
3·2 Alpha Draft 6/10/86

Chapter 3

Event Manager

Overview
The Event Manager allows applications to monitor the user's actions, such as those
involving the mouse, keyboard, and keypad.

The routines available in the Event Manager are summarized in the following table:

Table X.x • Event Manager Routines and Their Functions

Event Manager Standard Housekeeping Routines

EMBootlnit
EMStartUp
EMShucDown

EMVersion
EMReset

EMActive
DoWindows

Initializes Event Manager at boot time.
Initializes the Event Manager when an application starts up.
Shuts down the Event Manager and releases any workspace
allocated to it
Returns the version of the Event Manager.
Returns an error if the Event Manager is active, but otherwise
does nothing.
Returns status indicating whether the Event Manager is active.
Returns address of the Event Manager's zero page work area to
the Window Manager.

GetMouse
Button
Stilldown
WaitMouseUp

Toolbox Event Manager Routines :These routines check events to see if they are of
interest to the application. If the events are of interest, and the
Desk Manager doesn't want them, the routines return with the
event.

GetNextEvent Returns the next available event of a specified type or types and,
if the event is in the event queue, removes it from the queue.

EventAvaii Returns the next available event of a specified type or types, but
if the event is in the event queue, leaves it in the queue.

Mouse Reading Routines: These routines prOVide the ability to read the status of the
mouse.
Returns the current location of the mouse.
Checks the status of a specified mouse button.
Checks a specified mouse button to see if it is still down.
Checks a specified mouse button to see if it is still down, and, if
not, removes preceding mouse-up event.

Posting and Removing Events

PostEvent

FlushEvents

Places an event in the event queue.

Removes all events of the type or types specified up to but not
including the flISt event of any type specified by a mask.

Event Manager 3

Accessing Events Iloutln.s~ These routines check events to see if they are of interest to
the application. If the evenLS are of interest, the routines return
with the event

GetOSEvent Returns the next available event of a specified type or types and,
if the event is in the event queue, removes it from the queue.

OSEventAvail Returns the next available event of a specified type or types, but
if the event is in the event queue, leaves it in the queue.

Miscellaneous Event Manag.r Routln.s:

TickCount Returns a count of the number of ticks since the system last
started up.

GetDblTime Returns suggested maximum difference of ticks which
determines a double mouse-click..

GetCaretTime Returns the number of ticks between blinks of the caret marking
the insertion point

GeG.e.u;IC:'aut:ce:t:tTt:ji~miWe.....--lR~e!4!l'lt2:a:tlTl!S!S:'1i1l1'l!'e7n~u~:tnEeiiEC;rr:C051f'tircCkS:E""'Ebe~twMeenee:i15bIIliit1<s~""ofH:rtF.l\'!e:-<eu~ee1tHmiRa.2g,rkoiin~gg..._....c..:::.
ate i1iSCrlio~int

SetSwitch Called by the Control Manager to inform Event Manager of a
pending switch event Should not be called by an application.

SetEventMask Specifies the system event mask. Should not be called by an
application.

The Event Manager is also used by other parts of the Toolbox; for instance, the
Window Manager uses evenLS to coordinate the ordering and display of windows on
the screen. Although the Event Manager is a single tool set, it can be conceptually
divided into two parts: the Operating System Event Manager and the Toolbox Event
Manager.

The Operating System Event Manager detects low-level, hardware-related evenLS
such as mouse button presses and keystrokes. It stores information about these evenLS
in the event queue and provides routines that access the queue.

The Operating System Event Manager also allows an application to

III post its own evenLS into the event queue

III remove evenLS from the event queue

III set the system event mask, to control which types of events get posted into the
queue

The Toolbox Event Manager calls the Operating System Event Manager to retrieve
evenLS from the event queue. In addition, it reports window and switch evenLS, which
aren't kept in the queue. The Toolbox Event Manager is the application's link to iLS
user. A typical event-<iriven application decides what to do from moment. to
moment by asking the Toolbox Event Manager for evenLS and responding to them
one by one in whatever way is appropriate.

The Toolbox Event Manager also allows an application to

III restrict some of the routines to apply only to certain event types

3·4 Alpha Draft 6/10/86

iii directly read the current state of the mouse button

II monitor the location of the mouse

11II fmd out how much time has elapsed since the system last started up

In general, events are collected from a variety of sources and reported to the
application on demand, one at a time. Events aren't necessarily reported in' the
order they occurred because some have a higher priority than others,

Note: In the remainder of this document, OSEM denotes the Operating System
Event Manager and TBEM denotes the Toolbox Event Manager.

