
eSourceror's rentice
The Assembly Language Journal of Merlin Programmers Vol1 No 12 January 1989

la it •aiD, pp...
Belay that last issue, matey.

Last month I told you all about my detennination to
move The Apprentice into the "next level" in the
publishing hierarchy. What I didn't tell you is that
I've been negotiating like a maniac for weeks trying
to launch a new publication - which would consume
The Apprentice and replace Call AP.P.L.E.

Allow me to explain.

I think we all agree that the Apple II programming
community desires a multi-language technical
journal. Call AP.P.L.E. filled that niche nicely for
years. I do like nibble for some things, but a true
technical journal does not publish RoidBlaster and
the like. It strives to propogate detailed program
ming knowledge and up to date infonnation. I'm not
really being critical of nibble, mind you - I don't think
they make any claims towards technical jour
nalhood.

That means. then, that CallAP.P.L.E. 's death leaves
a void - which I am detemlined to fill. I think we at
the 01' Ariel cabin can do it, and do it well, so I'm
going to lay it all on the line and see what you think.

Enter 8/16

The new publication will be called 8/16. Like its
predecessor, 8/16will be heavy on the source code.
The following environments will be covered in
monthly columns: Orca C, Micol Advanced Basic
GS, Merlin 8 and 16 bit assembly, Applesoft, and
ZBasic. All other environments will be represented
as we get articles and code. At present, we have
spoken to authors interested in writing about Pascal
and APW/ Orca assembly. The magazine looks like it
will be 48 pages per month, about 15% ofwhich will
be devoted to advertising. We plan to keep the type
size small, the listings single column wherever
possible, the colors black and white, and the clip art
minimal. I am inclined to call it a "no-nonesense"
kind of programmingjournal. A one-year subscrip
tion will be $29.95.

Unlike Call AP.P.L.E., 8/16 will publish a monthly
companion diskette (available for $69.95 for one
year, $39.95 for six months, and $21 for three
months). The disks will have approximately 300K of
8 bit and 300K of 16 bit code, articles, product
demos, public domain software, and just about

anything else you could imagine. All of the article
text and source code for the current issue of 8/16
will be in there, as well as a few additional articles
and tutorials that are not in the hardcopy version.

We shall fulfill existing Apprentice subscriptions
(and Reboot and Znews) on an issue-for-issue and
disk-for-disk basis. I think this is a good deal
because you'll be "trading up", gettting a 48 page
publication in place ofa 12 pager. As a proud Merlin
supporter, I assure you that Merlin assembly list
ings will always have a prominent place in the new
journal. Mygoalis to provide you withwhat you have
been getting and then throw in a whole lot more, too.

The key to making it all happen is going to be
attracting advertisers. By combining our three
Apple II publications, we have a built-in subscriber
base right from the start. I have already created and
sent out advertising kits to over 30Apple II hardware
and software companies. Ifyou know ofanyone who
expresses the slightest bit of interest in advertising
in 8/16, please drop me their name and address - I'll
ship 'em a kit ASAP.

I am very excited about 8/16, and I'd like to thank
Jack Nissel, Wally Matusak, Roger Wagner, Mike
Westerfield, JayJennings, and Eric Mueller for their
encouragement and support. You folks helped bring
this to pass.

Speaking of Eric Mueller...

Eric Mueller, a frequent contributor to The Appren
tice, hasjoined our staffas anAssociate Editor. He'll
be in charge ofthe GS sections of 8/16, both in the
magazine and on the disk.

As a favor to me while we "retool" for the new
publication, Eric is producing this month's issue of
The Sourceror's Apprentice.

For your infonnation, Jerry 'The Ampersand King"
Kindall (currently the editor ofReboot) is going to be
the editor of the 8 bit sections of 8/16.

NOTE: Missing a Month

The first issue of 8/16 will hit the newsstands and
your mailboxes on March 1st, 1990. To make this
happen, there will be NO February issue of The
Apprentice. If you have not received the third and

%e Sourceror's .5lLpprentice

fourth SApp quarterly disks (for those who ordered
it), please drop us a note or give us a call. We want
to have our books up to date and accurate by the
time we make The Transition.

