
('

, ,;..~

Dan Oliver

02/18/86 Initial release.

05/08/86 Many parameter changes to accommodate menu speedups. Menu record changes and an
alternative method of defining menus, sec MENU STRINGS. Additional Mac type calls
to help portability. Many unnecessary features that slowed things down have gone
away. New calls CheckItem. SetItemMark. GetItemMark, EnableItem,
Disableltem, NewMenu. DisposeMenu, SetMenuID. SetitemID, SetSysBar,
GetSysBar, and InitPaJette.

06/18/86 Fall Down menus removed. InitMenus, BootMmgr, MmgrReset. MmgrVersion
names changed. Additional parameter, user ID, passed to MenuStartup (formerly
InitMenus). Direct access to menu record no longer supported. Custom menus being
rethought, and not currently complete. GetMenuPtr and GetItemPtr removed.
InsertMenu and InsertItem are being redesigned, and are not complete. Now using
standard error return code, although it is always 'No error'.

en/15/86 Changed the term Menu String to menu/item line list. NewMenu now allocates only
one menu at a t:i.me. Special characters in menu/item lines changes; X is now color
replace highlighting, ID numbers must be included. InsertMenu, InsertItem,
DeleteMenu, DeleteItem are complete. Custom menus are defined.

en/16186 Replacements for pages 8 and 9, I wasn't using proper ID numbers in my examples.

08/13/86 Removed standard color menus. One character has been added to the front of menu and
item lines. Added GetMHancJlle and GetMenuMgrPort calls. Changed inputs to
SetMenuFIag. MenulItem strings may terminate with a zero in addition to a return.
Change to menu records.

August 13, 1986
Fil. Yi.\!(~__2 _

...

This ERS describes the Menu Manager, the part of the Cortland Toolbox that allows you to create
sets of menus, and allows the user to choose from the commands in those menus.

You should already be familiar with the Cortland Event Manager.

About the Menu M3n32er

The Menu Manager supports the use of menus which can be part of the Cortland user interface.
Menus allow users·to examine all choices available to them at any time without being forced to
choose one of them, and without having to remember command words or special keys. The
Cortland user simply positions the cursor in the menu bar and presses the mouse button over a
menu title. The application then calls the Menu Manager, which highlights the selected title and
"pulls down" the menu below it. As long as the mouse button is held down, the menu is
displayed. Dragging through the menu causes each of the menu items (commands) in it to be
highlighted in tum. If the mouse button is released over an item, that item is "chosen", The item
blinks briefly to confum the choice, and the menu disappears.

When the user chooses an item, the Menu Manager tells the application which item was chosen,
and the application pe:rforms a corresponding action. When the application completes the action, it
removes the highlighting from the menu title, indicating to the user that the operation is complete.

If the user moves the cursor out of the menu with the mouse button held down, the menu remains
visible, though no menu items are highlighted. If the mouse button is released outside the menu,
no choice is made: The menu just disappears and the application takes no action. The user can
always look at a menu without causing any changes in the dot:ument or on the screen.

August 13, 1986
FilE' YiE'''''~...........3__

(-",.

Menu Bars

A menu bar is an outlined rectangle that holds the titles of all the menus associated with the bar. A
menu may be enabled or temporarily disabled. A disabled menu can still be pulled down, but its
title and all the items in it are dimmed and not selectable.

Keep in mind that ifyour program is likely to be translated into other languages, the menu titles
may take up more space. Ifyou're having trouble fitting your menus into the menu bar, you
should review your menu organization and menu titles.

]'be System Menu Bat

There can be one special type of menu bar which is called the System Menu Bar. There can only be
one system menu bar on the screen at one time. The system menu bar always appears at the top of
the Cortland screen; nothing but the cursor ever appears in front of it In applications that support
desk accessories, the first menu should be the desk accessory menu (the menu whose title is a
colored apple symbol). The desk accessory menu contains the names of all available desk
accessories. When the user chooses a desk accessory from the menu, the title of a menu belonging
to the desk accessory may appear in the menu bar, for as long as the accessory is active, or the
entire menu bar may be replaced by menus belonging to the desk accessory.

