
"

Sound Tools ERS
REV 1.7

Copyright Apple Computer 1986
... Conficilell1tial·"

rev. 1.4

rev. 1.3

rev.l.O

rev. 1.1

rev. 1.2

II

Revision History:

Initial release

Start sound caII a.clded.

Changed Start sound call.

Added added a description for generators.

Added Sound tools status call for sound tools stmup call.

Added individual generator status call.
Updated the Start Sound call to include the new parameter

block.
Added FFSoundDoneStatus function ($14).

Chanaed the Frequency formula in the FFStartSound call to use integer values

instead of floating POUlt values for the frequency register calculations.

Changed the descriptions in the low level routines to access the DOC registers or

ram.
rev. 1.5 Updated the Gezlernt.orlMOde word~ in the FlFStartSound call.

rev. 1.6 Changed the para.m.ert.er block format for the FFStartSound call to conform with

the wont aligm=tof~passed to functions.
Reserved oscillators thirty amd thirty one for use by Apple Computer. These two

osciJJatm's can NOT be used by application programs.
rev. 1.7 Updated sf.op sound call to show 1 III stop corresponding generator.

Addled examples for each of the Sound 1"ools (wlcacm calls.

Sound 1"ools ERS Rev. 1.7 June 26, 1986 12:33 PM Confidential page 2

1.0 Introduction.

The sound tool package gives developers the ability to access

the Sound hardware without having to know specific hardware

I/O addresses. The Cortland sound hardware comes in two

configurations. The first configuration is 100% compatible

with the Apple lIe sound capabilities. In this mode

applications toggle a soft switCh. which in turn generates

clicl<s in a speaker. Also, with Cortland it is possible for an

application to control the volume of the speaker.

The second configuration requires the Ensoniq (DOC) digital

oscUlator chip and two 64K x 4 ram chips. The sound tools

will contain all of the firmware routines required to access

the hardware in the Ensoniq configuration. The following

block diagram shows the major functional blocks of the sound

hardware.
Cortland Sound Blc)ck diagram

The sound GlU acts as the interface chip between the Cortland I/O and

system volume, ram chips or the DOC. The following diagram shows a

diagram for the register breakdown for the sound glu:
Sound lu f ister breakdown

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 3

The DOC ram is used to store waveforms which will be used by the

DOC for sound generation. The DOC is the work horse of the sound system.

With this chip we can create sounds of any pitch and duration. A register

breakdown of the DOC follows:
lEm~(I)mD({J WDW0tlooD (J)(tOOOootlaoU' tClbD[lD

ID(IlWn~tlagU' 1II0D(I)(tllltlOllllD

OllClllator 'xx

I Frequency lOW]
[Frl!lquency ~i9ciJ
[Siume control J
[Data Sampling I
LRam Ptr. pg. n~

[control re~

~;rutiOnITab~---_alii;

• • •
• • •

11II1II111__1.'1.._1-

."

DOC register table

20·31~ FRJ:Q. HI FH7 FH6 FHS f'!'+ll FH3rH2 fOH, FHO

40·51" U'r11 V7 V6 V5 V4 V3 !V2 V1 VO

E2 /JJO CONVERTER S7 S6 SS S4 S3 52 S1 so

Please refer to the Erisoniq DOC Ers for a detailed description of the part. .

The analog section contains all the circuitry needed to amplify and

filter the signal coming from the Sound Glu 01' the DOC, which will be sent

to the speaker.

Finally, the sound connector gives developers the ability to design

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 P1\1 Confidential page 4

interlace cards, which can take the tones generated by. the 'DOC and modify

(them further. Two examples of possible sound cards are, programmable

filter stereo interlace cards, and sound sampling cards. The remainder of

this document will deal with a detailed description of the Sound tool calls

and how they can be used to access the hardware to generate sounds.

(

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 5

1.1 Sound Tools Definitions.

An oscillator is defined as the basic sound generating unit in the DOC.

The DOC contains thirty two oscillators; each of which can function

indepen~ently from all the other oscillators.

