
rentice
The Assembly Language Journal of Merlin Programmers Vol1 No 10 October 1989

Dear Mike,

I enjoy your publication very much, however there
are afew things that I would like to point out or ask
about.

In your September '89 editorial you said something
about "limited by space". In comparing your newslet
ter to A2-Central, it looks like you have too much
space. I would like it better if you used a much
smaller typeface, smaller (or fewer) pictures, and
double column assembly listings. For $28/year, I
need more stuff. Are you not receiving enough mate
rial to publish? Just look at all the unused space on
pages 8-11 and 16 ofSeptember '89/ A whole page
justjor copyright info?

I really like your editorial comments in the articles. I
believe even more are in order (ala Cecil's in CALL
A.P.P.L.E.).

We really need a good assembly newsletter like
yours. (I really hated seeing Bob's go away.) You are
improving, though maybe you tackled too many
magazines at the same time.

Thank youfor your time.

Robert Muir
FPO San Francisco

Dear Robert,

First, I must say that your letter had quite an effect
on me. I was upset, initially, because I'm not certain
most folks understand the newsletter industry and
the economics thereof. But it also made me think, so
I suppose that it served a good purpose. Further
more, it has served as the springboard for change,
and an excuse to share with the subscribership the

Mike Rochip: A determined man

constraints under which a newsletter ofthis nature
must operate.

You'll notice the changes in the layout ofthis issue.
They were prompted by your comments, Robert,
and those of all the rest ofyou who have written re
garding this. That is one of the advantages of a
newsletter over a magazine.

However, I think you all need to understand what
was going through my mind as I produced the last
issue, and the costs I must balance with every issue.

Stop and consider that The Sourceror'sApprentice is
usually advertised as a 12 page newsletter. Now
consider that last month I put out a 16 page
newsletter. Yes, there were big pictures and some
white space. But would you have been happier had
I crammed everything into 12 pages? I admit, I only
had about 14 pages ofmaterial. In such a situation
I am faced with either 1) going with 12 pages and
serializing at least one article, or 2) spreading out

%e Sourceror's J2Lpprentice

the 14 pages into 16.

Sure, I could have printed another short article. But
articles cost money or time. Have we forgotten
that Bob s-c just flat ran out of both with AAL? I
have precious little of either commodity myself. I
have plenty of articles and source code to print, but
as soon as I do lowe someone some money. I have
paid every contributor something for their work, al
though usually only $25 - $75. I am convinced that
it is a) the morally correct thing to do, and b)
necessary for attracting high quality articles.

So am I just too cheap to print a bigger rag? Let's
look at some facts and figures:

Income: The total subscriber base is currently
about 400. The average price paid has been $25
(we've had some intro offers and what-not). That
means the total income from the newsletter has
been about $10,000. Since the quarterly disk is
barely a break-even deal, I'll exclude it from these
figures.

Expenses: A 16 page issue (as most have been) costs
me $289 to have 450 printed (With the quality of
print and paper I demand). That's $3468 per year.
Postage for a 16 pager is $.45 per issue. That works
out to $2160 per year. Articles cost between'$75 to
$150 per month. Let's split the difference and call it
$110. That's $1320 per year.

Not including office expenses, phone bills, enve
lopes or my time, we come out with $6948 total
expenses. Let's call it $7000.

That leaves $3000 to pay for any marketing and
expansion - and my salary. For an entire year.

Some folks have said that I ought to allow advertis
ing. Fine, except that I cannot find any advertisers.
The fact is, the market of hard core Apple II assem
bly language programmers is sufficiently narrow
(probably less than 1500 total) that nobody is going
to pay very much for advertising herein. One major
Apple II hardware company told me that they
wouldn't advertise here if I gave them the space for
free - it wouldn't be worth their time and effort.
Incidentally, this same company did advertise in
AAL for awhile, so they were basing their decision
on experience.

A publication like this one can only exist in news-

Page 2

letter form (Le. subscriber supported).

I am a little sensitive to the comment about needing
more for $28. I have spent a considerable amount of
time over the last six months talking to various
business and marketing people aboutAriel Publish
ing. Without fail, every single person has advised
me to triple or quadruple the prices ofmy publica
tions. They point out, correctly, that highlytechni
cal information that cannot be got elsewhere is
worth a lot (we were the first to discuss the new tool
startups, the first with resources, and the only
Apple II publication dedicated to teaching and
sharing assembly language programming tech
niques.). Many financial newsletters, for example,
routinely charge $140 or more per year. One com
modities newsletter I've seen is over $900 per year!
Even if I lost 50% of my subscribers, I've been told,
I'd still come out way ahead.