I've not come out and said ityet, but this is obviously
the very last issue of The Sourceror's Apprentice. I
am glad that, for once, the disappearance of an
Apple II publication is not the final act of a financial

Page 2

tragedy. Still, it is the end of an era, albeit a short
one. I hope thatyou end up feeling that your support
of us this year has been rewarded by the greater
range and depth of the new 8/16.

Certainly, only time will tell, but I pledge our best
efforts.

== Ross ==

By Jay Jennings

rrors

We've seen more than enough Generic StartUp routines to last for quite a while. In order to continue our
"Generic" articles, I had to come up with a routine that's useful and...generic. This error trapping routine
is used in all my programs. In fact, it's stuck right in my generic startup source code file so I never forget
about it.

Most error trapping routines that check for toolbox errors send your program straight to the bottomless pit.
They're usually called with a piece of code like this:

ldx
jsr

#$1111
Check4Error

;our error ID number

And the routine itself looks like this:

pha
stx :ErrCode
NHexIt :ErrCode
PullLong : ErrCode
NSysFailMgr #:DeathMessage

Check4Error bcs
rts

:error

:error ; if carry set we got an error
;otherwise get outta here

;save the toolbox error code
;save our error ID number
;change it to a hex number
;get and save the result
;display our death text

:DeathMessage dfb
:startMessage asc
:ErrCode ds

asc
:endMessage

#:endMessage-:startMessage
'At $'
4
'; Error $'

Now, there's nothing wrong with this method, but when you're developing a program, you're liable to crash
your program more often than not. And rebooting every 10 seconds after crashing into Sliding Apple Hell
gets to be a major hassle. With the help ofLane Roath and Eric Mueller, the Generic ErrorTrapper has evolved
into a k-rad subroutine that's very useful and handy.

There are two major changes in the error routine. Instead of using an error ID number to show where our
program died, we can use a complete string of characters. And instead of calling SysFailDeath, you get the
chance to continue with the program or to jump straight to your shutdown routine. ThiS way, you can
continue ifyou knowthe error thatjust occurred isn't necessarily fatal, and ifyou do decide to qUit, you won't
have to reboot the machine.

rrhe Sourceror's .!Jlpprentice Page 3

By using a macro we can call the error routine like this:

NNewHandle #1024;ProgID;#$8000;#0
CheckError 'NewHand 1e ca11 in I NIT. S f i 1e I

The error code itself is pretty straightforward. We use an AlertWindow to allow the program to continue
execution, or branch to ourShutDown routine. And we take advantage ofthe substitution string capabilities
ofAlertWindow to print our error string and toolbox error code. (Check your back issues of SApp for more
information on using this powerful feature of AlertWindow.)

First of all, let's look at the macro that makes this nifty routine so qUick and easy to use.

CheckError mac
ldx
ldy
jsr
bra

str ing asc
dfb

] here eom

#string
#"'string
Check4Error
]here
] 1
00

;get low address
;get high address
;do that error check thing
; if we came back, no error
;our error string text
;end of text mark (C string)
;end of the macro

This macro is very simple. It grabs the address of our error string and puts it in the X and Y registers. Then,
we call the actual error trapping routine. If there was no error in the last tool call, we'll come right back and
branch around the error string that's in our code. However, if there was an error, the address of the error
string will be used to print it in our AlertWindow.

Here's the code for our new and improved error checking routine.

rts

; if there was an error, branch
;otherwise, get outta here

;new code ~elow) will be added HERE
;save the low word of the address
;save the high word of the address
;save the tool error
;change code to a hex number

;grab the result of AlertWindow call
; if 0 (Continue), we should continue
;otherwise, shutdown NOW!

:error

:rts
ShutDown

stx :SHR1
sty :SHR1+2
sta :ErrCode
NHexlt : ErrCode
PullLong :ErrCode
NAlertWindow #0;#:Array;#:Text
pla
beq
jmp

:error

Check4Error ent
bcs
rts

:rts

'621Fatal error *0: *1. You should shut down. I'
'Continuel"'Shut Down',00
:ErrCode

:Text

:Array
:SHR1 adrl
:ErrCode

asc
asc
adrl
-1
asc , ,00 ;four spaces

There you go...a generic toolbox error checking routine. Unfortunately, this only works for desktop based
programs. Fortunately, adding some code to make it work as well under the text environment is relatively
easy.

