
00J20/86

06114/86

(17/1586

CJ7/16/86

08/13/86

Dan Oliver

Initial release.

Revised release.

Names changes; BootCtrl, InitCtrlMgr, TermCtrlMgr, to; CtrlBootlnit,
CtrlStartup, CtrlShutDown. Addition of CtrlReset, CtrlStatus and
GetCtrlzpage.

Replacement for page 27, values for testCnlt and calcCRect were swapped.

Control record changed, CtrlAction added and CtrIHilite removed from CtrlF1ag.
The path to calling an action routine now includes CtrlAction. Color table colors .'
corrected SetCMgrIcons call added along with a CONTROL MANAGER ICON
FONT section.

,.
I,

The Control Manager is the part of the Cortland User Interface Toolbox that deals with controls. A
control is an object on the Cortland screen with which the user, using the mouse, can cause instant
action with graphic results or change settings to modify a future action. Using the Control
Manager, your application can:

• display or hide controls

• monitor the user's operation of a control with the mouse and respond accordingly

• read or change the setting or other properties of a control

• change the size, location, or appearance of a control

Your application performs these actions by calling the appropriate Control Manager routines. The
Control Manager carries out the actual operations, but it's up to you to decide when, where, and
how.

Controls may be of various types, each with its own characteristic appearance on the screen and
responses to the mouse. Each individual control has its own specific properties-such as its
location, size, and setting-but controls of the same type behave in the same general way.

(Button 1)
(Button 2)

;.I

t81 Check BaH 1 dials

t81 Check BaH 2

o Check BaH 3

o Radio Button 1

<I) Radio Button 2

o Radio Button 3

Certain standard types of controls are predefined for you. Your application can easily use controls
of these standard types, and can also define its own "custom" control types. The predefined
control types are the following:

- Buttons cause an immediate or continuous action when clicked or pressed with the mouse.
They appear on the screen as rounded-comer rectangles with a title centered inside.

August 13, 1986

.--

- Check boxes retain and display a setting, either checked (on) or unchecked (off); clicking
with the mouse reverses the setting. On the screen, a check box appears as a small square
with a title to the left of it; the box is either filled in with an "X" (checked) or empty
(unchecked). Check boxes are frequently used to control or midify some future action,
instead of causing an immediate action of their own.

• Radio buttons also retain and display an on-or-off setting. They're organized into families,
with the property that only one button in the family can be on at a time: clicking any button
on turns off all the others in the family, like the buttons on a car radio. Radio buttons are
used to offer a choice amoung several alternatives. On the screen, they look like round
check boxes; the radio button that's on is filled with a small black circle instead of an "X".'

Note: The Control Manager knows which radio buttons belong in each family
from the flag value passed to NewControl. Bits 8·14 of flag is the family
number. Assign the same number for every member of a family, and
different numbers for different families. Zero is an acceptable family
number•

• Scroll bars are predefined dials. A dail displays a quantitative setting or value, typically in
some pseudonanalog form such as the position of a sliding switch, the reading on a
thermometer scale, or the angle of a needle on a gauage; the setting may be displayed
digitally as well The control's moving pan that displays the current setting is called the
indicator. The user may be able to change a dial's setting by dragging its indicator with the
mouse, or the dial may simply display a value not under the user's direct control (such as
the amount of free space remaining on a disk)•

The following diagram shows the parts of the vertical and horizontal sCl.'oll bars.

up arrow---......--------

"page up" region ..--_...................................-

thumb --------

"page down" region_-

The parts of the scroll bars can be generalized into three regions; arrows, paging, and
thumb (or thumber). The arrows scroll data a line at a time, paging regions scroll a "page"
at a time, and the thumb can be dragged to any position within the scroll area. Although
they may seem to behave like individual controls, these are all parts of a single control, the

\
j August 13, 1986

(-

scroll bar type of dial. You can define other dials of any shape or complexity for yourself
if your application needs them.

Standani scroll bars ale porponional, that is they show the relationship between the total
amount of data and the amount viewed, and where the view is in the data.

August 13, 1986

",

HWHLJGHTING AND ACTIVE CONTROLS

When clicked or pressed, a control is usually highlighted. It's also possible for just a part of a
control to be highlighted: for example, when the userpresses the mouse button inside a scroll
ar.row in a scroll bar, the ar.row, not the whole scroll bar, becomes highlighted.

('
i,
!

~the,Ck BOH

Gt Radio Button

Highlighted Active Controls

(DuHon J

o Check Don

() Radio Bu t ton

I I

Inactive Controls

A control may be acti.ve or inacti.ve. Active controls respond to the users mouse actions; inactive
controls don't A control is made inactive when it has no meaning or effect in the CUITent context,
such as an "Open" button when no document has been selected to open, or a scroll bar when
there's CUITently nothing to scroll to. An inactive is highlighted in some special way, depending on
its control type. For example, the title of an inactive button, check box, or radio button is dimmed.

There are two ways a scroll bar can be made inactive. In the diagram above the top scroll is mack
inactive by making the data size equal to or maHer than the view size. This type of inactive state
happens automatically when the data size ecLuals or exceeds the view size. The bottom inactive
scroll bar is made by passing 255 to HiliteControl and is inactive in the same sense that the other
controls are inactive.

There is one more way in which controls can be made inactive, make them invisible. Invisible
controls are inacti.ve in the sense that it can not be selected. However its 'highlighting in some
special way' is an extreme.

August 13, 1986

Warning:

".......
(

CONTROLS AND WINDOWS

Every control "belongs" to a window: When displayed, the-control appears within that window's
content :region; when manipulated with the mouse, it acts on that window. All coordinates
pertaining to the control (such as those describing its location) are given in its window's local
coordinate system. Even the state of the control can be tied to the state of the window. A bit in
wFrm::oe of the window's record can be set so the controls in the window will be considered
inactive if the the window is inactive. See the Window Manager ERS.

In order for the Control Manager to draw a control properly, the control's
window must have the top left comer of its grafPort1s portRect as coordinates
(0,0). Ifyou change a window's local coordinate system for any any :reason
(with the QuickDraw procedure SetOrigin), be sure to change it back-so that
the top left comer is again at (O,O)-before drawing any controls. Since almost
all of the Control Manager routines can (at least potentially) redraw a control, the
safest policy is simply to change the coordinate system back before calling any
Control Manager routine.