I'm not going to do that, however. Instead, here in
the short run, I'm going to cut costs by limiting each
issue to 12 pages (our advertised length all along!).
As compensation to y'all, the new layout will
squeeze in more per page.

And consider the price of Apple's Partner Program
peryear, too ($600). Granted, we do not dish out as
much information (or junk mail). But they do not
explain things as well (I think) nor do they screen
out extraneous info.

I am determined to avoid joining the long list of
failed, deceased, or struggling Apple II publications
(which definitely includes the now gasping CALL
AP.P.L.E.). The list of which I speak is not neces
sarily a commentary on the state of the Apple II
market, by the way, since our beloved SoJtalk died
during the heyday ofthe II. The reasons in each case
have been a combination of business blunders and
an inability to keep costs down. Of course, Apple's
lack of marketing momentum and money has not
helped, either.

Well, I guess I have thoroughly vented my spleen
here, haven't I? I hope nobody found it offensive
my intent was to inform and educate. I also hope
some of you found it enlightening. If you like The
Apprentice and would like to help insure its suc
cess, the best thing you could do would be to talk a
friend into subscribing.

rrfie Sourceror's .f2Lpprentice

Frankly, I have been a little discouraged and frus
trated (you could tell?) by the lack of success ofmy
last two marketing ventures (embarrassing for a
supposed "guru" of small business marketing). I
fully expected to be up over 1,000 subscribers by
now.

Which leads me to my final point: Robert's letter
really DID make me think (and I thank you for it,
Robert, and for your diplomacy). As much as I have
berated Apple and others for being insensitive to
theirmarkets, I am nevertheless a little guilty ofthat
myself.

I have therefore included a qUick sUlvey on an
insert to find out what y'all are thinking and how I
can make this a better newsletter, more in tune with
your needs.

I'll do everything I can, but I thought you all should
know what constrains us.

DesignMaster?

By the way, a couple people pointed out that I
prepared y'all for the shock of the new price of
DesignMaster but never delivered the shock itself.
Whoops. Who proofreads this newsletter, anyway?
... The ByteWorks has placed a suggested retail
price of $95 on the latest version (compatible with
system software version 5.0). One thing I forgot to
mention was that the program is greatly expanded
and enhanced, thus there is yet another reason for
the price increase. The new version is currentlybeta
testing. .

Macro Mania

I'd also like to place a call for macro maniacs - do I
have any volunteers for the APP.BUILDER to Merlin
translation? APP.BUILDER is Eric Soldan's macro
masterpiece for 8 bit Apple II assembly language. I
won't have the time to do the translation work for
awhile. Anybody else want a whack at it? You'd be
doing all Merlin 8-bitters everywhere a terrific serv
ice! Since APP.BUILDER was created by Apple, I
cannot sell it, hence I cannot pay anyone to do the
translation work. But I can give away free copies -
if I had a Merlin version...

Page 3

Wanna Be a SubContractor?

Would anybody like to go into business for them
selves as our quarterly disk distributor? I'd send
you the contents of the newsletter each month on
disk (plus other goodies). Your job would be to
arrange them into a package, copy the disks, and
mail out them out. The most onerous duty of it all
is the disk duplication (yuk) . We have about 85 disk
subscribers. I'd pay a king's ransom to get this off
myback. Sendme a bid ifyer' interested (include the
costs of postage and disks).

Speaking of the quarterly disk, if you are a share
ware author and would like some qUickie distribu
tion, or if you have a demo version of a full fledged
commercial product, we'd be oveIjoyed to put those
buggers on our quarterly disk.

Important NEWS FLASH!!!

Ariel Publishing has a new phone number. We
moved to bigger digs and "Boondocks Bell" could not
let us keep our old number. The new number is
(509) 923-2249.

Now back to our regularly scheduled publication...
I hope you enjoy it (a little pun considering that two
of our feature articles this month have to do with
joystick programming).

== Ross ==

"II you WOUld":::~i:~;:~~~i~~:~ii:he Lom God Ihinks of
MS-DOS, you have only to look at those to whom he
has given it."