By adding the following code you'll have an error checking routine that prints an error message on the text

rrhe Sourceror's !JLpprentice Page 4

screen or the SHR screen.

Since there's no way I know of to tell whether the SHR screen is active or not, we can do a bit ofjuggling and
get a routine that should work in most cases. To the beginning of the error routine (right after the : error
label), we add some code to see if the Window Manager has been started, like this:

;make sure SHR screen is turned on
;restore our registers

; if WM is started, use AlertWindow
;otherwise, use text stuff

;save address to error string
;save the error code
;see if the Window Mgr. is up

:DoSHR
DoText

_GrafOn
pla
ply
plx

phx
phy
pha
"'WindStatus
pla
bne
brl

:DoSHR

Ifthe Window Manager is active, we can be pretty sure that the tools we need for the AlertWindow are started
up as well, and we can go on with the routine as normal. The call to GrafOn is there just in case the program
was switched into text mode when the error happened. There are not many programs that switch from one
mode to the other, but several of mine do, so it's better to be safe than sorry.

IftheWindowManagerisnot active, we'll use a modified versionofTLTextMountVo 1ume to put the message
on the screen. It's modified only to the extent that the message we use doesn't say to put in a specific disk
(which is what it's normally used for). Here's the code that will place our error message and toolbox error
code on the text screen:

DoText
_GrafOff
pla
ply
plx
stx
sty
sta

50
52
:TErrCode+2

;make sure text screen is showing
;restore our registers

;save our error number

] loop

:GotIt

sep
1dy
lda
beq
sta
iny
cpy
bne

sty
rep

#$30
#0
[50] ,y
:GotIt
:Textl+l,y

#36
] loop

:Textl
#$30

;go down to <gulp!> 8-bits

;get a character
; if zero, we're at the end
;save it for our use

;have we done 36 chars yet?
; if not, keep looping

;save the length byte
;back to 16-bit everything

"'Hexlt
PullLong

:TErrCode+2
:TErrCode+2

;change code to a hex number

;go to our shutdown routine

#:Textl;#:TErrCode;#:QuitBttn;#:ContBttn
;see what button they chose
;2 = ESC, 1 = CR#2

:rts
ShutDown

"'TLTextMountVol
pla
cmp
beq
jmp

rrfie Sourceror's .5llpprentice Page 5

:rts

:Textl
:TErrCode
:ContBttn
:QuitBttn

rts
ds
str
str
str

40
'$
'Continue
'ShutDown

;space for the
; do 11ar sign &

<ESC> I

<CR> I

error string
four spaces

Notice that, since Al ertW indow uses C strings (NULL terminated) and TLTextMountVo 1ume uses Pascal
strings (with a leading length byte), we have to transfer the error message into a Pascal string. There is
another way around this, as A1ertW indow will also deal with Pascal strings ifyou tell it to do so. Since all
my other A1ertW indow calls use C strings, I decided to remain consistent andjuggle the string a little ifthe
text version of the error window is required.

Also, the maximum length of the error string is 36 characters in the text version. This is because
TLTextMountVo 1ume switches to a 40 column screen (for some unknown reason!) to display it's message.

There are a couple of potential problems with this routine as written. Since we turn on or offthe SHR screen
(depending on what mode we need for display purposes), you may not be in the correct mode ifyou decide
to continue instead of shutting down. So far that hasn't actually been a problem for me, but I can see where
you might want to modify the code so this couldn't happen.

From the Mailbag '0 Fun Department:

•1
By Mike Rochip

lIs t ant 's ail

Hi Mike...

Ifmally got a chance last night to sit down and read
the November/December issue ofSApp. I wanted to
congratulate you on the slightly dtfferent formaL I
think that the "modular" programming stuff will be
very useful.

I did want to point out a couple ofdescrepancies in
this issue, though:

1. In the Demo Module, you declare your externals
this way:

EXT Imprint,elTOrlist,MU_Error

Since I use Merlin 16, I won't have any problems, but
Merlin 8 users must put each external on a separate
line. You might want to make a note of it for new
users... they may become confused when they can't
get it to work.