One of the modes the DOC can be set to is called swap mode. In this

mode each pair of oscillators is grouped together to form a swap pair of

oscillators. This is the mode used by the Free Form synthesizer to generate

sounds. Each of these swap pair of oscillators is called a Generator. There

are fifteen generators defined in the Cortland sound system. Oscillators

thirty and thirty one a reserved for use by Apple Computer and should not be:

used by application programs. An oscillator to generator translation table

has been defined to get the generator number corresponding to a particular

oscillator number.

Before a generator can be accessed, a sound tools startup call must be

(made'. This call assigns a work area for the sound tools. The work area is

broken down into sixteen groups of sixteen bytes E~ach. Each sixteen byte

group is defined to be a generator control block (GCB). The first byte of

If each GCB is defined to contain the synthesizer mode being used by that

generator. The low nibble of the byte contains the mode. The high nibble is

reserved for use by the' system. The remaining fifteen bytes are user

definable.

The Sound tools set is made up of four main blocks; the Free Form

Synthesizer, tl10 Note Synthesizer, the Note Sequencer and the Instrument

generator.

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 6

,/

1.0 Free form synthesizer tool set definition.

As mentioned before, the tool set gives a developer the ability to

control the sound hardware without having to access the hardware registers

directly. The tool set is defined from the point of view of a complete sound

system. The tool set must be able to read and write to ram, read and write

to the DOC registers and raise and lower the volume.

The sound tool package is accessed through the Tool locator. This

tool locator lets an application set up parameter lists on the stack, call tool

functions and return to the caller with return parameters on the stack. It is

the responsibility of the caller to make room on the stack for values which

may be returned to the caller from the tool calls.

The Sound Tool ~et has at tool number assigned to it. With this tool

number the Tool Locator can access the sound tools.

The sound tool calls are brc)ker, down into two g,'oups. The first group

of calls is made through the Tool Locator. Each of these calls has a function

number assigned to it. With this function numbel' the Tool locator knows

which function to call within the tool set. All parameters for these calls

are passed on the stack. Function results are returned to the caller in the
"

stack. The number of parameters will vary depending on t~e type of call

being made, It is the responsibility of the individual tool functions to do

·the stack manipUlation to I(eap It aligned. Also the accumulator and the

carry bit will reflect the success or failure of the function call. Please

refer to the "Tool locator· documentation for a detailed description of the

interface.

The second .group is at set of routines which can be accessed through a

jump table located somewhere in ram. Parameters are passed to these

routines in the processors registers. Results from these calls are passed

back in registers. The following list gives a breakdown of the sound tools.

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 7

Sound tool function calls:
Group A (Function ca~s)
SoundBootlnit II1II 01
SoundStartup l1li $02
SoundShutdown II1II $03
SoundVersion II1II $04
SoundReset l1li $05
SoundToolStatus IB $06
WriteRamBlock II1II $09
ReadRamBlock II1II $OA
GetTableAddress IIlII SOB
GetSoundVolume • SOC
SetSoundVolume • $00
FFStartSound • $OE
FFStopSound II1II $OE
FFSoundStatus II1II $1 0
FFGeneratorStatus l1li $11
SetSoundMIRQV l1li $12
SetUserSoundlRCV lIIIl $13
EESoundDoneStatusllIi $14

Group 8 (LOW level routines)
Read Register
Write register
Read Ram
Write Ram
Read Next
Write Next

.... The low level routines SIte entered through a jump table. Tho table address can be obtained
through a call to ·Get Address· function. 'The format of the jump table is as follows:

Off••t

RNd RCDgitlltCllf ,oa
Writ. F~tlgilJ;ttlll' '04

RA* Rat.m $08
Writo Rlilm SOC
RNd NOlla $1 0

Write NGmt $14
O8Ictlllblo $1 0

a.nomtor tAb~ $1C
It GCb.addr. tIIlbIo $20

Addr low Addr hiQh Bank $00
........~dr low ~<!ett...~'lH....... Bank $00
........&t~_A951!..!Jigl'l__ B!llOL.......__~Q.Q.n_

....J.2.~.L.J~_..........A2stt..h!9lJ. a.~mk SU2.2_
Addr low~.s!L"J.g,n Bank $00
Adc'if""i'CiW- Addr hiQh Bank $00
Add'f"'iCiW Addr hiQh Be"llnk $00
Addr low Addr high Bank $00
I"luur 11;1", ~n OWl" :si00

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 8

/

$ounciBootinit function #01
This call is made on system powerup or system reset to bring the

sound hardware to powerup state. The call is made by the firmware and can
NOT be made by an application program! This call will reset all of the DOC
sound memory to $80, zero out the sound tools work areas, halt all the
oscillators and turn the volumes down to zero.

