
29f
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

**
*

The version number is hexedecimalized, i.e. v 1.2
is turned into $0102, v 1.3 = $0103, etc.
A zero means we'll take anything.

Page 8

busy

by Std. File, Print

pages

Vol. 1 NO.2

ikeep quitting if GS/OS is

iTool Locator only tool started if
iEarlyShutDown called

inumber of tools to load

iMemory Manager
iMiscellaneous Tools
iQuick Draw II
iDesk Manager
iEvent Manager
iADB Tools
iInteger Math tools
iWindow Manager
iMenu Manager
iControl Manager
iQuick Draw Auxilliary
;LineEdit tools
iDialog Mgr (v 1.1 rqd
iMgr, etc.)
iScrap Manager
iFont Manager

imake it global
ispace for the program ID
;also global
;pointer to the direct4

2

15

2,$0102
3,$0102
4,$0102
5,0
6,0
9,0
10,0
14,$0103
15,$0103
16,$0103
18,0
20,0
,21, $0101

22,0
27,0

dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw
dw

ent
ds
ent
ds

Quit QuitParms
bra :1

dw
dw

some data for the modules

Meaning of the double numbers in the table:

The first number is the tool number and
the second number is the minimum version
needed for our application.

(editor: you may need to change these if your
application requires certain functions/bug fixes
only available in updated versions of the tools.)

ToolTable dw

QuitParms adr1 $0
ds 2

Ear1yShutDown
TLShutDown

ProgID

DPAddr

308
309
310
311 : 1
312
313
314
315
316
317 *
318 *
319 *
320
321
322
323
324
325
326
327
328
329
330 *
331 *
332 *
333 *
334 *
335 *
336 *
337 *
338 *
339 *
340 *
341 *
342 *
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

%e Sourcerors.!JLpprentice

I promised some information regarding the AlertWindow toolbox call... AlertWindow is really a time
and code saver since it greatly simplifies the constuction of alert boxes. The following information is

, adapted from Apple IIgs Tech Note 48 and the Toolbox Reference Update (beta version).

There are two things to understand about the call. The first is that it makes use of some "standard" alert
box and icon definitions. You can pick which one of the standards you want to use or tell the tool your
own parameters. It is a remarkably flexible call.

The standard box sizes look like this:

Vol. 1 NO.2 Page 9 rr1ie Sourcerors f1Lpprentice

Character Height 320 width 320 Height 640 width 640

1 46 152 46 200
2 62 176 54 228
3 62 252 62 300
4 90 252 72 352
5 54 252 46 400
6 62 300 54 452
7 80 300 62 500
8 108 300 72 552
9 . 134 300 80 600
0 (Character followed by 4 integers - Height, Width, xpos, & Ypos)

The Character column is the actual ASCII character yon pass to the tool to indl.cate your selection. More
on that in a moment.

AlertWindow also lets you choose from several standard icons. The icon number can be 0-9 where:

o no icon
1 custom icon, followed by:

LONG pointer to image data
WORD -- number of bytes image data is wide
WORD -- number of scan lines image data is high

2 Stop icon
3 Note icon
4 Caution icon
5 Disk icon
6 Disk swap icon
7 - 9 Reserved - do not use

This first step in the building process is to set up what is called an "alert string". A simple one could
look like this:

ASC , 13/Simple Alert Box/Button 1',00

Notice that, like almost all toolbox related strings, the string data must be positive ASCII (denoted by
the single quotation mark in Merlin). You can also see that the first two characters are numbers. The
first number represents the chosen standard box size, while the second represents the chosen icon.
Immediately following those, you must insert a separator character. It can be any character not actually
in the string itself, but it is best to use something odd like the backslash or the percent sign. DTS

'7'"'""--j"IIll

%e Sourcerors.9lpprentice Vol. 1 No.2 Page 10

recommends the backslash for purposes of standardization.

Next comes the text of the alert message. It is followed by the separator and the text of the first button.
Watch out here, though, because you are limited to three buttons. If you need more than that, ya gotta
do it the old fashioned way.

The string terminates with a zero, which is the flag for the tool.

To actually call the tool, you must pass the type of string data you're sending (does it have a leading
length byte or terminate with a CR or a zero?), the address of the substitution array (more on that in a
minute), and the address of the alert string.