2. In the article itself, you say 'Try to not toget excited
when the demo tells you your volume bitmap may be
damaged". Well, you won't have to worry about that
happening... the demo can never cycle through MU
error $58. In line 49 ofthe demo, and in line 34 ofthe

MU error handler, you load X with a #28. There are,
however, 30 errors in the table. It should have been
loaded with a #29. Since the error messagefor the
"volume bitmap damage" is in upper/lower case, and
the other are in all caps, it appears that you might've
added the "volume bitmap damage" message at the
last minute, andforgot to increment the X register to
allowfor it.

3. Also, because of the demo module itself, you will
never see error $1. To see en-or $1, the X offset would
need to be loaded with "0". In line 62 (of the demo
module), you only branch on a BNE.

As soon as the X register hits "0", the program will
end., instead of doing the $1 error msg. Change the
BNE to a BPL, and itwill work... the branch won't take
place until X becomes $FF on the next loop.

Sorry to cause so much trouble from my first read
through of SApp, but J thought that you'd want to
know. I'm not trying to bepicky...J think that SApp is
a GREAT programming magazine, and I WVE IT!
Keep up the good work!

Tom Hoover
Lorena, Texas

%e Sourceror's .fZLpprentice

Dear Mike: section must be:

Page 6

Eric Soldan's article in the September issue is fme, PDLADD
but I think there is a bug in the source code, on page
five. As published, the beginning ofPDLADD reads:

adc #0
plp

;add value of carry
;restores interrupts
;and clears carry

PDLADD plp
adc #0

;restore interrupts
;add value of carry

Nobody is perfect!

Sincerely,
Since we cleared the carry before saving the interrupt
status (with a clc, php several lines up), the adc #0 Yvan Koenig
line does exactly nothing. I think the Tight codefor this France

From the Parentheses and Brackets Department:

Steve Stephenson

By Steve Stephenson

oes To The ank(s)

One of the prices we pay as assembly language programmers is the responsibility of managing memory. (I
believe that high level languages were intended for those who would not accept this responsibility... but I'm
not here to pursue that discussion today.)

In my last letter, I extolled the virtues of using a mini-direct-page in the stack and the Direct Page Indirect
Long Indexed address mode (LDA [O],Y). Well, as most ofyou know (or should know), that addressing mode
may only be used when you are sure that the block of memory you're addressing is all on the same bank.
When you ask the Memory Manager for a block ofmemory to use, the attributes must include 'attrNoCross'
($xxlx) to guarantee that the block is completely contained in the same 64k bank.

But what do you do when you'd like a block larger than 64k? Or simply want to ease the demands on the
Memory Manager and make more efficient use of all the odd scraps ofmemory? Well, for openers, you don't
set 'attrNoCross' when you ask for the block. You also must use a different addressing mode! Or, as sure
as bugs, when you least expect it, the Memory Manager will grant you a block that straddles two banks! The
Direct Page Indirect Long Indexed addressing mode wraps around backto address $0000 on the lower bank
instead of continuing into the higher bank (very much like the JMP ($20FF) bug in the 6502). This creates
a bug of the worst order: the kind that doesn't always appear, and is practically impossible to duplicate.

So what addressing mode can you use for these situations? Well, you can always use the Absolute Long
Indexed mode (LDA >$2000,X or LDAL $2000,X). But that only works ifyou know ahead of time where the
block of memory is-which is not good style for a desktop program on the ngs. The addressing modes that
most nearlymatch the Direct Page Indirect Long Indexed while allowing for bankcrossing are the Direct Page
Indirect Indexed (that's the good old LDA ($O),Ywe've been using for years) and the really scary looking Stack
Relative Indirect Indexed (LDA (l,S),Y).

Actually, both of these alternatives are nearly identical. They both add the value of Y to the base address,
which means they can reach a full 64k. They both form the base address from a two byte pointer that is
located inbankzero. More importantly, theyboth transparently increment into the next bankwhen required.
It's just what's inside the parentheses that's different; one uses a pointer in the direct page and the other
uses a pointer in the stack.