However. . Ifyou would like to have controls in a window scroll with the content region
there is a way. Before call the Control Manager make sure the origin of the
control's window is set to its scrolled value

Some controls, such as buttons, are simple and straightforward. Others can be comple,~ objects
with many parts: for example, a scroll bar may have two scroll arrows, two paging regions, and a
thumb. To allow different parts of a control to respond to the mouse in different ways, many of the
Control Manager routines accept a part code as a parameter or :return one as a :result.

A part code is a number between 1 and 253 that stands for a particular part of a control. Each type
of control has its set of part codes. Some of the Control Manager routines need to give special .
treatment to the indicator of a dial (such as the thumb of a scroll bar). To allow the Control
~ger to :recognize such indicators, they always have part codes greater than 127.

The pan codes are assigned as follows:

August 13, 1986

(o No part.

1 Reserved for intemal use.

2 Simple button.
3 Cheek box.

4 Radio button.

5 Uparrow.

6 Down arrow.
7 Page up.

S Page down.
9 Reserved for Intemal use.

10 Grow box Icon.

11-31 Reserved for Intemal use.

32-127 Reserved for application's use.

128 Reserved for intemal use.

129 Thumb.

130-159 Reserved for internal use.

160-253 Reserved for application's use.

254-255 Reserved for internal use.

(~ '.

.. ,'.'

USING THE CONTROL MANAGER

This section discusses how the Control Manager routines fit into the general flow of an application
and gives you an idea of which routines you'll need to use. The routines themselves are described
in detail in CONTROL MANAGER ROUTINES, and examples are found in PROGRAMl\1ING
EXAMPLES.

To use the Control Manager, you must have previously called InitGraf to initialize QuickDraw and
InitFonts to initialize the Font Manager ifyou are going to use controls with text in them.

Note: For controls in dialogs or alerts, the Dialog Manager makes some of the basic.
Control Manager calls for you. Also, the Wmdow Manager will make Control
Manager calls concerning standard window controls.

Where appropriate in your program, use NewControl to add any controls you need.
NewControl will set the control's owner to the window pointer passed and add the control to the
head of the window's controllisL When you no longer need a control, call DisposeControl to
remove it from its window's control list and erase it from the screen. To dispose of all a window's
controls at once, use KiIlControls.

Note: The Window Manager proced1JJ'e CloseWindow will automatically dispose
of all the controls associated with the given window.

When the Event Manager function GetNextEvent reports that an update event has occurred for a
window, the application should call DrawControls to redraw the window's controls as part of
the process of updating the window.

August 13, 1986

After receiving a mouse-down event from GetNextEvent, do the following:

1. First call FindWindow to determine which part of which window the mouse bunon was
pressed in. If it was in the content region of the active window, use that window's control
list.

2. If the event did occur in a content area. call FindControl with the pointer to the window to
find out whether the event occum:d on an active controL

3. Fma.lly, ifFindControl returns a control handle, call TrackControl to handle user
interaetion with the controL TrackControi will handle the highlighting of the control and
detemlines whether the mouse is still in the control when the mouse bunon is released. It
also handles the dragging of the thumb in a scroll bar and responds to presses or clicks in
the other parts of a scroll bar. When TrackControl returns the part code for valid control,
the application must do whatever is appropriate as a response.

The application's exact response to mouse activity in a control that retains a setting will depend on
the current setting of the control, which is ava.ila.ble from the GetCtlVaIue function. For controls
whose values can be set by the user, the SetCtlVaIue procedure may be called to change the
control's setting and redraw the control accordingly. You'll call SetCtlVaIue, for example, when
a check box or radio button is clicked, to change the setting and draw or clear the mark inside the
controL

Wherever needed in your program, you can call HideControl to make a control invisible or
ShowControl to make it visible. Similarly, MoveControl, which simply changes a control's
location without pulling around an outline of it, can be called at any time, as can SizeControl,
which changes its size. For example, when the user changes the size of a document window that
contains a scroll bar, you'll call HideControl to remove the old scroll bar, MoveControl and
SizeControl to change its location and size, and ShowControl to display it as changed.
Whenever necessary, you can read various attributes of a control with GetCTitle,
GetCtlMinMax, or GetCtlState; you can change them with SetCTitle, SetCtlMinMax, or
SetCtlState.

I •

August 13, 1986

cormtOLMANAGElUCQU..oNI
The standard control definition procedures use a font to draw some control parts and their
highlighted states. Ifyou would like to use different icons you can replace the default font To
replace the icon font, or just get the handle to the current font, call SetCMgrlcons. The format of
the font is as follows:

(I

ChancterO
Chancter 1
Chancter2
Chancter3
Chancter4
ChancterS
Chancter6
Character 7
Character 8
Character 9
Character 10
Character 11
Character 12
Character 13
Character 14
Charactc:r IS
Character 16

August 13, 1986

Check. box that is off and not highlighted.
Check box that is off and is highlighted.
Check box that is on and not highlighted.
Check box that is on and not highlighted.
Radio button that is off and not highlighted.
Radio button that is off and is highlighted.
Radio button that is on and not highlighted.
Radio button that is on and is highlighted.
Right arrow that is not highlighted.
Right arrow that is highlighted.
Left arrow that is not highlighted.
Left mow that is highlighted.
Up arrow that is not highlighted.
Up arrow that is highlighted.
Down arrow that is not highlighted.
Down mow that is highlighted.
Grow icon.

..

CONIROLRECQImS
".y Every control has the same front end to its control record. Additional data can then be appended to

the end of the genc:ral control:record. For example, NewControl will call the control's definition
procedure to find out the size of the record to allocate, before the :record is actually allocated. The
General Control Record follows:

CtrlNext
CtrlOwner
CttlRect
CtrlFlag
CtdHilite
CtrNalue
CtrlProc
CtrlAction
CtrlData
CtrlRefCon
CtrlColor

LONG
LONG
RECT
BYTE
BYTE
WORD
LONG
LONG
LONG
LONG
LONG

Handle to next control, zero == last control.
Pointer to window the control belongs to.
Enclosing :rectangle.
Flags that define the control, bit 7 =0 ifvisible, 1 if invisible.
C1mendy highlighted part.
C1ment value.
Address of control's definition procedure.
Address of control's default action procedure.
Data used by definition procedure.
Reserved for application's use only.
Pointer to control's color table, zero for default table.

CtrlFlag is a bit vector that further describes the control The only bit that is used for all controls is
bit 7. Bit 7 is 0 if the control is visible, and 1 if invisible. Bits 0-6 are reserved for the control's
definition procedure.