But first, a macro.

I cannot imagine programming the GS without macros. So here is one that will make AlertWindow
do its thing mo' betta. This macro should be appended to the file WINDOW.MACS.S in the
TOOL.MACROS subdirectory of your Merlin disk.

-AlertWindow

_AlertWindow

MAC

PHA
PHWL)li)2

PHL)3
tool $590E
«<

ipush dummy return space onto stack
ipush word length string type, then
ilong address of substitution array
ilong address of alert string
iuse tool macros to do call
ithat's all folks I

Now, to call AlertWindow, just do this:

-AlertWindow #stringtypei#longaddrSubarraYi#longaddrAlertstring

The string type we keep mentioning is defined as zero for a C string (which terminate with a zero or
CR) or a one for a Pascal string (which has a leading length byte). If you prefer Pascal strings, you
would use the STR operand in Merlin.

Not so incidentally, after calling AlertWindow, you must do a PLA to pull the number of the button
pressed off the stack.

The only topic we've not covered yet is the substitution array. As you probably figured out, if you're
not u~ing this feature, just pass a zero to the function. If you are, pass its long address.

So what it is, man? Well, okay. The substitution array is a mechanism whereby you can arbitrarily
insert blocks of text into your alert string. For example, take a look at the following:

ASC '42/This *0 *1 text that *2 array./*3/ A Button 2' ,00

The asterisks followed by a number in the range 0-9 tells AlertWindow to go look for the appropriate
string data from the substitution array and stick it into the alert string at that very spot.

The substituion array itself looks like this:

Vol. 1 NO.2 Page 11 %e Sourcerors .fZLpprentice

SubArray
ADRL SubO
ADRL Subl
ADRL Sub2
ADRL Sub3

SubO
Sub1
Sub2
Sub3

ASC
ASC
ASC
ASC

'is',OO
'substitution' ,00
'we transferred from our' ,00
'Sub Text' ,00

At the long address we pass to the toolbox (SubArray), we stash the long address of each of the
subsitution strings we want to use in our alert string. AlertWindow then just goes and looks them up
and plops them in. These strings MUST be of the same type (C or Pascal) as the main alert string, by the
way.

If you happen to peruse the actual tech note from Apple, do not use the example for the alert string with
substitutions that they offered. The icon number they put into their alert string was for a custom icon,
which. makes the function look for icon definition data. This gums up the works if you don't have a
custom icon. I almost lost my mind trying to figure out what I was doing wrong. I told you that the
tech notes were not perfect!

In any event, there are a couple of final tidbits which can be of use.

First, if you want to make a button the default button, preceed its text with a caret (1\).

Second, AlertWindo~'J has some standard text.options to choose from as well as standard boxes and
icons.

#0 OK
#1 Cancel
#2 Yes
#3 No
#4 Try Again
#5 Quit
#6 Continue

Do not use 7-9.

As is obvious, preceed the number of the standard text item you'd like with a pound sign (#).

If you:d like a quick and dirty demo, insert the following lines in place of the keyboard scanning routine
at lines 206-228 of the Generic Startup routine. Your new little "application" will start all of the tools,
cycle you through several different types of alert boxes, and then cleanly shut you down.

Have fun.

(

J

1
2
3
4
5

~AlertWindow tOitOitAlertStringl
PLA iignoring button pressed for now

~AlertWindow tOitOitAlertString2

~AlertWindow 40;4SubArray;4AlertString4

~AlertWindow 40;40;4AlertString3
PLA ;ingore it for now

%e Sourceror s.9Lpprentice

'I

Page 12Vol. 1 No.2

our' ,00

;ignoring button pressed

ShutDown

, 13/Simple Alert Box/Button 1',00

SubO
Sub1
Sub2
$llb3

'26/A Disk-Swap Alert Box/~Button l/Button 2' ,00

'34/Standard button text/~#0/#6',00

'42/This *0 *1 text that *2 array./*3/~Button 2' ,00

'is',OO
'substitution' ,00
'we transferred from
'Sub Text' ,00

JMP

ADRL
ADRL
ADRL
ADRL

PLA

ASC
ASC
ASC
ASC

AlertString4
ASC

AlertString2
ASC

SubO
Sub1
Sub2
Sub3

SubArray

AlertString3
ASC

6
7
8
9

10
11
12
13
14
15
16 AlertString1
17 ASC
18
19
20
21
22
23
24
25
2b
27
28
29
30
31
32
33
34
35
36
37

Relocation Without Dislocation
By Karl Bunker
321 S. Huntington Ave.
Boston, MA 02130

Editor: Karl Bunker is the author of the popular public domain program, "DOGPA W". DOGPA W reads,
displays, formats, and prints either AppleWorks files or text files. It is a marvelous tool for viewing and
printing on-disk documentation.