Color number 1 is reserved for drawing the Apple logo as the title for the desk accessory menu.
Therefore, color number 1 should not be used as the n0n:na4 hilite, or outline color. The color can
be used for menus, items, nonsystem menu bars, and the rest of the screen.

Figure 1. The System Menu Bar

. ./ August 13, 1986

('
I
'.

\ .." Window Menu Bars .

In addition to the System Menu Bar your application can have various window menu bars. These
can appear anywhere in windows. Wmdow menu bars are provided to give you more flexibility
and to address the limited resolution in 320 mode. Wmdow menu bars should be used moderately,
if at all Wmdow menu bars perform in the same manner as the System Menu Bar.

I
,1--_

.'

August 13, 1986

System Menu Bar

Window Menu Bar

(

Appearance ofMenus

A standard menu consists of a number of menu items listed vertically inside a shadowed rectangle.
A menu item may be the text of a command or just a line dividing groups of choices (see Figure 2).
Menus always appear in front ofeverything else, except the cursor. The menu in figure 2 is a
menu with 6 items including one dividing line.

Figure 2. A Standard Menu.

File Edit Font F001 Si2"~ Stl41.~

Mark .JJ.~Grid KG
FGtBlts.......... I
Show PGge.. :£? ;;;It.ms -KtlJ Comm~d

·Edlt PGttem~ DMdinCj Lin.
Drui>h Shope Disabt.d It.m

Each item can have a few visual variations from the standard appearance:

- A mark (any charcter) may appear on the left side of the item, to denote the status of the item
or of the mode it controls. See SetitemMark, GetitemMark, and Checkltem.

- A apple symbol on the right side of the item, to show that the item may be invoked from the
keyboard (that is, it has a keyboard equivalent), followed by a character. Pressing indicated
character while holding down the Command key invokes the item just as if it had been
chosen from the menu. See MenuKey .

- Each item's text may have its own text style. See SetItemStyle and GetItemStyle.

- A dimmed appearance, to indicate that the item is disabled, and can't be chosen (dividing
lines should always be disabled). See DisableItem and EnableItem.

- Any menu may be drawn directly by the application and might contain anything (see
DEFINING YOUR OWN MENUS).

If the standard menu doesn't suit your needs--for example, ifyou want more graphics, or perhaps
a nonlinear text arrangement-you can define a custom menu that, although visibly different to the
user, responds to your application's Menu Manager calls just like a standard menu (see DEFINING
YOUR OWN :MENUS).

August 13, 1986
Fil. Vi.", ~_.......6......_

(

\.
~/ Keyboard. EQuiyalents for Commands

Your program can set up a keyboard equivalent for any of its menu commands so the command can
be invoked from the keyboard with the Command key (apple key). You can assign one or two
keyboard equivalents per item. One equivalent is the primary, and is displayed to the right of the
item. 'I'he other equivalent is the alternate and is not displayed. 'I'he alternate equivalent should be
the lower case equal to the primary equivalent (which should be upper case). See MenuKey for a
discussion on how items are searched.

Note: For consistency between applications, you should specify an upper case letter as the
promary keyboard equivalent.

Jlsin2 the Menu Mana2er

To use the Menu Manager, you must have previously initialized QuickDraw. For user interaction
you must: use the Event Manager. Ifyou are going to be using the W'mdow Manager, it: must be
initialized before the Menu Manager.

The first: Menu Manager routine to call is the initialization procedure, MenuStartup. Among other
.things, MenuStartup will create an empty system. menu bar and draw it on the screen.

Your program then must define menus and items by providing a list: of menu and item lines to
NewMenu for each menu (see MENU LINES AND ITEM LINES) and InsertMenu to add them
to the system menu bar. FixMenuBar may be of use in setting default sizes.

After created, DrawMenuBar will draw the titles of the added menus.

The following section only applies if you are using TaskMaster for standard user interaction. If
you are not using TaskMaster, you will have to perform the following actions:

To handle user input your application (if not using TaskMaster) calls MenuSelect or .
MenuKey with a pointer to an extended event record (see MenuSelect). From the extended
event record, MenuSelect and MenuKey will extract information, like event position and

. key states to determine user interaction with the current menu bar.