CtrlHilite specifies whether and how the control is to be highlighted, indicating whether it's active
or inactive. The value is zero if the control is active and has no highlighted parts. The value is 255
if the control is inactive. If the value is between 1 and 254, it's the part code of a highlighted part
of the control. Therefore, only one part on a control can be highlighted at anyone time, and no part
can be highlighted on an inactive control. See HiliteControl for more information.

CtrIVaIue is the control's current setting. For check boxes and radio buttons, 0 means the control
is off and non-zero means itls on. For scroll bars, the value is between 0 and data size less view
size. Custom controls can use the field as they see fit

August 13, 1986

CtrIProc is the address of the control definition procedure for this type of control. Standard
controls do not use an address in this field. Instead, bits 0-23 are zero and only the high'"OI'der byte
is used to determine which standard control the control is. Values for standard controls are:

$OOOOOOOO
$02000ooo
$040000OO
$060000OO

Simple buttm.
Cleckbox.
Radio button.
Scroll bar.

CtrlDara is reserved for use by the control definition procedure, typically to hold additional
inform.atiOI1 specific to a particular control type. For example, the standard definition procedure for
scroll bars uses the low-order word as view size, and the high-order word as data size. The
standard definition procedures for simple buttons, check boxes, and radio buttons store the address
of the control'~ title here.

CtrlAction is a address of the control's default action procedure, if any. The procedure
Tl'ackControl may call the default action procedure to respond to the user's draaging the. mouse
inside the control See TrackControl for more information.

CtrlRefCon is the control's reference value field, which the application may store into and access
for any purpose.

CtrlColor is a'pointer to the control's color table, which is used by the control's definition
proceduxe to draw the control

MOl'C field.l) can be added to the end of the control record to further define the control. See the
control Iecaro of a standard scroll bar as an example.

August 13, 1986

(
The following are how control record fields are used by standard controls:

Simple Button:

CtrlFlag, bit 0 • 1 for bold outline, 0 for single outline.

CttlValue is always zero.

CtrlProc equals .0oooooס$0

CtrlData is a pointer 10 the button's title string.

CtrIColor is a pointer 10 control's color table. or zero for default table. The simple button
color table is defined as:

colorI == outline color when normal. in high nibble.
color2 ::: interior color when normal.
color3 ::: interior color when selected.
col0r4 • text color when normal.
colorS == text color when selected.
col0r6 == special highlight color.
color7 lIIl thick outline color.

A simple button can be drawn with one of two outlines. The thick outline should be used with
buttons that would be selected by the user pressing Return on the keyboard. This would be a
default key and should never cause a the destruction of something, like a default button "Delete
File". The thin outline should be used for all other simple buttons.

August 13, 1986

'.

,(

Check Box:

CtrlValue is 0 ifnot checked, non-zero ifchecked.

CtrIPmc equals $02000000.

CtrlData is a pointer to the check boxe's title string.

CtrlColor is a pointer to control's color table, or zero for default table. The check box color
table is defined as:

colati == not used.
coloa == color ofcheck box when not highlighted.
color3 • color of check box when highlighted.
col0r4 == color of title.

Radio Button:

CtrIFlag is:

~ Family number.=- o. visible, 1. invisible.

CtrlValue is 0 if off, non-zero if OXl.

CtrlProc equals $04000ooo.

CtrlData is a pointer to the radio button's title string.

CtdColor is a pointer to control's color table, or zero for default table. The radio button colot
table is defined as:

colori == not used.
colm2. == color of radio button when not highlighted.
color3 == color of radio button when highlighted.
color4 == color of title.

August 13, 1986

(

I' '

ScroD Bar:

CtrlFlag is defined as:

1 • up arrow on SCIOli bar.
1 • down arrow on SCIOli bar.

'""""'_.... 1 • 18ft arrow on scmll bar•
......._- 1. right arrow on scroll bar•

.......,--_. o. vertical semll bar, 1 .. horizontal•
......__......_-- o. visible, 1 ... invisible.

CtrIValue equah a number between zero and data size less view size.

CtrlProc equals $060000OO.

CtrlData low-order WORD equals view size, and high-order word equals data size.

CtrlColor is a pointer to control's color table, or zero for default table. The radio button color
table is defined as:

col()I'l == outline color.
C()I0r2 == arrow color when normal.
col()I'3 := arrow color when selected.
colm4 := arrow box intiCfior color.
colorS := thumber interior color when normal.
colom := thumber interior color when selected. .
color7 = page region's color, low nibble == background.
colorS == inactive color.

Additional data fleWs appended to the end of the control record:

Thumb
PageRegion

August 13, 1986

REef
REef

TIlwnber rectangle.
Page region, thumb's bounds.

CONTROL MANAGER ROUTINES

CtrlBootInit

input: None.

output: None.

Called only by the loader when loaded.

CtrlVersion

input None.

output:

'-..,..J Ctll"IReset

Version:WORD Vmion nmnber of the Control Manager.

input: None.

output: None.

Called on system reset

CtrlStatus

input

output:

None.

status:WORD - TIUJE if Control Manager is active, FASLE ifnot.

August 13, 1986 15 [§..

CtrlStartup

input:

(

..

yourID:WORD
zeroPage:WORD

output: None.

Your 10 number, used for memory allocation.
Zl:ro page Control Manager can use.

InitCtrlMgr allows the Control Manager to perform startup initialization. YourID will be
used by the Control Manager when it allocates memory. ZeroPage is an address of a page
(256 bytes) in bank: zero that your application makes available 10 the Control Manager for its
use. The page does not have to be page aligned, but the Control Manager will operate faster
if it is.

CtrlShutDown

input: None.

output: None.

Deactivates the Control Manager. No controls are disposed of, CloseWindow in the
Window Manager disposes of all controls in a window. Therefore, the Control Manager
should not be shutdown until after the Window Manager has been shutdown.

CtriNewRe5

input: None.

output: None.

Call CtrlNewRes after you have changed the video mode. This routine will reinitialize
:resolution and mode dependencies.

August 13, 1986

NewControl

input:

output:

theWmdow:LONG
boundsRect:LONG
title:LONG
flag:WORD
value:WORD
paraml:WORD
param2:WORD
ddProc:LONG
IefCon:LONG
colorTable:LONG

ControlHandle:LONG

Pointer to window owner.
Pointer to enclosing RECI'.
Pointer to title string (CtrlData).
Bit vector of flags.
Control's starting value.
Additional parameter (view size for scroll bars).
Additional parameter (date size for scroll bars).
Address of definition procedure, or standard.
Any value you want, application reserved.
Pointer to control's color table.