(with apologies to Maurice Baring and Guy Kawasaki)

%e Sourcerors !lLpprentice Page 4

Just when you thought it was safe...

st•1

by J eny Kindall, Contributing Editor

I really enjoyed Eric Soldan's piece in the Septem
ber, 1989 Sourceror's Apprentice. I'd never even
thought it possible to get that much resolution out
of a joystick. Now, though, I'm using a variation of
Eric's routine in a new Apple II CAD program that
Kitchen Sink Software is working on.

bug, but I needed to get rid of the extra count. I
originally tried initializing the accumulator to $FF
instead, but that caused the accumulator to jump
from $FF to 0 to 2, skipping 1 entirely, because of
the carry generated.

I feel quite odd about presuming to improve on a
literal gem of a routine, but there are, indeed, a few
improvements that one can make. For reference,
here's the heart of Eric's original routine, sans
comments, with a few equates added, and with a
label attached to the first instruction ofthe routine,
but otherwise as printed on page 3:

1 ptrig $C070
2 paddlO $C064
3 yval $00
4
5 rdpdlO bit ptrig
6 ida #$00
7 tay
8 ele
9 loop ade #$01

10 ldx paddlO
11 bpi done
12 iny
13 ldx paddlO
14 bmi loop
15 done sty yval
16 ade yval
17 ldy #$00
18 bee rtsO
19 iny
20 rtsO rts

The first thing I noticed was that the routine starts
counting at I, not 0 as we programmers are usually
accustomed to counting. This happens because the
accumulator starts out at zero (line 6), and is
incremented (line 9) before the termination condi
tion is even tested (line 10). ThiS isn't necessarily a

It's easier to adjust things after the fact. I stuck in
a DEY right before line 15 (and gave the newline the
label DONE), reasoning that it didn't matter which
counter I subtracted the excess count from. How
ever, this caused 0 to return as 256, because of the
carry generated by adding 1 and 255 (the result of
decrementing 0 in the Y register.) Eventually, I
succumbed to being non-clever and inserted a SEC,
SBC #1, CLC right before line 16. The revised code,
then, follows:

1 ptrig $C070
2 paddlO $C064
3 yval $00
4
5 rdpdlO bit ptrig
6 ida #$00
7 tay
8 ele
9 loop ade #$01

10 ldx paddlO
11 bpi done
12 iny
13 ldx paddlO
14 bmi loop
15 done sty yval
16 sec
17 sbe #l
18 ele
19 ade yval
20 ldy #$00
21 bee rtsO
22 iny
23 rtsO rts

'I'fie Sourceror's J2Lpprentice

I then got to wondering why Eric used the accumu
lator to count one half ofthe loop rather than using
the X register. Using the X register would allow the
INX opcode to be used in place of the ADC, shaving
a cycle off the increment time. Looking at the cycle
times in the comments for the listing, I realized that
Eric used the accumulator and ADC to make both
sides of the loop run with the same number of
cycles. I wondered what would happen, though, if
I did use the X register instead. The result was
mind-blowing: Iwas able to read values ofup to 410
from my joystick! Despite the minor inaccuracy
introduced by the "lospidedness" ofthe new loop, it
seemed to work fine. Here's the routine:

1 ptrig $C070
2 paddlO $C064
3 yval $00
4
5 rdpdlO bit ptrig
6 ldx #$FF
7 ldy #$00
8 ele
9 loop inx

10 lda paddlO
11 bpl done
12 iny
13 lda paddlO
14 bmi loop
15 done sty yval
16 txa
17 ade yval
18 ldy #$00
19 bee rtsO
20 iny
21 rtsO rts

I start the X register at $FF, which means that the
first wrap will take me to 0; thus, there's no need to
adjust the count at the end of the loop to make it
start at zero. Since INX doesn't affect the carry flag,
the problem I ran into with Eric's ADC loop doesn't
happen here when X wraps around to zero.