There are any number of reasons why you might want to write an 8-bit program which is relocatable,
that is, which can run at any available memory address. If a program uses a call to GETBUFR to
allocate a buffer from BASIC.SYSTEM, and then relocates part of itself into this buffer, the address of
its new location will depend on whether or not your program was the first to make a call to
GETBUFR. Or if you are writing a routine that will be attached to the end of an Applesoft program, '"-I
its address will depend on the size of the BASIC program. You may even need to write a program
which can simply be BRUN at any (legal) address, perhaps so that it can co-reside in memory with .'
some other program(s). In situations such as these, your code will have to be relocatable, and while
this presents some interesting problems, they are by no means insurmountable.

Vol. 1 NO.2 Page 13 %e SourcerorsYlpprentice

The simplest way to make 8-bit code relocatable, of course, is to avoid absolute addressing when the
operand refers to an address within the program. Thus, instead of:

JMP DEST

Relative addressing could be used:

CLV
BVC DEST

Editor: you could also use BRA DEST which is available on the 65C02 and later microprocessors.

However, relative addressing is limited to jumps of 127 bytes or less - not very far. This limitation
can be overcome, at the cost of somewhat greater complexity, by using one or more relative
addressing "bounces", like so:

CLV
BVC BOUNCE

BOUNCE

DEST

BVC DEST,

iUp to 127 bytes
iof code here.

iAnother 127 bytes
i (or less) here.
iFinal destination

Of course, the intervening code will have to hop over the BVC at BOUNCE. The difficulty of using
this method goes up sharply as the number and length of jumps in the program increases. Also, there
is no relative addressing equivalent to a JSRjRTS, or to other absolute addressing operations. For
example, a data byte that is inside the relocated code can't be accessed with an LDA or STA.

To make 8-bit code relocatable while still retaining the full use of all absolute-addressed instructions
requires self modifying code. That is, the relocatable portion of the program is written as usual, with
a fixed ORG. But when the program is run, a routine within the program modifies the code, changing
all of the address operands that need adjusting for the program's new location.

As was indicated above, there are basically two types of situations that call for relocatable code. First,
a program may be BRUN at some fixed address, and then relocate a portion of itself to a new address
which is unknown at the time the code is being written. Second, the whole program may simply be
"dropped" into some arbitrary address which is unknown at the time of its writing. The second of
these is a little trickier to handle, so let's start by looking at the first.

In this type of situation, the program can be divided into a "relocator module" and the "relocated
modu!e". The relocator module will first determine what address the relocated module will be going
to, then adjust the address operands of the relocated module as needed, and finally move it to its
new location. If there are only a few internal JMP's and JSR's in the relocated module, they can
simply be given labels, such as JUMP_I, JUMP_2, etc., and then, before relocating the code, the
addresses can be modified, like so:

CLC
LDA
ADC
STA

REL STRT
JUMP 1 JSR

JUMP 1+2
DIFRNC
JUMP 1+2

WHEREVER

iHigh byte of jump address
iAdd what's needed for new
ilocation, put it back.

iModule to be relocated starts here

iEtcetera

A few things are "assumed" in this segment of code: First, that the new location for the relocated
module is higher in memory than its present address. Second, that the relocator module has
determined the amount that has to be added to the high bytes of the addresses in the relocated
module, and has stored this value in DIFRNC. Finally, this routine assumes that the old and new
starting address have the same low byte. This will be the case, for example, if both are on a page
boundary. GETBUFR allocates buffers by pages, so this a reasonable assumption.

Of course, this method can also be used to adjust absolute-addressed LDA's, etc. whose addresses
are within the code being relocated. But since this method must handle each internal absolute
addressing instruction separately, it becomes rather impractical with larger relocated modules.