There's a big catch to using these modes to reach anywhere in memory, though: you have to reset the Data
Bank Register. And restore it afterward. It gets a little messy when you realize that your program is on one
bank and the memory block is (most likely) on another bank. But I haven't found a better way to access a

%e Sourceror's JZLpprentice Page 7

runtime-assigned block that could cross bank boundaries.

Some code fragments may help at this point. For this example, we'll assume that we are trying to put some
known variable stuff (mystuff & morestuft) from our own code area into a block of memory that could be
anywhere. Getting the new handle, locking it, and dereferencing the handle have already been done. The
address of the block (myblock) is stored in your code space. And we are in full native (mx %00) mode.

*-------------------------
* the Direct Page style ...

1da myb 1ock+2
xba
pha
plb
plb
1dx myblock
stx zptr
1da >mystuff
sta (zptr), y
iny
iny
1da >morestuff
sta (zptr), y

phk
plb

*-------------------------

;get the block's bank
;fl ip it around
;put it on the stack (A is 16 bits)
;but PLB pulls only 8 bits; throw it away (zero)

now Data Bank = memory block bank

;put block's address into direct page
;must use long addr. to reach 'back' to our code bank
; else it would try to read 'mystuff' from this bank!

;reset Data Bank back to our code bank

* the Stack Relative style ...

lda myblock+2
xba
pha
plb
plb

1dx myblock
phx
lda >mystuff
sta (1, s) , y
iny
iny
lda >morestuff
sta (1,s),y

plx

phk
plb

;get the block's bank
;fl ip it around
;put all 16 bits on stack
;pop first 8 bits and throwaway (zero)
;now Data Bank = memory block bank

;put block's address on top of stack
;must use long addressing to go back to code bank

;fix the stack ~op the block's address)

;and reset Data Bank back to our code bank

These methods may be harder to follow, but if you need to float your block of memory anywhere, then
they may be your only answer. The stack relative method may be the only method if you have no direct
page.

The biggest problem I've had using these methods is forgetting to use long addressing when the data
bank is temporarily reset.

So, if your memory is all on the same bank, feel free to use the new square brackets... but if it isn't,
then you need to be using good old parentheses.

%e Sourceror's JZlpprentice

Screen snatchin'
By Ross Lambert and Eric Mueller

At the heart of almost any application using the
popular desktop metaphor is a screen pick rou
tine (also known a screen snatcher). This useful
(and powerful) chunk of code is designed to
qUickly save a piece of the screen and later, put it
back up in the display memory. (For example, it's
the key to the menu manager's menu caching.)

This month, we're presenting a double hi-res
screen snatch routine: with it, you can pass top,
left, bottom, and right coordinates, and the
routine will lift your data right off the screen into
a buffer. At that point, you can destroy the screen
(within the rectangle you just saved, of course). To
fix the screen back up, it's simply a matter of
telling the snatch routine where your data was
stored, and that you want it to be put back on the
screen.

In order to cut down on code size and make it
more applicable to desktop applications, the
program's coordinate system mirrors the 80
column screen - the smallest piece of data that
the snatch routine can work with is exactly the
size of one 80 column screen character, seven
pixels wide by eight pixels tall. If you're working
with a double hi-res character generator, this
screen snatcher is perfect! In order to keep within
screen bounds, the largest X coordinate you may
pass is 79 and the largest Y coordinate you may
pass is 23.

Because of the usefulness of this routine, it was
decided to make the program completely relocat
able. As a result, it can be loaded anywhere in
memory and may be used from Applesoft, ZBA
SIC, and just about any other language you can
call it from.

Let's dive right into the code. Once we're past the
header information and miscellaneous assembler
pseudo-ops (lines 1-22), we start with the
equates. Most are clearly commented, but let me
mention a few important ones: line 26, "data",
must be filled in before you call this routine. It's a
two byte pointer to the buffer where you wish the
screen data to be stored. In order to determine
how many bytes to reserve for the buffer, use this
formula: data_buffer_size =((right - left) '" 8) '"
(bottom - top), or, put differently, data_buffer_size
= (horiz_width >II 8) >II verCheight.

Lines 35-38 are the X and Y coordinates for the
top left comer and the bottom right comer of the
rectangle you wish to save. Remember, set these

Page 8

coordinates as if you were dealing with the 80
column screen... 0-79 for the horizontal axis and
0-23 for the vertical axis.