Control's handle, zero if error.

t'
l

NewControl creates a control, adds it to the beginning of theWmdow's control list, and
returns a handle to the new control The values passed as parameters are stored in the
corresponding fields of the control record, as described below. 'The field that determines
highlighting is set to 0 (no highlighting).

Note: The control definition function may do additional initialization, including
changing any of the fields of the control record. The only standard
control for which additional initialization is done is the scroll bar, its
control definition procedmc computes the thumber and page region from
bowOOsRect and flag.

The:\Vmdow is the window the new control will belong to. All coordinates pertaining to the
control will be interpreted in this window's local[coordinate system.

BoundsRect, given in theWindow's local coordinates, is the rectangle that encloses the
control and thus dete:mlines its size and location. Note the following about the enclosing
rectangle for the standard controls:

- Simple buttons are drawn to fit the rectangle exactly. (TIle control definition
function calls the QuickDraw procedure FrameRoundRect.) To allow for th~

tallest characters in the system font, there should be at least a 2Q-point
difference between the top and bottom coordinatJ::S of the rectangle.

- For check boxes and radio buttons, there should be at least a 16-point
difference between the top and bottom coordinate:s.

- A standard scroll bar should be at least 48 pixels long, to allow room for the
scroll mo,ws and thumb.

TItle is the control's title, if any (if none, you can just pass the empty string as the title). Be
sure the title will fit in the control's enclosing rectangle; if it won't it may not be completely
erase with HideControl, along with other possible side effects.

',J

August 13, 1986

(
Flag is a bit vector that further defines the controL Bit 7 is a visiblefmvisiable flag for every
kind of controll. Bits 8-15 can be set to $FFxx to make the control inactive, but should be
nonnally set to zero for an active controL Bits Q..6 m: defined by each type of control. The
bit vectors m: defined below for standard controls.

Simple button flag:

1 III bold outline.
L...... 0 .. visible, 1 .. invisible.

Check box flag:

......------- 0 III visible, 1 ... invisible.

Radio button flag:

ri:==~~~~ Family number.
L........................ 0 .. visible, 1 .. inviSIble».

Scroll bar flag:

I 4 3 ~'10
.- 1 III up nnow on satllI bar.

1 III down ~II'TOW on scroll bar.
t III lof! amow on SCfOIl bar•

..._ - 1 III right arrow on scroll bear.
Lo_ 0 III vertica.J scroll bar, 1 .. horizontal.

L..... _ _ 0 III visible, 1 .. invisible.

Grow.box flag:

......------- 0 III visible, 1 ... invisible.

August 13, 1986 18 [§

(

The min and max parameters define the control's range of possible settings; the value
parameter gives the initial setting. For controls that don't retain a setting, such as buttons,
the values you supply for these parameters will be passed to the definition procedure, and it
'mayor may not store them in the control's record. So it doesn't matter what values you give
for those controls-O for all three parameters will do. For dials, you can specify whatever
values am appropriate for min, max, and value. For standard scroll bars the min is the size
of the view, and max is the total data size. The standatd scroll bar definition procedure will
store the value of min in the CtrlData field, and max in CtrlData+2 field.

DefP:roc is the address of the control's definition procedure. DefProcs for custom control
types are discussed later under ''Defining Your Own Controls". TIle values for the standard
control types are:

$OOOOOOOO
$02000ooo
$04000000
$06000000

- Simple button.
- Check box.
• Radio button.
• Scroll bar.

RcfCon ,is the control's reference value, set and used only by your application.

,.:::::: .
\ '.-

DisposeControl

input: theControl:LONG Handle of control.

output: None.

Dispos.eControl removes theControl from the screen, deletes it from ito; window's control
list, and releases the memory occupied by the control record and any data structures
associared with the control.

KiIlControls

input theWindow:LONG Pointer to window.

output None.

KillControls disposes of all controls associated with dleWindow by calling
DisposeControl (above) for each control in theWindow's control list.

Note: Remember that the Window Manager procedures CloseWindow
automatically dispose of all controls associ.a.ted with the given window.

August 13, 1986

(
,,_~/ CONIROLDISPLAY

These procedures affect the appearance of a control but not its size or location.

SetCTitle

input: title:LONG
theControl:LONG

Address of new tide.
Handle of control.

output: None.

SetCTitle Sets theControl's tide to the given string and redraws the control

GetCTitle

input:

output:

theControl:LONG

title:LONG

Handle of control

Pointer to control's title.

GetCTitle retums the value in theContml's CtrJData field, which, for controls with titles, is
the pointer to the control's title string.

,.
i

HideControl

input: theContml:LONG Handle of control.

output: None.

HideControl makes theControl invisible. It fills the region the control occupies within its
window with the background pattern of the window's grafPort. It a.lso adds the control's .
enclosing rectangle to the window's upd.a.te regio~ so that anything else that was previously
obscured. by the conttol will reappear on the SCIeeD. If the control is already invisible,
l-TIdeControl has no effect.

ShowControl

input: theControl:LONG Handle of control

output: None.

ShowControl makes theControl visible. The control is drawn in its window but may be
completely or partially obscured by overlapping windows or other objects. If the control is
already visible, ShowControl has no effect.

August 13, 1986

/
\

DrawControls

input: theW'mdow:LONG Pointer to window, of which the control list is drawn.

output: None.

DrawControls draws all controls C1J1TCntly visible in theWmdow. The controls are drawn
in reverse order of c:reation; thus in case of overlap the earliest-c:reated controls appear
frontmost in the window.

Note: W'mdow Manager routines such as SelectWmdow, ShowWindow,
and BringToFront do not automatically call DrawControls to
display the window's,controls. They just add the appropriate regions to
the window's update region, generating an update event Your program
should always call DrawControls explicitly upon receiving an update
event for awindow that contains controls.

HBiteControl

!

r
\ ...,.

input: hiliteStue:WORD
theCootrol:LONG

Operation to perform.
Handle of control.

output: None.

HiIiteCollltrol changes the way theControl is highlighted. HiliteState has one of the
following values:

• The value 0 means no highlighting and the control is active. Any highlighted
part of the control is unhighlighted. If the control is inactive, it's changed to
active and redrawn. .