MenuSelect should be called with the system. menu bar when the Window Manager's
FindWindow function returns an in System Menu Bar value after your application receives a
mouse-down event. Ifusing multiple menus you must switch the current menu, by calling
SetMenuBar, before calling MenuSelect. MenuSelect will return immediately if the
starting position (event position) is not inside the menu bar. If the starting position is in the
current menu bar, MenuSelect will retain control, and pull down appropriate menus
-tracking the mouse, highlighting menu items, and pulling down other menus-until the user
releases the mouse button.

When your application receives a key-down event with the Command key held down, it: should
call the MenuKey function, supplying it with a pointer to an extended event record which

August 13, 1986
Fill' Vi.",~~_--I

(

(

contains the character that was typed and key states. Applications should respond the same
way to auto-key events as to keyodown events. MenuKey will check the event record, and
only respond when the Command key was held down in addition to a key being entered.

MenuSelect and MenuKey (or TaskMaster) will return a result in the TaskData field of the
extended event record. The values returned will be:

- Zero in the low-order WORD if there was no selection. In this case there is no further action
required and yoUt" application should continue to poll the use.

- If the low-order WORD is nonzero. it is the item ID of a selected item. The high-order is
athe menu ID of the menu the selected item is in. When a selection is made, the Menu
Manager wiIlleave the title ofmenu highlighted. Yout" application should then envoke an
action which is specific to the selected item. Only after the action is completely finished
(after all dialogs, alerts. or screen actions have been taken care of) should the application
remove the highlighting from the affected menu title by calling HiliteMenu. signaling the
completion of the action.

Note: The Menu Manager will try to automatically save and restore the screen behind the
menu, or tell the Wmdow Manager to update the screen. However. ifyou are not using the
Wmdow Manager and the Menu Manager can not allocate a buffer large enough to save the
screen behind the menu, your application will have to update the screen area after a menu has
been pulled down. See CheckRedraw.

Ifyour menu bar. or items in a menu. are going to change while on the screen you can use
SetMenuTitle. InsertMenu. DeleteMenu. Setltem. Insertltem. and DeleteItem to
rearrange the menus and items.

There are several miscellaneous Menu Manager routines that may be of use to applications.
CalcMenuSize calculates the dimensions of a menu and is called by FixMenuBar.
CountMItems counts the number of items in a menu. FlashMenuBar inverts the menu bar, or
just a menu title. SetltemBlink controls the number of times a menu item blinks when it's
chosen.

August 13, 1986

(
\

j Menu Lines andJtem Lines

Menus may be czated by passing a pointer to a list of menu and item lines to NewMenu which
will parse them and allocate enough memory for necessary records, and initialize those records.
The list can be edited using a word processor, thus allowing users to easily customize their own
menus. An. example of a list is:

»Title 1\N1
-Item string 1\N256
-Item string 2\N2S7
-Item string 3\N2S8

This is a simple list of one menu lin~ and 3 item lines. The first character on a line denotes the stan
of a menu or an item in a menu. Each line is terminated. by a return(d~ 13) or a null byte (0).
The character to denote a title is whatever the very first character is in the first line. The character to
denote items is the first character on subsequent lines that is different from the title character. And
lastly, a character different from the item character, and after the title, denotes the end of the list. In
the example, the '>0' character is the title charcter, '.' is the item character, and '.' is the terminating
character. However, any characters may be used, as long as the title and item characters are
different, and the termination character is different from the item character. So, the title and
termination character may be the same.

r The second character on each line (other than the termination line) is a place holder for the length of
the string. NewMenu will replace the second character with the string's length. Therefore, after a

'._ .. / NewMenu call the string data will have been altered.. .

Note: The menu/item string must stay in their original memory. NewMenu sets
pointers in the menu record to the address of the strings.