JOYSTICK CONNECTIONS

Eric suggested making sure that a joystick was
connected before calling his routine. Here's a
routine that'll do that, returning with a set carry if
there's no joystick connected and a clear carry
otheIWise:

Page 5

1 paddlO $C064
2 pread $FB1E
3
4 ehkstk ldx #0
5 .jsr pread
6 iny
7 bne found
8 ldy #2
9 ldx #$80

10 wait lda paddlO
11 dex
12 bne wait
13 dey
14 bne wait
15 bit paddlO
16 bpl found
17 sec
18 rts
19 found ele
20 rts

The routine reads paddle 0, using the usual PREAD
routine at $FB1E, and if any value other than 255
is found, a joystick is known to be connected. If a
255 is found, it could mean that the stick is full
right, or that there's no stick at all. Lines 8-14 form
a short delay routine. After the delay, ifthe PADDW
timer is still high, it means that no stick at all is
connected. In Kitchen Sink's CAD program, the Y
coordinate needed to have a range of only°to 212,
so I was able to use PREAD to read the Y axis, and
check for a disconnected joystick just before read
ing the X coordinate with Eric's method, all within
the same routine.

TROUBLE-FREE DELAYS

In my delay loop above, I access the paddlO timer
repeatedly. This keeps most accelerators running
at 1 Mhz through the loop - a favorite trick ofmine
for acclerator-independent timing. This doesn't
keep the ngs going slow, though; you need to
explicitly slow it down when accessing the Apple
game paddle softswitches. Iwrote a couple ofsimple
routines which manipulate the ngs speed; you
might want to have the paddle routines call
SLOWGS before doing anything else, and exit with
aJMP to FASTGS rather thanwith an RTS. FASTGS
doesn't actually set the GS's speed to fast, but to the
speed in effect when SLOWGS was called. Here's
the code:

rrhe Sourceror's .9Lpprentice Page 6

1 romid $FE1F
2 speed $C036
3
4 slowgs sec
5 jsr $FE1F
6 bcs noslow
7 lda speed
8 sta oldspd
9 and #$7F

10 sta speed
11 noslow rts
12
13 fastgs sec
14 jsr $FE1F
15 bcs nofast
16 lda oldspd

:i~:::~~;:::i!;:t~;i'::::~l:~l":17 and #$80
18 ora speed
19 sta speed
20 nofast rts An early mesozoic hacker21
22 oldspd ds 1 (MSDOSus Hackemupus)

I know Eric taught me a lot with his originaljoystick
routines; I hope you find mine to be as instructional.

For example, back in volume 1 numbers 3 and 4 of
the Sourceror'sApprentice, Mr. Lambert published
an article by me detailing some code for reading an
Apple joystick in a different way. Nothing new here
as it had all been done before in one form or another.
I simply created one way of doing it and took the
opportunity to share this approach with others.
Well, after writing that article and code, I have
managed to make improvements in how I use the
code. I have even managed to make some small
improvements in the code itself. All the changes
were made in the DOJOYSTICKand UPDATEJOYS
TICK routines. The other routines still work just
fine and need no changes (as far as I'm concerned
at any rate). The changes are as follows:

ft
1

by Steven Lepisto

Sometimes I think software is a process and not a
thing. It changes over time as new ideas and
techniques are learned and applied. Occasionally
there will come along a really novel idea which will
revolutionize the whole view of software but those
kind of ideas are qUite rare. In reality, most changes
in software are evolutionary: small changes that are
applied to make the software better and better over
time.

1) I have modified the DOJOYSTICK routine, which
processes the raw data from the joystick, so it no
longer handles the keyboard in parallel with the
joystick. Instead, I have found it more useful to
break out the keyboard handling into a separate
routine so it can be called independently ofthe stick
handling. This allowed me to have simultaneous
keyboard and joystick handling for a two player
game. This approach has also changed how I use
DOJOYSTICK.

(All line numbers are in reference to those printed

rrhe Sourceror's .flLpprentice

in S.A. volume 4 number 4.)

To eliminate the parallel keyboard support (and
some dead code), replace lines 198 through 214
with

Ida stickstate

Ifyou wish to keep the keyboard support, just delete
lines 210 through 214 which are unused instruc
tions left over from an earlier version.

Because of the need to process state values from
different input devices, DOJOYSTICK now becomes
a general processing routine and no longer dedi
cated to a joystick. This means that two player
games with simultaneous input are now much
easier to accomplish since all input devices can be
treated as a joystick. Also, it is now possible to
modify DOJOYSTICK slightly to pass information to
and from the routine in the registers for faster and
easier use of the routine. These changes are not
strictly necessary since you can simply copy the
device's state value into STICKSTATE, call
DOJOYSTICK and then copy the new value in
STICKSTATE back into the variable holding the
device's old state value. You must also save or use
JOYVECTX, JOYVECTY, BUTION_STATE, and
TRIGGERbefore the next call to DOJOYSTICK since
they are changed each time the routine is called.