• A value between 1 and 253 is interpreted as a part code designating the part of
the (active) control to be highlighted.

• The value 255 means that the control is to be made inactive and redrawn
accordingly.

Note: The value 254 should not be used; this value is reserved for future use.

HiliteControl calls the control definition function to redraw the control with its new
highlighting.

August 13, 1986

..

FindControl

input

output

FoundCtrl:LONG
xPointWORD
yPointWORD
theWmdow:LONG

FoundPattWORD

Address of where to store control handle.
X coordinate. in global coordinates, to check.
Y coordinate. in global coordinates. to check.
Pointer of window to check.

Part code of found part on control.

When the Window Manager function FindWindow reports that the mouse button was
pressed in the content region of a window. and the window contains controls. the application
should call FindControl with theWmdow equal to the window pointer and thePoint equal
10 the point where the mouse button was pressed (in the window's global coordinates).
FindControl tells which of the window's controls. if any, the mouse button was pressed
in:

• If it was pressed in a visible. active control. FindControl sets the
whichControl parameter to the control handle and returns a part code
identifying the part of the control that it was pressed in.

• If it was pressed in an invisible or inactive control, or not in any control,
FindCollltrol sets whichControl to NIL and returns 0 as its result

Note: 141ll1dControl also returns 7..ero for whichControl and ze..'fO as its result if
the window is invisible or doesn't contain the given point. In these
cases, however, FindWindo'W wouldn't have returned this window in
the first place. so the situation should never arise.

i
.,~- August 13, 1986

r'
\

TestControl

input:

output:

xPoint:WORD
yPoint:WORD
theContro1:LONG

PartCode:WORD

X coord.inate, in local coordinates, to check.
Y coord.inate, in iocal coordinates, to check.
Handle of controL

Part thePoint is over.

If theControl is visible and active, TestControl tests which part of the control contains
thePoint (in the local coordinates of the control's window); it returns the corresponding pan
code, or zero if the point is outside the control. If the control is invisible or inactive,
TestControl returns zero. TemControl is called by FindControl and TrackControl;
normally you wontt need to call it yourself.

Tracl~Control

input:

outpUt:

swtX:WORD
swtY:WORD
a.etionProc:LONG
theContro1:LONG

PanCocle:WORD

x coordinate, in global CQOl'dinates, of starting point
Y coordinate, in global coordinates, of starting point
Address of routine, zero, or a negative number.
H.andle of controL

Selected part when button was release-A

When the mouse button is pressed in a visible, active controL, the application should call
TrackColrltrol with theControl equal to the control handle andstartY and staxtX are equal to
the" point where the mouse button was pressed (in the global coordinates). TrackControl
follows the movements of the mouse and responds in whatever way is appropriate until the
mouse button is released; the exact response depends on the type of control and the part of
the control in which the mouse button was pressed. Ifhighlighting is appropriate,
TrackControl does the highlighting, and undoes it before returning. When the mouse
button is released, TrackControl returns with the part code if the mouse is in the same pan
of the control that it was originally in, or with zero ifnot (in which case the application .
should do nothing).

If the mouse button was pressed in an indicator, TracltControl drags a dotted outline of it
to follow the mouse. When the mouse button is released, TrackControl calls the control
definition procedure to reposition the control's indicator. The control definition function for
scroll bars responds by redrawing the thumb, calculating the control's cmrent setting based
on the new relative position of the thumb, and storing the CUI'X'el1t setting in the control
record. The application must then scroll to the corresponding relative position in the
document

August 13, 1986

(
\

TrackControi may take additional actions beyond highlighting the control or dragging the
indicator, depending on the value passed in the actionProc parameter, as described below.
The following tells you what to pass for the standard control types; for a custom control,
what you pass will depend on how the control is defined. .

- If aetionProc is zero, TrackControl performs no additional actions. This is
appropriate for simple buttons, check boxes, radio buttons, and the thumb of
a scroll bar.

m ActionProc may be a. pointer to an action procedure that defines some action to
be performed l-epea.tedly for as long as the user holds down the mouse button.
(See below f01' details.)

- IfaetionProc is a. negative number, TrackControi will check the CtrlActi.on
field of the control's record. No additional actions will be performed if
CtrlAction is 2lCro. IfCtrlAction is negative, the control's definition procedure
will be called with an autoTrack message. IfCtrlAction is neither zero or
negative, it will be considered a valid address of an action routine and be
called.

The action procedure in the control definition procedure is described in the section "Defining
Your Own Controls". The action procedure should be of the form:

MyAc1:ion

inputs: partCode:WORO Selected part.
theControl:LONG Handle of control.

outputs: None.

In this case, TrackControl passes the control handle and the pm code to the action
procedure. (It passes zero in the partCode parameter if the mouse has moved outside the
original control part.) As an example of this type of action procedure, consider what should
happen when the mouse button is pressed in a scroll mow or paging region in a scroll bar..
For these cases, your action procedure should examine the part code to determine exactly
where the mouse button was pressed, scroll up or down a line or page as appropriate, and
call SetCtlValue to change the control's setting and redraw the thumb.

i
\
' ..

August 13, 1986

.. '

CONTROLMOYDSG AND SIZING

MoveControl

input: NewX:WORD
NewY:WORD
theControl:LONG

New X origin of control.
New Y origin of control.
Handle of control.

output: None.

MoveControl moves theControl to a new location within its window. The top left comer
of the control's enclosing rectangle is moved to the horizontal and vertical coordinates h and
v (given in the local coordinates of the control's window); the bottom right comer is adjusted
accordingly. to keep the size of the rectangle the same as before. If the control is currently
visible. it's hidden and then redrawn at its new location.

(

DragControl

input stm.tX:WORD
startY:WORD
limitRect:LONG
slopRect:LONG
axi.s:WORD
theControl:LONG

x coordinate. in local coordinates. of starting point.
Y coordinate, in local coordinates, of starting point.
Pointm' to bounds rectangle•.
POintC1' to slop rectangle.
Movement constraint.
Handle of control.

output None.

Called with the mouse button down inside theControl, DragControl pulls a dotted outline
of the control around the screen. following the movements of the mouse until the button is .
released. When the mOl1se button is released, DragControl calls MoveControl to move
the control to the location to which it was dragged.

Nolte: Before beginning to follow the mouse, DragControl calls the control
definition function to allow it to do its own "custom dragging'.' if it
chooses. If the definition function deesn't choose to do any custom
dragging, DragControl uses the default method of dragging described
here.