Finally, line 39, "direction", is a very important
flag: it controls whether or not you want to move
data from the screen to the buffer (save the image)
or from the buffer to the screen (restore the
image). Poke a zero for the former and a one for
the latter.

The program starts at line 53 by locking out
interrupts, calling a known RrS in the monitor
ROM, allowing interrupts to begin again, and then
leaping over the lookup table. This lookup table
(lines 58-81) is used to determine the base ad
dress for each of the 24 vertical positions we can
address on the DHR screen.

At "starU" (line 87), the program checks on the
stack for the last return address, placed there by
the JSR to the known RrS, above. Once we have
the address, we store it in the zero page pointer
PTR, and then, with PTR, self-modify the two
location-dependent lines of code in the program:
the instructions at labels "modify1" (line 119) and
"modify2" (line 122).

Once we have those locations properly set, and a
couple of miscellaneous variables initialized (lines
112-113), we're ready to start moving the screen
data about! "Yloop" (line 115) is the outer loop for
the entire program. It starts by locating the base
address for the line (0-23) that we're going to
store/restore from. The inner loop, "Xloop" (line
126), begins next.

After setting the pointer "BASE" to the correct
base address, the program determines if it should
work with main or auxiliary memory and set the
softswitches and an internal flag ("aux_flag")
appropriately (lines 125-135). At the label "main",
the program adds the horizontal offset to the base
address in order to get a pointer to the actual
character cell we're interested in saving.

Here, at lines 147-148, the program branches
depending on what you wish to do: if you want to
store data into your buffer, we continue on
through to the label "byteloop" at line 153. How
ever, if you chose to restore data to the screen
from your buffer, the program branches to the
label "restore" at line 202. Let's take a look at
"byteloop" first.

Once determining what page we're working with
(main or auxiliary) and flipping the appropriate
softswitch, we loop through the storage of one
byte, at lines 158-167: get a byte from the screen,
flip to main memory, get the offset into the data
buffer, put the data byte away, and bump the

rrhe Sourceror's 5lLpprentice Page 9

offset forward. If we're not done with the entire
eight-byte-tall single character block (the check is
at line 169), then we continue to loop through
"byteloop".

When we are finished storing that character cell,
the routine starting at line 181 ("Xck") takes over.
It first checks to see ifwe're done with this row
(horizontally), and if not, branches back to
"Xloop". Ifwe are finished with that row, we fall to
"Yck" (line 188) to see ifwe're done with all of the
rows (vertically). If not, the code returns to "Yloop"

for the next row down. Otherwise, it falls through
to "exit" and return to the calling routine.

The "restore" code (starting at line 202) is exactly
the same as the store code, except that the proc
ess is reversed. In other words, from lines 202
219, we get the offset into the buffer, get a byte of
the data, set the appropriate softswitches depend
ing on the screen column, and then drop the byte
onto the screen. Once an entire screen cell is
completed, the routine finishes (line 222) by going
back up to "Xck".

'" zero page & stack
BASE $06
data $08
PTR $0A

1st off
"''''************'''*''''''*****************
* ** DHR Screen Snatch *
* by Ross W. Lambert *
* Copyr i ght (C) 1988 *
* All Rights Reserved *
* ** vers ion 2. ls 6JJ i th I Er ic M0dz') *
* January 13, 1990 *
'" ************************************

STACK

;our zero page pointer
;FILL IN: pointer to screen data storage
;current position of this program's~ata

;address of stack

;put this code here
; (i tis re1ocatab 1e - change to anyth i ng)

;data offset storage
;old base address for each screen byte
;auxi11 iary memory flag
;FILL IN: x coord of top left
;FILL IN: y coord of top left
;FILL IN: x coord of bottom right
;FILL IN: y coord of botom right
;FILL IN: 0=save screen/l=restore screen

;don't expand macros

;a11ow 65c02 opcodes
;eight bit everything

;lock out interrupts
;goto harmless RTS to leave our LOC-l on stack

;harm1ess RTS in ROM
;softswitch to make PAGE20n point to main mem p2
;softswitch to make PAGE20n point to aux.mem pl
;reads status of 80STORE toggle switch