Event Types
Events are of various types. Some report actions by the userj others are generated by
the Wmdow Manager, the Control Manager, device drivers, or the application itself
for its own purposes. Some events are handled by the system before the application
ever sees them; others are left for the application to handle. The event types are
discussed in the follOWing sections. .

Mouse events
Pressing the mouse button generates a mouse-down event; releasing the button
generates a mouse-up event. Movements of the mouse cause the cursor position to
be updated but are not reported as events. Whenever an event is posted, the location
of the mouse at that time is reported in a field of the event record The application
can obtain the current mouse position if needed by calling the TBEM routine
GetMouse. Because relative pointing devices such as joysticks must also be
supported, the Event Manager differentiates between button 0 and button 1.

Keyboard events
The character keys on the keyboard and keypad generate key-down events when
pressed; this includes all keys except Shift, Caps Lock, Control, Option, and Open
Apple, which are called modifier keys. Modifier keys are treated differently and
generate no keyboard events of their own. Whenever an event is posted, the state of
the modifier keys is reported in a field of the event record

The character keys on the keyboard and keypad also generate auto-key events when
held down. Two different time intervals are associated with auto-key events. The first
auto-key event is generated after a certain initial delay has elapsed since the key was
originally pressed; this is called the delay to repeat. Subsequent auto-key events are
then generated each time a certain repeat interval has elapsed since the last such

Event Meneger 5

event; this is called the repeat speed. The user can change these values with the
Control Panel.

Window events
The Window Manager generates events to coordinate the display of windows on the
screen. These events are either Activate or Update events.

Activate events

These events are generated whenever an inactive window becorpes active or an active
window becomes inactive. They generally occur in pairs (that is, one window is
deactivated and then another is activated).

Update events

These events occur when ill or part of a window's contents need to be dr:lwn or
redrawn, usually as a result of the user opening, closing, activating, or moving a
window.

Other events

Device driver events

These events may be generated by device drivers in certain situations; for example,
a driver might be set up to report an event when its transmission of data is
interrupted. Device driver events are placed in the event queue with the OSEM
procedure PostEvent. -

Applicc:riion-detined events

An application can deftne as many as four application events of its own and use them
for any desired purpose. Application-defmed events are placed in the event queue
with the OSEM procedure PostEvent.

3-6 Alpha Droft 6/10/86

Switch events

A switch event is generated by the Control Manager whenever a button-down event
has occurred on the switch control.

Desk accessory events

A desk accessory event is generated whenever the user enters the special keystoke to
invoke a "classic" desk accessory .

Null events

A null event is returned by the Event Manager if it has no other events to report.

Event Priority
Events are retrieved from the event queue in the order they were originally posted
However, the way that various types of events are generated and detected causes
some events to have higher priority than others. Also, not all events are kept in the
event queue. Furthermore, when an application asks the TBEM for an event, it can
specify particular types that are of interest. Specifying such events can cause some
events to be passed over in favor of others that were actually posted later.

The TEEM always returns the highest-priority event available of the requested types.
The priority ranking is as follows:

1. Activate (window becoming inactive before window becoming active).

2. SWitch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver, application-
defmed, desk accessory (all in FIFO order).

4. Update (in. front-to-back order of windows).

Activate events take priority over all others; they're detected in a spedal way, and are
never actually placed in the event queue. The TBEM checks for pending activate
events before looking in the event queue, so it will always return such an event if one is
available. Because of the spedal way activate events are detected, there can never be
more than two such events pending at the same time; at most there will be one for a
window becoming inactive followed by another for a window becoming active.

Next in priority are switch events, which are generated by the Control Manager and
are also not placed in the event queue. If no activate events are pending, the TBEM
checks for a switch event before looking in the event queue. If a switch event is
available, the TBEM then checks to see if any update events are pending, and if so, it

Event Manager 7

returns the update event to the application. The switch event is not returned to the
application until there are no pending update events. This is to ensure that all of the
windows are updated before the application is switched.

Category 3 includes most of the event types. Within this category, events are
retrieved from the queue in the order they were posted.

Next in priority are update events. Uke activate and switch events, these are not
placed in the event queue, but are detected in another way. If no higher-priority
event is a.vailable, the TBEM checles for windows whose contents need to be drawn. If
it flnds one, it returns an update event for that window. WIndows are checked in the
order in which they're displayed on the screen, from front to back, so if two or more
windows need to be updated, an update event will be returned for the frontmost such
window.

Fina.lly, if no other event is available, the TBEM returns a null event.

Note: If the queue should become full, the OSEM will begin discarding old events to
make room for new ones as they're posted. The events discarded are always the
oldest ones in the queue.