August 13, 1986

The swtX, startY.limitRect, slopRect, and axis parameters have the same meaning as for
the procedure DragRect.• see DragRect.

SizeControl

input: NewWldth:WORD
NewHeight:WORD
theControl:LONG

(not completed)

New width of control.
New height of control.
Handle of control.

(

output: None.

SizeControl changes the size of theControl's enclosing rectangle. The bottom right comer
of the rectangle is adjusted to set the rectangle's width and height to the number of pixels
specified by w and h; the position of the top left comer is not changed. If the control is
currently visible. it's hidden and then redrawn in its new size.

August 13, 1986

(
\,

CONT"ROLRECQRD ACCESS

SetCtlValue

input CurValue:WORD
tbeControl:LONG

Current value of controL
Handle of control.

output None.

SetCtlValue sets theControl's current setting to theValuc and redraws the control to reflect
the new setting. For check boxes and radio buttons, the value 1 fills the control with the
~ mark., and zero clears it. For scroll bars, SetCtlValue redraws the thumb
where appropriate.

If the specified value is out of range, it's forced to the nearest endpoint of the current range.

GetCtlValue

GetCtlValue returns theControl's current setting.. j

input

output

tbeControl:LONG

CurValuc:WORD

Handle of control.

Control's current value.

August 13, 1986

...

(
SetCtlParams

input: pmm2:WORD
param1:WORD
theControl:LONG

Additional control parameter, defined by control.
Additional control parameter, defined by control.
Handle of control.

(
\

i--
I

output: None.

SetCtlParams is a way of setting new parameters to the control's definition procedure,
which will set the values and redraw the control if necessary. Simple buttons, check boxes,
and radio buttons, do not use param1 or param2, and no action is performed.

Of the predefined controls, only scroll bars use the parameters. Param1 is used as the scroll
bats view, and param2 the data size. If, for either paraml or param2, a -1 is passed, that
parameter will not be changed (this only applicable to predefined scroll bars, custom controls
may not support this feature). Example: _ _

You want to show am editable text document, with a single vertical scroll bar to the
right of the text.. The text document has 300 lines, of which 30 can be displayed at
one t:i.me. To set the scroll bar you would pass 30 for param1 and 300 for param2.

If the user enters a line you would want to update the scroll bar. So, you pass -1 for
param1 because there was no change in the view (although for predefined scroll bar
there is no advantage to passing the view size again rather than -I), and 301 for
param2 to show the increased data size.

For this same document there is another approach you could ulkc. You could pass
the view and data sizes as pixels. If every line is 10 pixels high, counting leading,
and there were 300 lines, of which 30 can be displayed, you would pass 300 for
param1 and 3000 forparam2. After the line was entered, you'd pass -1 for param1
(or 300 again), and 3010 for param2. Because passing the number of pixels, rather
than the number of lines, is proportionally equivalent, the scroll bar will be identical
for either method.

Handle of control.theControl:LONG

params:LONG paraml in high WORD,
param2 in low WORD.

Ge.tCtlParams returns theControl's additional parameter settings. See SetCtlParams for
a description of param1 and param2

output:

GetCtlParams

input:

August 13, 1986

('
Miscellaneous Routines

Address ofroutine, zero, or a negative number.
Address ofpattern to use for drag outline.
X coordinate, in local coordinates, of starting point.
Y coordinate, in local coordinates, of starting point.
Pointer to rectangle to be dragged.
Pointer to bounds rectangle.
Pointer to slop rectangle.
Movement constraint.

acti.on.P:roc:LONG
dragPanem:LONG
startX:WORD
startY:WORD
dragRect:LONG
limitRect:LONG
slopRect:LONG
axis:WORD

MoveDelta:LONG Low WORD is the amount Y changed,
High WORD is the amount X changed.

DragRect pulls a dotted outline of dragRect around the screen, following the movements of
the mouse until the button is released.

output:

DragRect

input:

(

• St:anY and stanX are assumed to be the point where the mouse button was
originally pressed, in the local coordinates of the current port.

• LimitRect limits the t'rc1vel of the control's outline, and should normally
coincide with or be contained within the Clm'eIlt port.

• SlopRect allows the user some "slop" in moving the mouse; it should
completely enclose limitRect. SlopRect is the limit of mouse movement
before the drag outline is snapped back to its starting position. While the
cursor is outside of slopRect the drag outline will be at its starting position.

• The axis parameter allows you to constrain the control's motion to only one
axis. It has one of the following values:

CONST noConstraint - 0
hAxisOnly - 1
vAxisOnly - 2

No constraint.
Horizontal axis only.
Vertical axis only.

GetCtrlzpage

input: None.

output: CtrlZPage:WORD· Control Manger's direct (zero) page.

This call will normally only be made by the Dialog Manager. The Dialog Manager makes
this call because the Control and Dialog Managers share a single direct page.

\. August 13, 1986

SetCMgrlcons

input ncwFontLONG - handle of new icon font, negative to not set new font.

output oldFontLONG - handle of CUl"I'ent icon font (before ncwFont is set).

See CONTROL MANAGER ICON FONT for more information about the icon font.

August 13, 1986

JlEFINING YOUR OWN CONTROLS.

In addition to predefined controls, you can also define "custom" controls of your own. Maybe you
need a three-way selector switch, a memory-space indicator that looks like a thermometer, or a
thruster control for a spacecraft simulator-whateVer your application needs. Controls and their
indicators may occupy regions of any shape.

To define your own type of control, you write a control definition procedure in your application.
The Control Manager stores this address in the CtrlProc field of the control record. Later, when it
needs to perform a type-dependent action on the contro4 it calls the control definition procedure.

The ControlDefinition Procedure

The inputs and output of the definition procedure are:

..-.

input: message:WORD
param:LONG
thcControl:LONG

output: RetValuc:LONG

Desired operation.
Depends on operation.
Handle of control.

Depends on operation.

(The message parameter identifies the desired operation. It has one of the following values:

drawCnd =0
calcCRect = 1
testCnd =2
initCnd lIII 3
dispCnd =4
posCnd =5
thumbQul =6
dragCnd =7
autoTrack =8
ncwValuc =9
setParams =10
moveCnd =11
recSim =12

Draw the control (or control part).
Compute the rectangle to drag.
Test where mouse button was pressed.
Do any additional control initialization.
Take any additional disposal actions.
Move the control's indicator.
Compute the parameters for dragging an indicator.
Drag either a control's indicator, or the whole control.
Called while dragging if -1 passed to TrackControl.
Called when control gets new value.
Called when control gets new additional parameters.
Called control moves, compute new position for parts.
Return record size of control (in bytes).