Another way to adjust addresses before a module is relocated involves scanning through the code,
using a Monitor routine to find those instructions which have 2 byte address operands, checking
whether these addresses are internal to the code, and modifying them if they are. This Monitor
routine, "INSDS2", is located at $F88E; the accumulator is loaded with an instruction byte, a JSR is
done to this routine, and the address length of that instruction - 0, 1 or 2 - will be stored at $2F on
page zero. If a 0 or 1 is found in $2F, the program simply skips over 0 or 1 bytes to get to the next
instruction byte. If a 2 is found, the program will have to check whether the address that follows the
instruction is within the code, and if it is, adjust it for its new location. Special handling is needed for
data stashes; they can either be put at the end of the code, and the address-adjusting routine be set to
stop scanning before it reaches them, or routines can be included in the address-adjuster to recognize
and skip over data stashes. Here's a program segment that illustrates this code-modifying code;
REL_STRT is the current, pre-relocation, starting address of the relocated module, and REL_END is
the address of the end:

%e Sourcerors.f1Lpprentice Vol. 1 No.2 Page 14 (

I

Editor: This example also assumes that you know the difference ,DFRNC, between the current address and the
destination address. This is usually not difficult, especially for routines that load at a known address and
relocate themselves to an address supplied by BASIC.SYSTEM's GETBUFR call, located at $BEF5.
GETBUFR itself returns the highbyte of your new address in the accumulator. Since the least amount of space
you can request from GETBUFR is one page, 256 bytes, the lowbyte of the address will always be zero.

One item to note in Karl's code, however, is that the part of the code to be relocated should be assembled on a
page boundary. This allows you to ignore lowbytes.

LDA
STA
LDA
STA

ADJ CODE LDY
LDA
BEQ

JSR
LDY
CPY
BNE
LDA
CMP
BCC
CMP
BEQ
BCS

FIX ADR CLC
ADC
STA

#<REL_STRT
PTR
#>REL_STRT
PTR+l
to
(PTR) , Y

ADJ DONE

$F88E
$2F
12
NXT INST
(PTR) ,Y
I>REL_STRT
NXT INST
I>REL_END
FIX ADR
NXT INST

DIFRNC
(PTR) ,Y

iPut current starting address
iof relocated module into some
iO-page pointers.

iGet an instruction byte
iA 0 marks the end of the
irelocated module's code and
ithe start of any data stashes.

iIs this an absolute address
iinstruction?
iNo, get next one
iYes, get high byte of address
iIs this address located inside
ithe relocated module's code?

iIf so, fix it for its
inew location,
iand put it back.

',' I
,.

l

Vol. 1 NO.2

NXT_lNST INY
TYA
CLC
ADC
STA
LDA
ADC
STA
BNE

ADJ DONE

Page 15

PTR
PTR
#0
PTR+l
PTR+l
ADJ CODE

'l1ie Sourceror So .f2l.pprentice

iAdd 1 to what's in Y,

iand add this to the pointers
ito skip ahead to the next
iinstruction byte.

i (Alwaysi high byte won't = 0)

iRest of relocator module's
icode here.

Now let's look at the other situation, where there is no relocator module; the whole program simply
"finds itself" planted at some unknown address. The first thing this program will have to do is just
that: find out where it is, so that it will know how to adjust its addresses. To do this, we can make
use of the way in which the 65xx instruction set handles a JSR/RTS. When a JSR is encountered in a
program, the "return address" is first saved on the stack, then the subroutine is jumped to. The return
address, which is actually one byte less than the address of the instruction that follows the JSR's
operand, tells the program counter where to go when it encounters the RTS that ends the subroutine.
This return address - the home address our program - remains on the stack after the RTS is executed,
and can be used to answer that vital question: "Where am I?"