Error Codes: None

\ .._....
Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 9

."

SoyndStartup function #02
The Sound tools startup call is made by an application to set up a

sound tools work area. This call must be the first call made by the
application program. The call initializes a work area to be used by the
sound tools. The pointer to the work area must be passed as a parameter to
the call. This work area will be used as a zerQ page. This page will be
allocated by calling the memory manager. It must be page aligned and
locked until a shutdown call is made. The stack configuration for the call is
as follows:

Stack configuration for SApplnit

Wap:word : Work area pointer in Bank $00

Error Codes:
$10 III No DOC chip found
$18 11II Sound tools already started

Example:
PEA Label : One page work area in bank $00
_.SoundStartup : Sound Tools s1artup macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 10

(

SoundShutdown function #03
This call will shut down the sound tools. It shuts off all of the

oscillators resets the WAP back to $0000 and zeros out the sound tools
work memory to zero. There are no parameters passed to the call on the
stack and no values returned It is the responsibility of the application to
relase the memory allocated to the work area back to the memory manager.

Error Codes: None

Sound Tools ERS Rev. 1.7 June 26. 1986 12:15 PM Confidential page 11

,.'

$oundYersion function #04
This call returns the Sound tools version number. The format of the

version number is as specified in the Tool Locator documentation. There are
no parameters passed to the call but room must be made on the stack for one
word of version information returned to the caller.

Error Codes: None

/'

I,

,If

Example:
PEA $0000
_SoundVersion

; make room for version
; Sound Tools version call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 12

/

j.'.1

$oyndBeset fynction #05
This call stops all of the generators which may be generating sound.

This call can not be used by an application to stop sound generation. It is
intended for use by the firmware to control the shutdown of generators. An
application program should use the stop sound call to shut down a
generator. This call does not require any parameters on the stack or returns
any values back to an application. This call does not update the active
generators flag.

Error Codes: None

•

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 13

$oundIoo!Stgfus function #06
This call will return the status of the sound tools. It returns a $FFFF

if a SApplnit ($02) call has been made; otherwise it returns $0000. Room
must be made on the stack for a one word value which will be returned to

\.;,;../' the caller.

Error Codes: None

(

"

Example:
PEA $0000
_SoundToolStatus

; make room For sound tools status
; Sound Tools Started status

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 14

WrjteBamBlock function #09
The Write Ram Block call will write a specified number of bytes from

system ram into DOC ram. The parameter list is made up of the starting
address, and a byte count to move. If the sum of the starting address and

\,..... the byte count are greater than 64K, an error status will be returned.

Stack configuration for write
Source..,.ptr:Long word
DOC.start:word
Byte_count:word

ram block:
; data source start address
; DOC buffer start address
; number of bytes to move

Error Codes:
$0011 11II DOC address range error.

0'.1

/.-

Example:
Pushlong Label
PEA DOC.buff
PEA byte.count
_WriteRamBlock

; Source buffer address
; DOC ram buffer start address
: number of bytes to move
; Write ram block macro call

Sound Tools ERS Rev. 1.7 June 27, 1986 1:26 PM Confidential page 15

BeadBamBlgck function lOA
This call reads any number of locations from the 64K DOC ram area

into a user specified buffer. The number of bytes and the starting location
must not add up to a value greater than 64K, otherwise a range error will be
generated. The format of the parameter list is as follows:

Stack configuration for Read Ram block
Dest-ptr:L.ong word ; Destination system buffer address
DOC.start:word ; Source start address in DOC ram.
Byte_count:word ; number of bytes to move

Error Codes:
$0011 11III DOC address range error.

(

\.".