;se1ects page 1 main mem always
;se1ects pl aux mem if STOR80on selected
;reads status of PAGE2 switch

;Illl
dhr.save
off

orgAddr

$8000

$100

$0300
$0301
$0303
$0304
$0305
$0306
$0307
$0308

return

$FF58
$C000
$C001
$C018

$C054
$C055
$C01C

org

xc
mx
dsk
exp

SEI
JSR

=

orgAddr

* Page 3 freespace
st_offset =
oldbase
aux_f1 ag
xtop
ytop
xbot
ybot
direction

PAGE20ff
PAGE20n
PAGE2rd

* ROM
return
STOR80off
STOR80on
STOR80rd

start

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

rrhe Sourceror's !JLpprentice Page 10

.A

ceC
I 'oj f\

A'DC
Sf F'
1M :f

i))r~;get high byte

;get low byte of our current position

;put stack pointer into X

;now do highbyte of base address

;clear storage offset
;get vertical position (YTOP)

;and store it

;store on stack
;double it (lookUp table in 2 byte pairs)
;shift to use as offset

;get lowbyte of base address from lOOkUP table
;store it

st offset
ytop

screen,X
oldbase+1

#modify2-orgAddr-7
PTA
(PTA) ,Y

screen,X
oldbase

PTA+1
(PTA) ,Y

LOY #modify1-orgAddr-7 ;modify location of screen lookUp table
LOA PTA
STA (PTA), Y
INY
LOA PTA+1
STA (PTA), Y

TSX
OEX
CLC
LOA
AOC
STA
INX
LOA
AOC
STA

LOY
LOA
STA
INY
LOA
STA

STZ
LOA

PHA
ASL
TAX

LOA
STA
INX
LOA
STA

**
* figure out where the heck we are and store on zero page
**

CLI
BAA startl ;jump over table

screen ow -$2000 ; 1 ne 0 OHA LOOKUP TABLE
OW #$2080 ; 1 ne 1
OW -$2100 ; 1 ne 2
OW #$2180 ; 1 ne 3
OW #$2200 ; 1 ne 4
OW -$2280 ; 1 ne 5
OW #$2300 ; 1 ne 6
OW -$2380 ; 1 ne 7
OW -$2028 ; 1 ne 8
OW #$20A8 ; 1 ne 5
OW -$2128 ; 1 ne 10
OW -$21A8 ; 1 ne 11
OW #$2228 ; 1 ne 12
OW #$22A8 ; 1 ne 13
OW #$2328 ; 1 ne 14
OW #$23A8. ; 1 ine 15
OW #$2050 ; 1 ine 16
OW #$2000 ; 1 ine 17
OW #$2150 ; 1 ine 18
OW #$2100 ; 1 ine 15
OW #$2250 ; 1 ine 20
OW #$2200 ; 1 ine 21
OW #$2350 ; 1 ine 22
OW #$2300 ; 1 ine 23

modify2

modify1

start1

Yloop

55
56
57
58
5S
60
61
62
63
64
65
66
67
68
6S
70
71
72
73
74
75
76
77
78
7S
80
81
82
83
84
85
86
87
88
8S
50
51
52
53
54
55
56
57
58
55
100
101
102
103
104
105
106
107
108
105
110
111
112
113
114
115
116
117
118
llS
120
121
122
123

erne Sourceror's .9Lpprentice Page 11

* reads in all 8 bytes in one screen block

OE>L ' I' (• •/CLC) "",..-vV' ,~ , <A

C cmr'" BASE+l
ADC #$04
STA BASE+l
BRA byteloop

;add horizontal position/2 to base address

;clear flag
;divide by two ~ue to divided nature of OHR screen)
;cols 0,2,4,6, etc in aux meml 1,3,5 in main
;set auxmem flag

;store current horizontal position on stack
;get back old base address for this vert. 1 ine
;store it onto zero page
;now do highbyte

;get screen data from 1st byte in bloCk
;set softswitch so we're back in main mem

;pull off current horizontal position
;compare current hpos to ending hpos
; if done, advance Y loop

; in it byte counter
; and offset

;snatch screen (0) or restore it (1)?