Here's how it's done:

PHP
SEI

JSR

TSX
DEX
SEC
LDA
SBC
STA
INX
LDA
SBC
STA
PLP

$FF58

$100,X
#2
PTR

$100,X
#0
PTR+l

iFirst save interrupt status & turn off
ithe interrupts so that an interrupt call
iwon't change what's in the stack.
iThis is the location of a known RTS in
ithe Monitor.
iStack pointer into X
iBack up to get the low byte first

iLow byte of current addressi put it
iinto O-page pointer.
iGet high byte,

istore it.
iRestore interrupt status

The current, relocated address of the program - actually, the address of the JSR $FF58 instruction - is
now loaded into some o-page pointers, so the program is all set to scan through its own code and
modify the addresses, just as was done above with the relocator module. In this situation, however,
there will probably be no way to ensure that the program's current address has the same low byte as
its ORG address, so both bytes of the absolute-address operands will have to be adjusted. Also, to
keep things relatively simple, we should guarantee that the current address of the program is higher
that its ORG address. This could be done by assembling the program with a "lowest possible" ORG;
presumably $800.

%e Sourcerors.9l.pprentice Vol. 1 No.2 Page 16

More Relocation Without Dislocation...

Editor: You will have to decide yourself when to use each of the methods Karl has outlined. The primary
considerations include the type and purpose of the software. A routine intended to "float" at the end of an
Applesoft program will never be loaded at a known address, so it must use Karl's /SR trick to find out where it
lives, modifying itself on the fly. ProDOS SYSTEM programs, on the other hand, are initially installed at
$2000. Since that is smack in the middle of everything, you'll probably want to move. But a handy dandy
relocating module can do the trick for you there. In any case, at least one of Karl's methods can be used in
virtually any relocation situation.

Parting Thoughts
One of my friends told me that he really liked The
Sourceror's Apprentice except that he wished that
it was 'twice as long each month. I totally agree. I
am afraid that I am a programmer first and a
businessman second. That is why I have
promised 12 pages monthly and have ended up
delivering 16! I have got to be very careful,
though, as you all probably realize. Generosity
becomes self-defeating after a point. I have got to
put food on the table or else I've gotta go hunt
polar bear. And believe me, my daughter would
get mighty hungry if her dad started living the life
of a subsistence hunter.

Nevertheless, I am wondering if you assembly
fanatics would rather have a $45-$50 newsletter
(yearly) that runs 24 (8.5" X 11 ") pages or so each
month? The quarterly diskette could remain the
same price since the overhead for that would be
constant. It won't happen anytime soon, but I'd
be interested in hearing your thoughts. Drop me
a note.

I've also had numerous questions regarding the
name of my company, Ariel Publishing. The word
Ariel is an old Hebrew word meaning, "Lion of
God". ' As a born-again Christian, slipping some
reminder of my faith into my company name is
important to me (as is integrity and fairness). If
you're ever dissatisfied with anything just throw
that back in my face.

Kinda ironic, is it not, that both of the people (Bob
S-C and I) who ventured into the assembly
language newsletter arena were Christians? Well,
we've got the Christians and the arena, where are
the lions? (yuk, yuk)

By the way, Jerry Kindall's wonderful Applesoft
Connection series will return next month. We've
also got some joystick routines from Steven
Lepisto that will knock your socks off.

Until then, then.

WE TItEAT All

FOOl TROUBLE

~eJ
Chiropodist

..--------------------, -
/._- :::(

Copyright (C) 1988 by Ross W. Lambert
and Ariel Publishing, Inc.
All Rights Reserved

All programs in THE APPRENTICE are in the public domain and
may be freely copied and distributed. Apple User Groups and
other important folks may reprint articles upon request. Just
gimme a call at 907/624-3161 or drop me a line at the address
below.

American prices in US dollars effective January 1, 1989:
1yr..$28, 2yrs..$52, Canada and Mexico add $5, all others add $1 0

Back issues are available at $3.00 each.

WARRANTY AND LIMITATION OF LIABILITY

I warrant that the information in THE APPRENTICE is correct and
useful to somebody somewhere. Any subscriber may ask for a full
refund of their last subscription payment at any time. MY
LIABILITY FOR ERRORS AND OMISSIONS IS LIMITED TOTHIS
PUBLICATION'S PURCHASE PRICE. In no case shall I or my
contributors be liable for any incidental or consequential
damages, nor for ANY damages in excess of the fees paid by a
subscriber.

Please direct all correspondence to:

Ariel Publishing, Inc.
P.O. Box 266
Unalakaleet, Alaska 99684 USA

THE APPRENTICE is aproduct of the United States of America.