Example:
Pushlong Label
PEA DOC.buff
PEA byte.count
_ReadRamBlock

; System ram buffer start address
; DOC ram buffer start address
; number of bytes to move
; Read ram block macro call

Sound Tools ERS Rev. 1.7 June 27, 1986 1:26 PM Confidential page 16

Addr low Addr hiah Bank $00
Addr low Addr hiah Bank 00
Addr low Addr hioh Bank 00
Addr low Addr hioh Bank 00
Addr low Addr hioh Bank 00
Addr low Addr hiah Bank 00
Addr low Addr hiah Bank $00
Addr low Addr high Bank $00
I'\ggr 'ow Aaar n1gn tsanK $00

GetTableAddress funetlon #OB
This call returns the jump table address for the fast access routines.

The table of low level routines is defined as follows:
Offset

Read Register $00
Write Register $04

RHdRam $08
Write Ram SOC
Read Next $1 0

Write Next S14
0setabIe $18

Generator tabI. $1 C
Gcb.addr. ta.b4e $20

With the exception of the last three entries, each of these routines
are defined later in this document.

The Osctable translates from generator number to oscillator number,
The oscillator number returned through this table is the first oscillator of

the pair. The Gcb address table points to the first location of the Gee
corresponding to a generator, and the Generator table translates from
oscillator number to generator number.

The application making this call must make room on the stack for a
long word returned from the call.

Error codes:None

....-'

"

Example:
Pushlong $00000000
_GetTableAddress

; Make room for long address
; Get table address macro call

Sound Tools ERS Rev. 1.1 June 26, 1986 12:15 PM Confidential page 17

,ff

GetSoundVo!ume function SQC
This call will read the volume· setting for a generator. The possible

range of values read back are between $OO-$FF. All eight bits are valid for
DOC volume registers.

If the generator specified is greater than fourteen ($OE), then the
system volume setting will be returned. The hardware for the system
volume control uses the low nibble of a byte to set the volume. In order to
be consistent with the COC volume registers, we map the low nibble into the
upper nibble of a byte. We end up with each possible system volume setting
mapped sixteen times. Volume settings $OO-$OF correspond to system
volume setting $00, values $10-$1 F correspond to system volume $01, etc.

Room must be made on the stack for a one word value which will be
returned from the call.

Stack configuration for Get Volume call:
Gen;..number:word ; Generator number

Error codes:None

Example:
PEA $0000 ; room for volume setting
PEA gen.num ; Generator number
_GetSoundVolume ; Get volume macro call

Sound Tools ERS Rev.1.7 June 26, 1986 12:15 PM Confidential page 18

SetSoundyo!ume Function SQP
The set volume call changes the volume setting for the volume

registers in the DOC and the system volume. Generator numbers $OO-$OE.
will set the volume on pairs of generators in the DOC. Generator numbers
$OF or greater will set the system volume control. The range of values for
the volume setting are OOaFF. The DOC volume registers use all eight bits
of resolution. The system volume control will use the upper nibble of the
setting to determine the setting.

Stack configuration for SetVolume call:
VOlume_setting:word ; new volume setting
Gen_number:word ; Generator number to set

Error codes: None

Example:
PEA New.volume
PEAgen.num
_SetSoundVolume

: new volume setting
; Generator number
: Get volume macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:1S PM Confidential page 19

Start address of wave
Waveform size In pages1

waveform playback frequency2
DOC buffer start address4

DOC buffer size code3

Next wave parameter block ptrS
DOC volume settlng.4

(

II

EFStartSounq function soe
This call will enable the DOC to start generating sound on a particular

generator based on the parameter list passed to the call. If a generator is
already active and a start sound call is made for It, then the previous sound
generation process will be terminated and the new sound process will be
started. The parameter list for the Start Sound call is as follows:

The stack configuration for StartSound call:
GenNumbJFFsynth:word ; Channel noJgenerator number/mode

JffiJ
ooc channel number (SO-SF)
Generator number ($O-SE)

bEl
Rnerved (must be $0)

:

Synthnizer mode (SO-SF)
.....I"""\T:~I-=: I : I 1 FFSynth III S01

b15 be
Pblock...,ptr:Longword : Parameter bloc:k pointer

The parameter bloc:k format:
Wave_start:Longword
Wave_size:word
Freq..offset:word
DOC_buffer:word
DOC_buffer_slze:word
Nextw_addr:L.ongword
Volume_settlng:word

1. The smallest which can be played back Is one page. A waveform size of
$FFFF will play back 65536 pages.

2. The Frequency register setting can be calculated with the following
formula: FR-«32·PF)I1645), where PFIIIPlayback frequency in hertz
& FR-Frequency register value.