Event Records
Every event is represented internally by an event record containing all pertinent
infomution about that event. The event record includes the following information:

III the type of event

II the time the event was posted (In ticles since system startup)

III the location of the mouse at the time the event was posted (in global
coordinates)

III the state of the mouse buttons and modifier keys at the time the event was posted

III any additional information required for a particular type of event, such as·
which key the user pressed or which windOw is being activated

Every event, including null events, has an event record containing this information.

Event records are defmed as follows:

uiIIJt INTEGER {event codeI
message LONGINT (event messagel
uJren LONGINT (ticles since startupl
where Point (mouse locationl
modtjie1'S INTEGER {modifier flags}

The when field contains the number of ticles since the system last started up, and the
where field gives the location of the mouse, in global coordinates, at the time the
event was posted. The other three fields are descnbed in the following sections.

3-8 Alpha Draft 6/10/86

Event Code

The what field of an event record contains an event code identifying the type of the
event. The event codes are assigned as follows:

o- null event
1 - mouse down event
2 - mouse up event

.3 - key down event
4 - undefmed
S - auto-key event
6 - update event
7 - undefmed
8 - activate event
9 - switch event
10 - desk accessory event
11 - device driver event
12 - application-defmed event
13 - application-defmed event
14 - application-defmed event
1S • application-defmed event

Event Message
The message field of an event record contains the event message, which conveys
additional information about the event The nature of this information depends on
the event type, as shown in the follOWing table.

Table X-X: Event Messages

Event type

Key-down
Auto-key
Activate
Update
Mouse-down
Mouse-up
Device driver
Application
Switch
Desk Accessory

Event message

AScn character code in low-order byte
ASCn character code in low-order byte
Pointer to window
Pointer to window
Button number (0 or 1) in low-order word
Button number (0 or 1) in low-order word
Defmed by the device driver
Defmed by the application
Undefined
Undefined

Event Manager 9

Null

Modifier Flogs

Undefined

The modifiers field of an event record contains further infonrultion about activate
events and the state of the modifier keys and mouse buttons at the time the event was
posted, as shown below. The application might look at this field to fmd out, for
instance, whether the OPEN-APPLE key was down when a mouse-<iown event was
posted (which could affect the way objects are selected) or when a key-down event was
posted (which could mean the user is choosing a menu item by typing its keyboard
equivalent). The modifier flags are shown in the following figure.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a

KeyPad

ControlKey

OptionKey

CapsLock

ShiftKey

AppleKey

BtnOState

Btn1State

ChangeF1ag

ActiveFlag

The ActiveFlag and ChangeFlag bits give further infonrultion about activate events.
The ActiveFlag bit is set to 1 if the window pointed to by the event message is being
activated, or 0 if the window is being deactivated. The ChangeFlag bit is set to 1 if the
active window is dunging from an application window to a system window or vice
versa. Otherwise, it's set to O. The KeyPad bit gives further infonrultion about key
down eventsj it's set to 1 if the key pressed was on the keypad, or 0 if the key pressed
was on the keyboard. The remaining bits indicate the state of the mouse button and
modifier keys. Note that the BtnOState and BtnlState bits are set to 1 if the
corresponding mouse button is up, whereas the bits for the five modifier keys are set
to 1 if their corresponding keys are down.

3-10 Alpha Draft 6/10/86

Event Masks
Some of the TEEM and OSEM routines can be restricted to operate on a specific
event type or group of types; in other words, the specified event types are enabled
while all others are diSabled. For instance, instead of just requesting the next
available event, the application can specifically ask for the next keyboard event

An application can specify which event types a particular call applies to by supplying
an event mask as a parameter. This is an integer in which there's one bit position for
each event type, as shown below. The bit position representing a given type
corresponds to the event code for that type-for example, update events (event code
6) are specified by bit 6 of the niask. A 1 in bit 6 means that this call applies to update
events; a 0 means that it doesn't The

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o

Switch

Applicaeion
defined

Device
driver

Desk Activate
Accessory

Update

Auto-key

Key-down Mouse-down

Mouse-up

Note: Null events can't be disabled; a null event will always be reported when none of
the enabled types of events are available.

There's also a global system event mask that controls which event types get posted
into the event queue by the OSEM. Only event types corresponding to bits set in the
system event mask are posted; all others are ignored. When the system starts up, the
system event mask is set to post all events.