As described below in the discussions of the routines that pcrl'orm these operations, the value
passed for param, depends on the operation. Similarly, the control definition procedure is expected
to return a function result only where indicated; in other cases, the function should return zero.

\. August 13, 1986

,I

I

(
(-..

The Draw Routine

message == drawCntl.
param == part code - draw part.

== zero - draw entire control
(Only the low WORD is used, high WORD is undefined.)

RctValue == undefined.

The message drawCntl asks the control definition function to draw all or part of the control within
its enclosing rectangle. The low-omer WORD of param is a part code specifying which part of the
control to draw, or zero for the entire control. If the control is invisible, there's nothing to do; if
it's visible, the definition procedure should draw it (or the requested part), taking into account the
cmrent highlighting and value. .

Ifparam is the part code of the control's indicator, the draw routine can assume that the indicator
hasn't moved; it might be called, for example, to highlight the indicator.

De Test Routi~

message == testCntl.
param -low-oIder WORD == Ypoint to check, in window's local coordinates.

=high-order WORD == x point to check, in window's local coordinates.
RctValue == undefined.

The Control Manager function TestControl sends the message testCntl to the control definition
function when the mouse button is pressed in a visible control. This message asks in which part of
the control, if any, a given point lies. The point is passed as the value of param, in the local
coordinates of the control's window; the vertical coordinate is in the low-order word of the long
integer and the horizontal coordinate is in the high-order word. The control definition function
should return the part code for the part of the control that contains the point; it should return zero if
the point is outside the control or if the control is inactive.

I

\. August 13, 1986

(,.

De Routine to Calculate Indicator Rectangl~

message == calcCRect.
param == address of REef.
R.ctValue == zero for default REef, nonzero ifREef is set.

Just before the Control Manager starts to drag a control, or its indicator, it will call the control's
definition procedure to determine the coordinates of the control, or its indicator. The highest bit of
param will be clear if the whole control is to be dragged, or set if its indicator is to be dragged.

If the definition procedure returns zero, and the whole control is to be dragged, the REef is set to
the control's enclosing rectangle. If the definition procedure returns zero, and the control's
indieat.or is to be dragged, the REef is set to the thumb rectangle (see Scroll Bar Control Record) .

De Initialize RQutine

message==initCntl.
param == low-order WORD is the param.l value passed to NewControl.

III high-order WORD is the param2 value passed to NewControl.
R.ctValue == undefined.

Aft.er allocating and initializing the control record as appropriate when creating a new control, the
Control Manager sends the message initCntl to the control definition procedure. This gives the
definition procedure a chance to perform any type-specific initialization it may require. For
example, the control definition procedure for scroll bars initializes the thumb and page REcrs, and
also stores paraml and param2 in the CtrlData field. The initialize routine for standard buttons,
check boxes, and radio buttons does nothing.

De Dispose Routine

message III dispCntl.
param == undefined.
RetValue =zero to continue disposal, nonzero to abort disposal.

The Control Manager's DisposeControl procedure sends the message dispCntl to the control
definition function, telling it to carry out any additional actions required when disposing of the
controL The predefined controls always return zero. If the definition procedure returns zero for
RetValue, the control will be erased, taken out of the control list, and its record deallocated.

By returning a nonzero number for RetValue, the definition procedure has a chance to abort the
disposal. This featuI'C is provided even though I am unable to provide an example of when this
feature might be useful

August 13, 1986

..

The Position Routine

message == posCntl.
pamm == low-order WORD is the vertical offset (delta y).

high-order WORD is the horizontal offset (delta x)
R.etValue =zero for default reposition, nonzero ifreposition completed.

When dragging a control's indicator to completed, TrackControl calls the control definition
procedure with the message posCntl to reposition the indicator and update the control's setting
accordingly. The value ofparam is a point giving the vertical and horizontal offset, in pixels, by
which the indicator is to be moved relative to its cu:mmt position. (Typically, this is the offset
between the points where the user pressed and released the lIIOuse button while dragging the
indicator.) The vertical offset is given in the low-order word of param and the horizontal offset in
the high-order word. The definition procedure should calculate the control's new setting based on
the given offset, update the CtrlValue field, and redraw the control within its window to reflect the
new setting.

Note: The Control Manager procedures SetCtlValue and SetCtlParams do not
call the control definition procedure with this message; instead, they pass the
newValue and setParams message (see below).

August 13, 1986

/

The Thumb.Routine

message == thumbCntL
pamm == pointer to parameter block for dragging an indicator.
RctValuc == zero for default reposition, nonzero ifreposition completed.

Before the Control Manger begins to drag a control's indicator, it will call the control's definition
procedure with the message thumbCntl. The control definition procedure should respond by
calculating the limiting rectangle, slop rectangle, axis constraint, and outline pattern to use for
dragging the control's indicator. Param is a pointer to the following data structure:

limit blk
bound rect:RECT Limit of drag (not a pointer) .
slop rect:RECT Limit of cursor (not a pointer) .
axis-param:WORD Movement constrain.
drag-patt:LONG Pointer to pattern for drag outline.

If the definition procedure returns zero, default parameters will be used. The defaults are computed
thus:

bound rect
slop_rect
axis-param

"drag-patt

PageRegion (see "Scroll Bar Control Record").
PageRegion plus 16 all around.
2 ifbit 12 of CtrlFlag is clear, 1 if set.
Pattern generated from color7 in control's color table.

(See DragRect for more information about the parameters in the limiCblk. The parameters in
limiCblk will be passed to DragRect.

August 13, 1986

(

The Drag Routine

message == dragCntl.
param == part code to drag, zero to drag the entire controL
RetValue == zero to usc default dragging, nonzero ifdragging is completed.

The message dragCntl asks the control definition procedure to drag the control or its indicator
around on the screen to follow the mouse until the user releases the mouse button. Param specifies
whether to drag a part or the whole control: zero means drag the whole control, while a nonzero
value is the part code of the control part to drag.

The control definition procedure need not implement any form of "custom dragging"; if it returns a
result of zero, the Control Manager will usc its own default method of dragging (calling
DragControl to drag the control or DragRed to drag its indicator). Conversely, if the control
definition procedure chooses to do its own custom dragging, it should signal the Control Manager
not to use the default method by returning a nonzero result.