In the example you'll notice a backslash, "'-.:, followed by a 'N' and a number. The backslash
denotes the end of a title's text and the beginning of special characters. The 'N' is a special
character that precedes an ID number. A decimal, unsigned, ASCII ID number immediately
follows. Every menu title and item must have an ID number, even dividing lines. The ID number
fer each menu title should be different from every other menu on a menu bar. The ID of an item
should be different from every other item on a menu bar. Items that are dividing lines, and always
disabled, can have the same ID number.

August 13, 1986
Fil. ViE'''''~..........9_......

B
C
D
H
I
N
U
V
X

Beginning of special characters.
Followed by a primary, then an alternate character to be used as a
keyboard equivalents. Use a space for no alternate character.
Bold the text.
Followed by acharacter to be used to mark the item.
To dim (disable).
Hexidecma1, nonAScn, ID number follows, low byte/high byte.
Italize the text.
Decimal AScn ID number follows, any length, between 1 and 65535.
Underscore the text
Places a dividing line under the item without using a separate item.
Use color replace, and not XOR, highlighting.

All the special characters pertain to items. Special characters "', B, C, I, U, and V do not pertain to
menu titles.

An example of a menu and item lines using mulitple special characters and different title, item. and
terminating characters:

$Title l'Nl
Item stling 1\N2S6*Xx
Item string z..J3C'JUN257
Item string 3\1N2S8
$

Title character is '$" ID == 1, can be same as an item's.
Item character is a space, ID == 256, key eqivalents X and x.
Item character is a space, bold, checked, underscored, ID == 257.
Item character is a space, text will appear italized, ID == 258.
Terminating character, can be the same as the title character.

Some more special stuff. Using just the @ symbol in a title will give you the Apple logo. An
example of an Apple logo menu title:

$@\NIX Apple logo title, ID == 1, color replace highlighting.

Note: The X special character (color replace highlighting) should always
be used with the Apple logo.

Note: To get the Apple logo the @ must follow the character denoting a
menu title, and then be followed by a special character begin mark
or an end of line mark (return). Do not place a space before or after
the @, like you should for other menu titles.

There is no way to include a \' in a title's string. It will always be seen as the beginning of special
characters.

A single dash, '.', for an item's text will denote a dividing line. Special characters apply to
dividing lines. Dividing lines should always be marked as dimmed, 'D'.

August 13, 1986

· i

IDNumber Assignment

ID numbers are not assigned automatically, it must be assigned in the menulitem line list. Item ID
numbers are allocated acconiingly:

ooסס$

$0001 - $OOFF
$0100 - $FFFE
$FFFF

o
1-255
256-65534
65535

Intemal usc, generally means front, or first item in menu.
Reserved for desk accessory items.
Reserved for application usc.
Internal use, generally means end, or last item in menu.

Menu ID numbers are allocated accrodingly:

ooסס$
$OOO1-$FFFE
$FFFF

o
1-65534
65535

Internal use, generally means front, or first menu in bar.
Reserved for application usc.
Internal use, generally means end, or last menu in bar.

What ID munbers to use? Here are two suggestions for schemes in ID number assignment. The
first is to number menus from 1 to n, and items from 256 to 256+n. The item ID can then be used
to index into a table of selection handling routines when a selection is made. The other scheme is to
use the lower WORD of the handling routine's address as the ID. Different items still must have
different ID numbcn. so NOPs at the head of the routine could be used for different entry points
and 10 numbers.

ID numbers (".all latJer be changed to anything you would like with calls to, SetltemID,
GetItexuID, SetMenuID, and GetMenuID.

August 13, 1986
Fill' View~ 1

(
\,

(,......._..
MenuRecQr~

The Menu Manager keeps all the information it requires for its operations on a particular menu bar
in a menu bar record. The record contains the menu's position, color, menu lists, item lists, and
other flags the Menu Manager needs to manage menus. The menu bar record is the same as a
control record.

NextCtrl
CttlOwnc:r
CtrlRect
CtrlFlag
CtrlValuc
CttJProc:
CttlData
CttlRefCon
CttIC'..olm
MenuList

LONG
LONG
RECf
WORD
WORD
LONG
LONG
LONG
LONG
LONGO

Handle of next control
Window menu belongs to, zero for system menu bars.
Coordinates of menu bar.
Defined below. .
Not used, should be zero.
$OAOOOOOO.
TRUE if system window's men~ FALSE if application's.
Reserved for application's use. .
Pointer to color table, defined below.
Array of menu handles, zero terminates list.