;get storage offset
;store it

; increment horizontal position

;are we in auxmem?
;0 means main memory
;loCk out interrupts
;set softswitch

;did it rollover to zero?
; - if so, increment highbyte of data «>$FF)
;save new offset
;clear y offset

;get last vertical 1 ine done off stack
;compare current vertpos to ending vertpos
; if done, exit

; inc vertical 1 ine #

;all done with screen block
C ";;: ,,~

;else decrement counter

A'DC :3
;add 1024 to get next byte in screen block

Ole,
'i'JC C

xbot
Yck

(.1.\)(" 1(,1
r_ C c-n

Xl
IIOC c-

oop

ybot
exit

LOA xtop
PHA
LOX oldbase
STX BASE
LOX oldbase+l
STX BASE+l

STZ aux_flag
LSR
BCS main
STX aux_flag

CLC
AOC BASE
STA BASE
LOA BASE+l
AOC #$00
STA BASE+l

LOX #7
LOY #0

LOA direction
BNE restore

LOA aux_fl ag
BEQ main2
SEI
STA PAGE20n

LOA (BASE) ,Y
STA PAGE20ff
CLI
LOY st offset
STA (data), Y

INY
BNE save os
INC data+l
STY st_offset
LOY #0
CPX #0
BEQ Xck

OJ' (W

INC

PLA
CMP
BCS

INC
BRA

PLA
CMP
BCS

Xloop

main

main2

byteloop

Xck

Yck

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

l
I

%e Sourceror's flLpprentice Page 12

* Restore indicated portion of screen

ex it RTS

; if not, dec counter and add next offset

;all done with screen block?

;and branch back

;only need to add to highbyte
;add 1024
;can't ever wrap

;clear offset
;store data for awhile
;aux mem?
; if not, jump right to main
;lock out interrupts when in aux mem

;get back data
;store byte to screen memory
;repoint us to main memory

;get current data storage offset
;get data
; incrememt data offset
;did it rollover?
; if so, increment highbyte
;save new offset

eLC

! '
\ ~,~

(BASE), V
PAGE20ff

#0
Xck

Vloop

BASE+1
#$04
BASE+1
restore

PAGE20n

st offset
(d~ta),V

:3
data+1
st_offset

#0

CPX
BEQ
OEX
CLC
LOA
AOC
STA
BRA

BRA

LOV
PHA
LOA
BEQ
SEI
STA

LOV
LOA
INV
BNE
INC
ST'Y'

PLA
STA
STA
CLI

:3

main3

restore

1S3
1S4
1SS
1S6
1S?
1SS
1SS
200
201
202
203
204
205
206
20?
208
20S
210
211
212
213
214
215
216
21?
218
21S
220
221
222
223
224
225
226
22?
228

Copyright 1989 by Ross W. Lambert and Ariel Publishing
All Rigts Reserved.

rrhe Sourceror's flLpprentice

98846
GEnie: R.W.LAMBERT

Editorial correspondence:

6547 N. Academy Blvd. Apt. #443
Colorado Springs, CO 80918
(719) 531-5893 GEnie: E.MUELLER

Subscription-related correspondence:

Box 398
Pateros, WA
(509) 923-2249

Eric Mueller
Ross Lambert
Tamara Lambert
Jay Jennings, Jerry Kindall
Rebecca Lambert

Editor:
Publisher:
Subscriptions:
Technical Editors:
Stamp Licking:

Apple, Apple II, IIgs, BASIC.SYSTEM, and ProDOS are registered
trademarks of Apple Computer, Inc.

We here at Ariel Publishing freely admit our shortcomings, but
nevertheless strive to bring glory to the Lord Jesus Christ.

Subscription prices in US dollars (Canada and Mexico, add $5, non
North American orders, add $18 per year): one year...$29.95, two
years...$56

Back issues are $3 each (non-USA, add $2). There is aquarterly
source code diskette available for $25 per year (Canada and
Mexico add $5, non-North American orders add $15).

WARRANTY AND LIMITATION OF LIABILITY: Iwarrant that the information inThe Apprentice is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full refund of their last subscription payment at any time. At no time shall I or my contributors be
held liable for any incidental or consequential damages in excess of the fees paid by a subscriber. And don't forget. ..~[p)~@ ~~ [f@I!®\'§@U'i