3. This code assigns a size for th~ DOC buffer used for the waveform being
played. One of these buffers Is assigned for each oscillator in the
generator pair being used to play the waveform. The DOC start address
for the second oscillator .. assigned at start address + OOC buffer size.

4. For further information on these settings, please refer to
the Enaoniq DOC ERS.

5. Thue three bytes point to another waveform parameter block. If the
setting of the Nextw_addr and Nextw_bank are zero, then there are no
more Free-Form synthesizer waveforms to be played back through this
start sound call.

Error Codes:
$0012 .. NO SApplnit call made
$0013 .. Invalid generator number
$0014 .. Synthesizer mode error
$0015 • Generator busy
$0017 11II Master IRQ not assigned

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 20

Example:
PEA Gen.mode
Pushlong Pblock
_FFStartSound

; Generator/mode word
; Parameter block pointer
; Free Form Synth start sound macro

Pblock equ * ; Waveform parameter block
DC 14'Wave.start' ; Wavef~rm start address
DC 12'Wave.size' ; Wave size in pages (1 page min.)
DC 12'DOC.Freq' ; DOC frequency register value
DC I2'DOC.buffer' ; DOC ram buffer start address
DC I2'DOC.buf.code' ; DOC buffer size code $00-$07
DC 14'Next.wave' ; next wave parameter block ptr.
DC 12'DOC.volume' ; DOC volume register setting

\,

..

Next.wave equ *
....

: Next wave parameter block

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 21

FFStopSound Function SOE
This call will stop sound generators which may be running. A

generator- running is defined to be one playing a waveform or one which has
completed playing a waveform. The generator will stay busy until a stop
sound call is made, even though waveform playback has ended. Depending on
the setting of a sixteen bit flag passed as a parameter to the function any of
fifteen generators will be stopped if running. Each bit position in the stop
generator mask corresponds with a sound generator. Bit zero corresponds to
generator zero, bit one corresponds with generator number one, and so on.
There are only fifteen generators defined. This call does not return any
error information back to the caller. The format of the parameter list is as
follows:

Stack configuration for Stop Sound:
Gen_mask:word ; generators to stop

T#

enerator #0
enerator #1
enerator ~
enerator #
enerator #
enerator #5
enerator #6
enerator #7
enerator #8
enerator #9
enerator #A
enerator #8
enerator #C
enerator #0
enerator #E

1 11II stop corresponding generator
o 11II leave it generator alone

STOP SOUND MASK A

101 EI Die IBIA 1918171615141312111 0

I L~

~
G
G

~
G
G

~
G
G

Must be zero

(

Error Status: None

Example:
PEA Stop.mask
_FFStopSound

; mask for stop generators
; Free Form Synth stop sound

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 22

Generators status word

FfSQundStatul Fynctlon $1 Q
This call will return the status of the all fifteen generators. Any bit

position in the status word returned from the function call signifies that
the corresponding generator is active. There are no parameters passed to
the function. The format of the word returned form the call is as follows:,T#

101 EIDlc IsIAI91s171sls141312111 01
I L

..

Must be zero

Error Status: None

Example:
PEA $0000
_FFSoundStatus

Generator #0
Generator #1

~
enerator #~enerator #
enerator #

Generator #5
Generator #6
Generator #7
Generator #8
Generator #9
Generator #A
Generator #8
Generator #C
Generator #0
Generator #E

1 III Generator is assigned/busy
o III Generator free

; make room for status word
; Generators status macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 23

EEGeneratgrSlatus Eunct;gn:S11
This call will read the first two bytes of the GCB corresponding to

the generator specified. Room must be allocated on the stack for the word
returned from the call. For the Free form synthesizer these two bytes have
the following format:

$01 iIiII Last block of
wave loaded.

00 II1II Gen. available
01 II1II Free Form synth.
02 .. Note Synth.

Channel $OO~$OF

Gen $OO-$OE

$
$
$

I
/' / /' "-

I I .. I I I I' · GenNO. Io 0 0 Mode Chan. NO.
I I I I I I I I I I

bit 15 bit 0

(

Stack configuration for Gen. status call:
Gen_number:word ; generator number for status

Error Codes: None

"
Example:

PEA $0000 : room for Generator status
PEA Gen.number : Generator number
_FFGeneratorStatus; generator status macro call

\ ,/

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 24

(

SetSoundMIBOY Eunction:$12
This calls sets up the entry point into the sound interrupt handler.