#;'

......".'
;

;.

Menu Bar • CtrlFlag:

Number of hilited menu.
------ Starting position of titles.a-_______________ 1 =system window menu bar.

......................----.......-----.......--- 1 =invisible.

liJI Invisible flag is not yet implemented.

August 13, 1986

Menu Bar Color Table:

Color 0 - unhighlighted color of text and background:

/

Unsed

Color 1 - highlighted color of text and background:

7654321

Unsed.

Unsed.

Text color.

Background color.

Text color.

Background color.

Unsed.

Background color.

August 13, 1986
Fil. Vi.W~

The Menwst is an amly of menu handles in the menu bar. Menus records are only partially
defined. Only the first half of the record is definded.

McnuID WORD Menu's ID number.
McnuWidth WORD Width of menu.
MenuHcight WORD Height of menu.
MenuProc LONG Pointer to menu definition procedure, zero for standard menu.
MenuFlag BYTE Defined below.
MenuRes BYTE Reserved.
FirstItem BYTE Reserved.
NumOfltems BYTE Re.c;erved.
TitleWJdth WORD Width of title.
TitleName LONG Pointer to title text, first byte equals length.
(the rest ofrecord is not defined)

MenuFlag

........__._--0 :II standard, 1 11III custom menu

................. 0 III redraw, 1 III XOR highlighting

---...............= 0 =1 normal, 1 11II selected

---.-.----- a == enabled, 1 11II disabled

* Invisible flag is not yet implemented.

Not defining menu records completely has good and bad sides. Access to menu information will
be slower if calls to the Menu Manager have to be made. However, the delay would have to be .
measured in miliseccm~ and the delay never seen on the screen. On the plus side, future Menu
Managers would not be tied to an older, possibly inadequate, record structure. The chances of
itl1proVing the Cllnoent Menu Manager, and maintaining compatibility accross future hardware, is
greatly improved by allowing records to change.

Item records not defined at all for standard menus.

August 13, 1986
FH4I View ~1-4--r-----I

Defining Your Own Menus (not completed)

The standard type of menu is predefined for you. However, you may want to define your own
type of menu--one with more graphics, or perhaps a nonlinear text an'angemcnt QuickDraw and
the Menu Manager make it possible for you to do this.

To define your own type ofmenu, you write a menu definition procedure. The Menu Manager
calls the menu definition procedure to perform basic operations such as drawing the menu.

To create a custom menu record you will have to allocate a block of memory large enough for your
menu record. Only the defmed part (see MENU RECORDS) of the menu record has to follow
Menu Manager form., the rest of the record i~ up to you. Another way is to pass a menu line with
no item... to NewMenu and then resize the allocated block to your needs. Fields in the menu
record that need to be iniriati'l1'X1 are:

MenuID
MenuWidth
MenuHeight
MenuProc
MenuFlag
TitleWldth
TitleName

Menu's ID number.
Width of menu, or you can wait for dle mSize.
Height of menu, or you can wait for the mSize.
Pointer to menu definition procedure.
In addition to other flags, bit 4 must be set.
Width of title.
Pointer to title 1:e)tt. first byte equals length. Or some other data you wish.

(not completed)

You may choose any MIne you wi-om for the menu definition procedure. The inputs and outputs
me:

.~.~. inputs: JDe8S'lge:WORD
theMenu:LONG
RectPtl":LONG
xHitPtWORD
yHitPtWORD
pa:ram:WORD

output: Result:WORD

Operdtion to pcrfrom.
Handle of menu.
Pointer to RECT enclosing menu.
X coordinate of point to check.
Y coordinate of point to check.
Addition parameter for each operation.

Depends on operation.

The message pa;ra.meter identifies the operation tci be performed. It has one of the following values:

mDrawMenu :11 0
mChoose ::: 1
mSi2e ::: 2
mDrawTirle ::: 3
mDrawltem ::: 4
rnGetItemID ::: 5

Draw the menu.
Tell which item was chosen and highlight it.
Calculate the menu's dimensions.
Draw the menu's title.
Highlight or unhighlight an item.
Return item's ID number.