If the whole control is being dragged, the definition function should call MoveControl to
:reposition the control to its new location after the user releases the mouse button. Ifjust the
.indicator is being dragged, the definition function should execute its own position routine (see
below) to update the control's setting and redraw it in its window.

J:lutIrack.Boutine

message == autoTrack.
param == part code, zero if not cmrently in part.
RetValue == undefined.

You can design a control to have its action procedure in the control definition procedure. To do
this, pass -1 for actionProc parameter to TrackControl. TrackControl will respond by calling
the control definition procedure with the message autoTrack. The definition function should
respond like an action procedure, as discussed in detail in the description of TrackControl. It can
tell which part of the control the mouse button was pressed in from param, which contains the part
~. The track routine for each of the standard control types does nothing.

August 13, 1986

(

(
.. ..:~..

De New Value RQutine

message == newValue.
param == undefined.
RetValue == number of bytes needed for control's record.

The Control Manager will call the control's definition procedure with the message newValue
anytime a control's value changes. First, the Control Manager will store the new value in the
CtdValue field of the control's record. The definition should compute any new parameters affected
by the change, like a new thumb position for scroll bars, and then redraw the control (if visible).
The definition procedure can assume that control is already drawn is the window. so. in the case of
scroll bars, only the thumb has to be erased, and redrawn. Actually. the definition procedure for
standard scroll bars only erases the part of the thumb that uncovered the page :region, rather than the
entire thumb.

The New 'l')arameters Routine

message == setParams.
param == new parameters.
RetValue == undefined.

The Control Manager will call the control's definition proCedure with the message setParams
anytime a control's additional parameters change. The term 'additional parameters' is defined by
the controL The values could be anything. even a pointer to more parameters. The definition
should the perform necessary actions the new parameters cause. including redrawing the control if
needed. The definition procedure can assume that control is already drawn is the window. unlike
when new parameters are sent with the message initCntl (see ''The Initialize Routine").

The only predefined control that uses additional parameters is the scroll bar. The low-order WORD
is the view value. and the high-order WORD is the data size. Simple buttons, check boxes. and .
radio button do nothing with addition parameters. The standard scroll bar definiton procedure will
stoJ:e the values in the CtrlData field of the control's :record, compute a new thumb. and draw the
new thumb in the scroll bar (if visible).

August 13, 1986

/

\

..,;

De Move Routine

message == moveCntl.
pamm == low-order WORD is the change in the vertical axis (delta y),

bigh-mier WORD is the change in the horizontal axis (delta x).
RetValue == undefined.

The Control Manager will call the control's definition procedure with the message moveCnt! from
MoveControl. The Control Manager will first hide the control, with HideControl, if it was
visible and move the control's enclosing rectangle (CtrlRect field). The definition procedure should
compute any other parameters necessary and return. For example, the standard definition
procedure for scroll bars will also move the Thumb and PageRegion fields in the control record.
Upon retu1'I4 the Control Manager will do a ShowControl if the control was visible on entry, to
draw the control at its new position. The definition procedure should not redraw the control here,
but should do everything necessary to ensure the control will be drawn properly at its new position.

The Record Size Routine

message =recCntl.
pamm =undefined.
RetValue == number of bytes needed for control's record.

The Control Manager call the control's definition procedure the message recCnt! from
NewControl before it allocates memory for the control's record. NewControl will then
allocate however many bytes is returned in RetValue for the control's record.

Ifyour control only needs the standard control record, like buttons, check boxes, and radio
buttons, return the size of the standard record. Ifyour control needs additional data fields, like a
scroll bar, return the size of the standard record, plus the additional size. You should never return a
number less than the number of byteS in a standard record.

Note: . TheControl, the handle of the control, passed to the definition procedure is not
valid in this case. Because the control's record has not been allocated, no
access to the recoId should be performed during this call. After the record has
been allocated and iniriaJiwi by the Control Manager, the definition procedure
will be called again with the message initCntl, see 'The Init:i.alize Routine"
below.

August 13, 1986

Constants

NoPart 0
SimpleButt 2
CheckBox 3
RadioButt 4
UpArrow 5
DownArrow 6
l?aqeUp 7
l?aqeDown 8
GrowBox 10
Thuntb 129

Simplel?roc $00000000
Checkl?roc $02000000
RadioProc $04000000
ScrollProc $06000000

CTRL VIS $0080
UP FLAG $0001
DOWN FLAG $0002
LEFT-FLAG $0004
RIGHT FLAG $0008

(DIR SCROLL $0010
FAMILY $007F
BOLD BUTT $0001

noConstraint 0 No constraint on movement.
hAxisOnly 1 Horizontal axis only.
vAxisOnly 2 Vertical axis only.

drawCtrl 0 Draw control command.
calcCRect 1 Compute drag REcr command.

'testCtrl 2 Hit test command.
initCtrl 3 Initialize command.
dispCtrl 4 Dispose command.
posCtrl 5 Move indicator command.
thuntbCtrl 6 Compute drag parameters command.
draqCtrl 7 Drag command.
autoTrack 8 Action command.
newValue 9 Set new value command.
setl?arams 10 Set new parameters command.
moveCtrl 11 Move command.
recSize 12 Return record size command.

\

August 13, 1986

do

Data Types

CtrlNext 0 Handle Handle of next control
CtrlOwner 4 Pointer Pointer to control's window.
CtrlRect 8 RECT Enclosing rectangle.
CtrlFlag 16 Byte Bit flags.
CtrlHilite 17 Byte Highlighted part.
CtrlValue 18 Integer Control's value.
CtrlProc 20 Pointer Control's definition procedure.
CtrlAction 24 Pointer Control's action procedure.
CtrlData 28 LongInt Reserved for CtrlProc's use.
CtrlRefCon 32 LonqInt Reserved for application's use.
CtrlColor 36 Pointer Control's color table.

color1 0 Integer
color2 2 Integer
color3 4 Integer
color4 6 Inteqer
colorS 8 Integer
color6 10 Integer
color7 12 Integer

bound_rect 0 RECT Drag bounds.
(_.

slop_rect 8 RECT Cursor bounds.
axis"param 16 Integer Movement constrains.

' • .•. ,,J drag"patt 18 Pointer Pattern for drag outline.

August 13, 1986

	v5_06_01
	v5_06_02