This routine will be accessed every time an interrupt is generated by the
\. DOC. The processor will be in full native mode when the sound interrupt

handler is entered. The parameter list for a set sound IRQ vector is as
follows:

Set Master Sound Irq vector stack oonfig.
SMaster_irq:Longword ; Sound Master IRQ vector

Error Codes: None

Example:
Pushlong Master.irq.vect ; Set master irq vector macro

.~:::.,

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 25

SetUserSoundlBOV Eynetjoo:$13
This calls sets up the entry point for a users synthesizer interrupt

handler. When an interrupt occurs for a user, defined synthesizer then
control will be passed to the ram based synthesizer code through this
vector. The old vector installed will passed back to the caller. This old
vector must be preserved by the caller. If control is passed to the user
vector and the synthesizer mode is not his, then control will passed further
down the chain through this vector. Control will be passed through a JSL,
therefore the user must return control through an RTL instruction. Room
must be made 00 the stack for long word returned on the stack.

Stack configuration for Set User's Sound IRQ vector.
User_irCLvector:Longword ; New user IRQ vector

Error Codes: None

(

"

Example:
Pushlong $00000000
Pushlong New.vector
_SetUserSoundlRQV

; make room for old vector
; new vector
; set user sound irq vector macro

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 26

FFSgundQon,Status Function " 4
This call will return the status of the Free Form synthesizer sound

playing status. If the generator specified is currently. playing out a,
\ waveform, then the status returned to the caller will be $0000. If the....~_

generator is done playing then the status will be $FFFF. Room must be made
on the stack for one word of status returned to the caller.

Stack configuration for FFSoundDoneStatus
Gen_number:word ; Generator number

Error codes:
$0013 lIII Invalid generator number

Example:
PEA $0000 ; Make room for status
PEA Gen.number ; Generator number to check
_FFSoundDoneStatus; FFsynth Sound done stat macro

(
,-",

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 27

/

(
\

\.

Bead regi5ter**
This low level routine lets an application read any DOC register. The

routine is entered through the Jump table provided by the "GetTableAddress"
function call. This call will return to the caller through an RTL instruction.
After this call is made the Sound Glu register is left in register access
mode with auto increment enabled.

Through the generator to "oscillator" table, an application can
assertain the setting of any register corresponding to an oscillator.

Import:
e IiII 0 ; native mode
m l1li 1; 8 bit accumulator
Xliii 0 ;16 bit index registers
X l1li DOC register to read

Export:
AL l1li contents of register requested

Error codes: None

OOC register table
REG# Ft.lnctlon ~7 De ~I ~ (1)3 ~2 (D)'Il (D)(ll)

00-1 F FREa. I.I:MI FL7 FL6 FL5 FL4 FL3 FL2 FL1 FLO
20-31" !FACQ.HI FH7 FH6 FH:i f"t'i4l - - FH1 Ft'lO
40-51" V7 VO V5 V4 V3 V2 V1 VO
60-71" IOATA _,~... _ W7 WI) W5 W4 W3 W2 W1 wo
80-9F WAVEFORM TABLE PTA P7 P6 P! P4 P3 P2 P1 PO

AO-BF CClN'T'FlC::X. ~Aa :47 :4 I~AO 11:: 1M2 M1 H

CO-OF BANK SE1JTBL SIZE/RES. X as T2 T1 TO R2 R1 RO
cO 11'11_. IHU 1 04 03 02 101 00 ,
E1 OSCIL1.ATOR ENABLE X X E4 E3 E.2 E1 EO X
E.2 AIO CONVERTER ,57 S6 55 54 53 52 51 SO

Note: Register types are grouped into register classes. Within each
register class, the register number for each oscillator Is assigned in
assending order. For example: the low byte of the frequency register
for oscillator zero is register $00, the low byte of the frequency for
oscillator number Is register $01. The high frequency register for
oscillator number zero is accessed through register number $20,
oscillator one uses register number $21 etc... The register numbers
are provided in the table defined above.