To make DOJOYSTICK use registers for passing
information (and thereby reduce the number of
external variables you need to deal with), make the
follOWing changes:

Page 7

exits, theA register will contain the new state value,
the X register will contain the x vector, and the Y
register will contain the y vector. BUTION_STATE
and TRIGGER will still contain those appropriate
values. JOYVECTX, JOYVECTY, and STICKSTATE
no longer have-io be made external to the joystick
routines file thus reducing the number of external
variables to two.

To support the keyboard as a separate device, call
DOKEYSTICKseparately (don't forget to add an ENT
after the label DOKEYSTICK) then immediately call
DOJOYSTICK (DOKEYSTICK returns the state
value in the A register). You don't have to worry
about retaining button press states from one read to
the next because there is no reliable way to tell if a
key is being held down and therefore the "button
still down" and "button up" states are meaningless.

In UPDATEJOYSTICK, the follOWing changes will fix
a bug and make it so that the routine doesn't use
STICKSTATE (which gets stepped on in DOJOYS
TICK). The first two changes correct the bug.

a) change line 291 to read

bmi : 1b

b) insert at the beginning of line 301 the
label ":lb"

c) rename STICKSTATE in lines 301 and 336
to JOYSTICKSTATE.

d) insert after line 89

a) insert after line 268: joystickstate ds 1

sta stickstate

b) and replace lines 198 through 214 with

(ifyou have made the change to eliminate keyboard
support alreadymentioned, replace the LDASTICK
STATE with the STA STICKSTATE at the beginning
of the routine.)

Idx
Idy

joyvectx
joyvecty

e) insert after line 101

sta joystickstate

That's it. The bug had to do with the case when a
stick wasn't plugged in. The old button state would
have random results from one read to the next
meaning that if a stick wasn't plugged in and
someone pressed the open-apple key, the routine
would return erroneous results for the last button
state read which all means that "button up" and
"button still down" states would be inaccurate.

To use DOJOYSTICK now, pass in the A register the
state value you want to process. When the routine So much for changes to the routines. I do have a new

rrhe Sourceror's .9lpprentice PageS

way of using said routines which grew out of many
experiments. Specifically, I now call UPDATEJOYS
TICK and then immediately call DOJOYSTICK to
process the state value thusly:

jsr updatejoystick
txa
jsr dojoystick

(UPDATEJOYSTICK returns the current state value
in the X register so a TXA is needed between the
calls). I read the stick then process it all at once.
This keeps the process of reading and handling the
stick (and other devices) all in one area for easier
changing. I can now have a single routine for each
device that, when called, will update that device's
state value and return specific information needed
by the calling routine. All nice and neat.

Software is changing all the time. By the time I put
out a program, the code has undergone a number of
changes from the day of conception. Not only has
the design changed but how it has been imple
mented has undergone significant change. That's
why I think software is a process. My joystick
routines are one example ofthat process of change.
Another real world example is an animation tech
nique on the IIgs ofusing stackmanipulation on the
super hires screen. Alien Mind is the first game I'm
aware of that uses a form of this technique. Then
came Zany Golf with incredibly fast scrolling of a
very large area. Then came Sword ofSodan with its
nearly full-screen scrolling with fast animating fig
ures 2/3's the size ofthe screen. Each game builds
on the techniques of the last to create better and
better software.

Software changes and improves. This because the
programmer him/her -self grows and changes. We
experiment with new ways of doing things, having
seen that something thought impossible by most is
in fact quite possible when someone goes and does
it. As we experiment we learn and grow in experi
ence' broadening our scope ofunderstanding which
in turn allows us to experiment further, the process
feeding itself in a never-ending cycle.

And so Software lives on.

(Editor: Say Steve - any chance you'd enlighten us
regarding the graphics techniques you mentioned?)

by Ross W. Lambert, Editor

System diskversion 5.0 (and it's progeny, the newly
released 5.02) has introduced some brand new con
cepts for GS programmers. One of the most impor
tant and least understood is that of resources.