The parameter theMenu indicates the menu that the operation will affect. RectPtr is the rectangle (in
global coordinates) in which the operation is to be perfOl"med.

August 13, 1986

mDrawMcmu
(

\..;.. .' The message mDrawMenu tells the menu definition procedure to draw the menu inside the REcr
pointed to by RectPtr. The cummt grafPOIt will be the Menu Manager port. The standard menu
definition procedure figures out how to draw the menu items by looking in the menu record. at the
data that defines them. For menus of your own definition, you may set up the data defining the
menu items any way you like. You should also check the enableFlags field of the menu record to
see whether the menu is disabled (or whether any of the menu items are disabled, ifyou're using all
the flags), and if so, draw it in gray. You may even print the items in a different font, as long as
you restore the original when you finish. Retmned value is not used.

mChOOR

When the menu definition procedure receives the message mChoose, the yHitPtIxHitPt parameter is
the mouse location (in global coordinates), and the param parameter is the item number of the last
item that was chosen from this menu (param is initially set to 0). The procedure should determine
whether the mouse location is in an enabled menu item, by checking whether yHitPt/xHitPt is
inside the REcr pointed to by RectPtr, whether the menu is enabled, and whether yHitPt/xHitPt is
in an enabled menu~

. If the mouse location is in an enabled menu item, unhighlight param and highlight the new
item (unless the new item is the same as the param). and return the item number of the new
item.

• If the mouse location isn't in an enabledit~ unhighlight param and return zero.

Note: When the Menu Manager needs to make a chosen menu item blink, it repeatedly calls
the menu definition procedw'e with the message m01oose, causing the item to be
alternately highlighted and unhighlighted.

Fmally, the message mSi.zc tells the menu definition procedure to calculate the horizontal and
vertical dimensions of the mem and store them in the menuWldth and menuHeight fields of the
menu record. Returned value is not used.

When the menu definition procedure receives the message mDrawTitle when the title of the menu
must be drawn. The param parameter is FALSE to draw the title as unhighlighted, and TRUE to
draw as highlighted. The REcr pointed to by RectPtr encloses the tide area. Return FALSE to
have the Menu Manager draw the title, if the title is a text string pointed to by TitleName. Return
TRUE if you complete the operation.

August 13, 1986

mDrawItem

The mDrawltem command is a request to draw an item in its highlighted or unhighlighted state. If
param is positive it is the item number and should. be draw draw as unhighlighted. Ifparam is
negative it is the negated form of the item number and should be drawn as highlighted. This
command is given when the user makes a selection and is used to blink the selection.

Param equal') the item's number and the definition procedure is asked to return the item's In
number. The item number is the value retumed by mChoose.

August 13, 1986

.oiyiding Jines vs. Underlines

Djyiding Lines

'I'hcre are two st:andaId ways to partition groups of items from one another. The first is a dividing
line, selected by an item title which is a single dash. It uses the space of an entire item and a whole
item record. The second way is a underline, set either in the menu line, or SetltemFlag. 'This
will draw a solid line on the bottom most line of the item. The underline doesn't use any more
space. on the screen or in memory, than the item would without it..

The disadvantage with an undcrl.i.ne is there isn't as much space separating items. which is the
dividing line's function.

The advantage of an underline is you can get more items in the menu and still have dividing lines.
Also, the user would have a shorter distance to go from the menu's title to the last item in the menu,
it would save a little memory, and the menu would draw faster.

In the examPle below are two menus, both showing the same information. Menu A uses dividing
lines and has 9 items. Menu B uses underlines and has 7 items. Menu B looks alittle crowded and
would look even worse ifone of the uderlined items had descending lower case letters.

MeJm A - Dividing Lines.
Undlo

Cut
Copy
Paste
Cleor

IRuert
Fill

August 13, 1986

Menu B - Underlines
~~~.........,--

Undo
~_I_"__-

Cut
Copy
Poste
Clear
Inuert
Fill

Oil. y;.~