Sound Tools ERS Rev. 1.7 June 26, 1986 12:105 PM Confidential page 28

" ..~. ,,'

(

Write register **
The Write DOC call will write a one byte parameter to any register in
the DOC chip. The call will be made through the jump table provided
to the application by the tool call "Get Address". To write to an
oscillator register corresponding to a generator we get the oscillator
number from the oscillator table, bump it by one if we want to access
the odd oscillator of the pair, add the base register of the specific
register we want to access and then make the write register call
through the Write register routine address in the jump table. This call
will return to the caller through an RTL instruction. After this call is
made the Sound Glu register is left in register access mode with auto
increment enabled. Please refer to the "Note" in the Read register
description for information on register assignments for each
oscillator.

Import:
e lIIII 0 : native mode
m lIIII 1: 8 bit accumulator
x lIIII 0 : 16 bit index registers
AL lIIII data to write
X .. DOC registel' number

Error codes: None

DOC register table
REG_ Function 1l)7 bllS ioJl ~ Il)~ 1l)2 1l)'I1 Will:

00-1 F FREQ.·LOW FL7 FL6 FL5 FL~ FL3 FL2 FL1 FLO
20-3F IFACQ.HI FH7 .FH6 1FH5 FH4 FH1 -FRO

40-~F V7 V6 V5 VI. V3 V2 V1 vcr
60-7F IDATA_ - W7 W6 W5 WI. W3 .W2 W1 WO
80-9F WAVEFORM TABLE PTR P7 P6 P! P4 P3 P2 P1 PO

AO-BF CClNTRC'l. CA3 ICAO 11: 1M2 M1 H
CO-OF BANK SEl./TBL. SIZEIRES. X as T2 T1 TO R2 R1 RO

t:g .--.-..-.... IFC 1 -04 133" In IO'f 1m 1
E1 OSCILlATOR ENABLE X X E4 E3 E2 E1 EO X
E2 AID CONVERTER S7 S8 S5 S4 S3 52 S1 So

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 29

, .i
'-.,.v'

(
~)

Bead Bam u

This call will read any Ensoniq ram location specified by the caller.
This call leaves the address pointer register in the Sound Glu in auto
increment mode and in ram access mode. The call does not do any
type of error checking on the address, or data. This call exits back to
the caller through an RTl instruction. After this call is made the
Sound Glu register is left in RAM access mode with auto increment
enabled.

Import:
e l1li 0 ; native
m IIIIB 1 ; 8 bit accumulator
x IIIIB 0 ; 16 bit index registers
X l1li Ensoniq ram address to read

Error codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 30

(

(
"

..

Write Bam"'*
This call will write a one byte value to any Ensoniq ram location
specified. The call does not do any type of error checking on the
address or data value to be written. This call returns to the caller
through an RTL instruction. After this call is made the Sound Glu
register is left in RAM access mode with auto increment enabled.

Import:
e .. 0 ; native
00 • 1 ; 8 bit accumulator
x l1li 0 ; 16 bit index registers

AL l1li data value to be written
X l1li Ensoniq ram address to write to

Error codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 31

·~.I·

(

Bead N,xt llllff

This call will read the next location pointed to by the Sound Glu
address register. The previous call must have been a Read register,
write register, read ram, or a write ram call for this call to work
properly. Any of these four calls will leave the Sound Glu set to auto
increment and pointing to DOC register or ram access mode. After the
read is made the Sound Glu address/DOC register pointer will be
incremented to the next location.

Import:
None

Export:
AL lIIIl data byte read

Error codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15 PM Confidential page 32

(
)

-,.'

Write Next llllll

This call will write one byte of data to the next DOC register or ram
location depending on the setting of the Sound Glu control register.
The call will write to DOC registers or ram and then increment the
address pointer register in the Sound Glu, if the address pointer
register was enabled for auto increment. If a Read register, read ram,
write register or write ram call is made then that call wiJI leave the
Sound Glu control register in that type of access mode and with auto
increment enabled.

Import:
AL 11II byte value to be written

Error codes: None

Sound Tools ERS Rev, 1.7 June 26, 1986 12:15 PM Confidential page 33

	v5_12_01
	v5_12_02