What they is

A resource is an amazingly protean little beastie
that can be all things to all programs. It is a mistake
to pigeonhole resources as merely text, icons, dia
logs, and menus, although they are those things,
too. In reality, a resource is whatever you want it to
be. It is W1y data structure your program might
need, including tokens for a programming lan
guage, parameter settings, and even program code!
CODE resources are quite common onApple's other
machine (note that I did not utter the "M" word).

Although resources themselves are new, the con
cept of positioning a program's data outside the
program code proper has a long and glorious history
on the Apple II. We all know, for example, that we
can change Merlin's behavior by manipulating the
PARMS file. Apple also has long espoused placing
a program's text all in one place for easy customiza
tion and localization (I've written several 8 bit pro
grams that way and it does have advantages). And
if you've ever BLOADed a binary file into an Apple
soft program, you've been using an external re
source of sorts.

%e Sourcerors Ylpprentice

Resources on the GS, then, are a formalized, easily
managed procedure for tucking your program's
data away in a nice safe little cubbyhole. This cubby
hole is often referred to as the "resource fork". The
part ofa file that holdsyour program code is referred
to as the "data fork", and yes, it is the "normal" part
of the file we're used to dealing with. At this point
it is important, conceptually, to distinguish be
tween the data your program uses (which we'd
probably want in the resource fork) and the data
your program generates (which we'd probably put
into the data fork of a separate document file).

The obvious advantage to using the "fork" system is
that the resources travel around with the file. If
someone. copies your program from one disk to
another, you don't have to provide a list of all the
subprograms, binary files, and parameter file lists
that need to be copied with it (ever forget to copy one
of AppleWorks' segments?). Instead, due to the
magic that is resources, the user just copies your
program. All of your resources just travel right
along with it.

Another significant advantage to resources is that
t~eResource Manager does all the dirty work. Ifyou
use the new _StartUpTools call Jay discussed last
month, the Resource Manager will be automatically
started andyour resource file opened. Ifyou do your
tool set startups the old fashioned way, you'll need
to explicitly start the Resource Manager and open
your resource fork. At any rate, the Resource
Manager provides a kind of virtual memory system
for resources.

Let's say that you have a large program with a ton
of resources operating on a computer with limited
memory. Ifyou mark your resources as purgeable,
the Resource Manager will pull them into memory
as there is room and as they are needed. Ifyou are
working on a larger system (memory-wise), all ofthe
resources will stay in memory. (Note: There are
several schools oj thought regarding the proper
manipulation oj resources. Some people promote
ditching resources underprogram control- Le.jorcing
a memory compaction - in order to avoid memory
fragmentation, others say let the system do it. We'll
step into that fray in ajew weeks.)

The key to this functionality is the way the _ Load
Resource call works. Ifyour resource is in memory,
it returns a handle to it. If it is not in memory

Page 9

(purged due to memory compaction or whatever), it
loads the resource from disk and then returns a
handle to it.

If you want to get at the resource data itself, you
simply access it via the handle, perhaps locking the
block and getting a pointer.

Resource, resource, who's got the resource?

One interesting aspect of resources is that my
program can open and read your program's re
sources. This is how resource editors work, for
example. In fact, a file can have no program code
and only a resource fork (in truth, the data fork is
said to be empty). In fact, during program develop
ment, you will probably wantto have your resources
in a separate resource file, Le. not in your
application's resource fork. In such an instance you
will need to open the resource file and load the
resources yourself.

The reason for working that way is that your re
sources, once developed, will probably change less
often than your program code. Since each recom
pilation produces a new application, you'll be con
stantly having to read in the resources and stuffing
them into the resource fork of the application. 'Tis
far easierto read themfrom an external resource file
until yer' done.

How do I get started?

Now that we've delivered the "teaser" and told you all
about resources and their usefulness, I must let you
down a little. Developing the resources themselves
is a fairly involved process, most easily done via a
resource editor. Such editors usually create a sort
of environment where you "draw and drag" your
controls, type in your menu names, or otherwise
allow the qUick and easy entry of resource data. The
editor itself then does the hard work of writing the
data to a resource file.

Unfortunately, as Jay pointed out in his article this
month, Apple chose to make their initial editor
(called Rez) , anAPW add-on instead ofa stand alone
application. Jay outlined a process whereby you
can still use Rez, but it is a little convoluted and
requires APW or Orca.

rrhe Sourceror's !JLpprentice Page 10

Fortunately, commercial vendors have not been
qUite so near sighted (actually, I think Apple has a
rightto support their product -APW - butthey'd jolly
well better come up with a stand alone application,
too.) The ByteWorks (ironically!) is fUriously devel
oping a new DesignMaster which will develop re
sources as well as source code. And another
prototyper, Genesis, is also underway. Best of all
though, a well placed source at Roger Wagner
Publishing (thanks Jell) told me that Glen Bredon
is also developing a resource editor for us Merlin
aficionados. None of the companies involved,
however, have even suggested a rough release date.
(. .. a deep sigh of impatience was heard throughout
the land...)

Even though it'll be awhile before you can use a
resource editor (easily) from Merlin, it is not too
early to survey the landscape. Almost any data
structure in your code (window definitions, icons,
etc.) can be fodder for inclusion in a resource. Look
around - I think you'll be amazed.

== Ross ==

I found that not only was there a lack of sample
source to study, but the documentation that comes
with the Rez compiler assumes you already know
how to use them. I'm sure the information in the
binderwill be useful at some point in the future, but
what I need at the beginning is some sort oftutorial.
That's what I hope to do with this article.

There's a big minus to using resources right now.
Until Genesys, Design Master, and other resource
editors start shipping, the onlyway to use resources
is with the Rez compiler. And that runs under the
APW or Orca shell. The Rez compiler is available for
about $50 through APDA and you can find the Orca
shell (under the name Orca/M assembler) in most
mail order ads. Glen Bredon, author of Merlin, is
planning on some sort of resource support for
Merlin in the future.

Assuming you have the necessary tools, we're now
going to put together a program that starts all the
tools, throws up an alert window, and then qUits.
No, it's not very exciting, but it'll get you started in
the brave new world of resources!

When I decided itwas time to dive into this new area

More Resource Info

When ngs System Disk 5.0 came on the scene it
brought a new feature with it...resources. This
article i~ for those programmers who know what
resources are, but don't know how to implement
them.

;result space
;ID from the Memory Mgr
;next ref is res ID
;ID num of our resource

;StartUpTools call
; we need this for ShutDown

PushLong #0
PushWord UserID
pea 2
PushLong #1
Tool $1801
PullLong SSRec

There are only two changes. Our third parameter'
used to be a zero which meant the fourth parameter
would be a pointer to a table of tools. Now it's a two
which means the next parameter will be a resource
ID. Just in case you were wondering, a one in the
third parameter slot means we'd use a handle in the
fourth slot.

Let's deal with the StartUp and ShutDown routines
first. Ifyou typed in the new Generic StartUp routine
in the last issue ofSApp, you have almost everything
you need. By changing just a few lines in the code
we'll tell the program to look for the list of tools it
needs in the resource fork. Here's what the tool
StartUp call should look like:

. Now, where did we get this mysterious resource ID
from? We made it up! That's right, these are my
resources so I'll give them any ID I want. And you'll
notice that the ID for the alert window is also a one.

et
a

•Ie s
all

%e Sourceror's .9lpprentice

You can use the same ID for different resource types
since the StartUp call is only
going to be concerned with a StartUp resource, etc.

Here's the new format for the ShutDown call:

Page 11

23,0,
27,0,
28,0,
34,0
}

} ;

When we started the tools we pulled a parameter off
the stack and saved it in SSRec. Since we're using
resources we pulled offa handle instead ofa pointer.
And that's why our first parameter for the Shut
Down is a one instead of a zero.

There you go, that's all the Rez code required. Notice
that the string used for the AlertWindow is almost
exactly like you've been using all along.

*/
{

"23/I'm using resources!/AYeah!\OxOO"
} ;

PushWord #1
PushLong SSRec
Tool $1901

;reference is a handle
; give it back the record

;ShutDownTools

resource rAlertString (1) /* resource ID

We're half done with the new StartUp/ShutDown
routine. We have the needed code, but the program
would crash if that's all you did. We still need to
write the actual resources, so go start up APW and
get ready for Rez.

Since we've already seen how to change our StartUp
code, let's look at the changes needed in our assem
bly code to take advantage of the AlertWindow
resource.

Or, ifyou're using the great macros that come with
Merlin, it would look like this:

The tool table should look very familiar. It's very
close to the table we used last month in our assem
bly code.

Notice that Rez looks an awful lot like C. If you're a
die hard assembly fan I'll give you a moment here to
collect yourself. Ahhh...

Here's the Rez code you need:

pea
pea
PushLong
PushLong
Tool
pla

o
#%100
#0
#1
$590E

;space for result
;alertFlags

;address of sub strings
;resource ID
;Alertwindow call

#include "types.rez"

resource rToolStartUp (1) /* the resource
ID */

{

mode640,
{/* array TOOLRECS: 18 elements */
3,0,
4,0,
5,0,
6,0,
11,0,
12,0,
14,0,
15,0,
16,0,
18,0,
19,0,
20,0,
21,0,
22,0,

-AlertWindow #%100;#0
pla

It used to be that the first parameter (not counting
the space for result) was a zero or one, depending on
whether you used a null terminated string or a
Pascal type string. That still works if you're not
using resources. With resources it's easier if we
break that parameter down into
bits. Bits 3-15 must be zero. Bits 1 and 2 tell
whetheryou're using a pointer (00), a handle (01), or
a resource (10). Bit 0 indicates the type of string
you're using, C string, or null terminated (0), or a
Pascal string (1).

The last parameter you push used to be a pointer to
the alert string. But with resources youjust pass the
resource ID number. In this example I've used ID
number one.

rrhe Sourceror's !llpprentice Page 12

Okay, time for some standards. I haven't heard if there are already file naming standards in effect, but they
couldn't be any better than these. So adopt these and thumb your nose at people who tell you different.

You're going to end up with five different files when you use resources. Two source files, two intermediate
files, and one final program file. Here are the suffixes I use to keep everything straight. Your assembly code
already has a .S on the end of it so don't mess with it. End your Rez code with .REZ (which even makes sense).
When you assemble your Merlin code into an S16 file you need to end up with a file ending with .D which
stands for data. That's the part of the code that goes in the data fork. And compile your Rez code into a file
with a .R suffix. That's the code that goes into the resource fork. So, this is what you should have:

SAMPLE.S
SAMPLE.REZ
SAMPLE.D
SAMPLE.R

<- Merlin source code
<- Rez source code
<- Merlin S16 file
<- Rez S16 file

Now we come to the last step. And this is where file number five comes into play. There's a utility called
DUPLICATE that comes with the Rez compiler. From the APW shell type the following:

DUPLICATE -D SAMPLE.D SAMPLE <return>
DUPLICATE -R SAMPLE.R SAMPLE <return>

The first line creates a file called SAMPLE and copies SAMPLE.D into the data fork. That's actually your
program code. The second line copies SAMPLE.R into the resource fork of the file. You should now have an
S 16 file called SAMPLE that is ready to run.

Of course, I didn't give you a complete program. But by pasting the StartUp, AlertWindow, and ShutDown
routines together (in that order) you can have a sample routine together in just a few minutes.

Wait a minute. We've gone through a zillion steps to do something we could have done in one step with Merlin.
But now we can change our startup routine, or the text in the AlertWindow without reassembling our main
program. Ofcourse, you'll still have to recompile the Rez code and then copy (DUPLICATE) it into the resource
fork of the file.

(Editor: Not necessarily. cj. my article -just have Rez put the resources into afae with an empty datajork).

rrhe Sourceror's !llpprentice

Copyright (C) 1989 by Ariel Publishing Box 398 Pateros, WA 98846 (509) 923-2249 GEnie: RW.LAMBERT
All Rights Reserved Apple, Apple II, IIgs, BASIC.SYSTEM, and ProDOS are registered trademarks of AppleComputers, Inc.

Subscription prices in US dollars (Canadaand Mexico add $5, non-North Americanorders add $18 per year)
1year...$28 2years...$54 Back issues are $3 each (non-USA add $2)

WARRANTY AND LIMITATION OF LIABILITY: Iwarrant that the information inTheApprentice is correct and somewhat useful to somebody
somewhere. Any subscriber may ask for a full refund of theier last subscription payment at any time. At no time shall I or my contributors be
held liable for any incidental or consequential damages in excess of the fees paid by a subscriber.

We here at Ariel Publishing freely admit our shortcomings, but nevertheless strive to bring glory to the Lord Jesus Christ.