Using the Event Manager
II an application will be using the Event Managers and the Window Manager, it must
initialize the Event Managers before initialiZing the Window Manager. The TEEM
and OSEM are initialized by calling the TEEM routine EMStartUp. Because the
TEEM needs to share data. with the Window Manager, they must both use the same
zero-page work area. When the Window Manager is initialized, it must call the TEEM
routine DoWindows to obtain the address of the zero-page work area that has been

Event Manager 11

assigned to the Event Managers. If DoWindows is not C1IIed, the TBEM will assume
that windows are not being used and will not attempt to return window events.

Event-driven applications have a main,Ioop that repeatedly calls GetNextEvent to
retrieve the next available event, and then takes whatever action is appropriate for
each type of event Some typical responses to commonly occurring events are
described in the next section. The program is expected to respond only to those
events that are directly related to its own operations. After calling GetN'extEvent, it
should test the Boolean result to fwd out whether it needs to respond to the event:
TRUE means the event may be of interest to the application; FALSE usually means it
will not be of interest.

In some cases, the application tn2y simply want to look at a pending event while
leaVing it available for subsequent retrieval by GetN'extEvent It can do this with the
EventAvail call.

Responding to Mouse Events

On receiving a mouse-down event, an application should first call the Window
Manager to fmd out where on the screen the mouse button was pressed, and then
respond in whatever way is appropriate. Depending on the part of the screen in
which the button was pressed, the application tn2y have to call Toolbox routines in
the Menu Manager, the Desk Manager, the Window Manager, or the Control
Manager.

If the application attaches some special significance to pressing a modifier key along
with the mouse button. it can discover the state of that modifier key when the mouse
button was down by examining the appropriate flag in the modifiers field of the event
record.

If the application wishes to respond to mouse double-clicks, it will have to detect
them itself. It can do so by comparing the time and location of a mouse-up event
with those of the immediately following mouse-down event The application should
assume a double-click has occurred if both of the following are true:

III The times of the mouse-up event and the mouse-down event differ by a number
of ticks less than or equal to the value returned by the TBEM function
GetDblTime.

3-12 ,AJpha Draft 6/10/86

11II The locations of the two mouse-down events separared by the mouse-up event
are suffidently close to each other. Exactly what this means depends on the
particular application. For instance, in a word-processing application, two
locations might be considered essentially the same if they fallon the same
character, whereas in a graphics' application they might be considered
essentially the same if the sum of the horizontal and vertical changes in position
is no more than five pixels.

Mouse-up events may be significant in other ways; for example, they might signal the
end of dragging to select more than one object Most simple applications, however,
will ignore mouse-up events.

Responding to Keyboard Events
For a key-down event, the application should fU'St check the modifiers field to see
whether the character was typed with the Open-Apple key held down; if so, the user
may have been choosing a menu item by typing its keyboard equivalent.

If the key-down event was not a menu command, the appliCltion should then
respond to the event in whatever way is appropriate. For example, if one of the
windows is active, it might want to insert the typed charaCter into the active
document; if none of the windows is active, it might want to ignore the event.

Usually the application Cln handle auto-key events the same way as key-down events.
You may, however, want it to ignore auto-key events that invoke commands that
shouldn't be continually repeated.

Responding to Window Events
When the application receives an activate event for one of its own windows, the
Window Manager will already have done all of the normal "housekeeping" associated
with the event, such as highlighting or unhighlighting the window. The application
can then take any further action that it may require, such as showmg or hiding a scroll
bar or highlighting or unhighlighting a selection.

On receiving an updare event for one of its own windows, the application should
usually updare the contents of the window.

Responding to Other Events
An application will never receive a desk accessory event because these are
intercepted and handled by the Desk Manager.

Event Meneger 13

If the application receives a switch event, it should c.alI a (currently unnamed) routine
in the Switcher that will save the current state and switch to the next application.

Posting end Removing Events
If an application is using application-defined events, it will need to c.alI the OS&\1
function PostEvent to post them into the event queue. Device drivers can post events
the same way. This function is sometimes also useful for reposting events that have
been removed from the event queue with GetNextEvent.

In Some situations, you may want your application to remove from the event queue
some or all events of a certain type or types. It can do this with the OSEM procedure
FlushEvents.

Other Operetlons

In addition to receiving the users mouse and keyboard actions in the fonn of events,
appliations can directiy read the mouse loation and state of the mouse buttons by
calling the TBEM routines GetMouse and Button, respectively. To follow the mouse
when the user moves it with the button down, the appliation an use the TBEM
routines StillDown or WaitMouseUp.

The TBEM routine TIckCount returns the number of ticks since the last system start
up. This value can be compared to the "when" field of an event record to dis<:over
the delay since tha.t event was posted.

The TBEM function GetCaretTIme returns the number of ticks between bUnks of the
"caret" (usually a vertical bar) marking the insertion point in editable text. An
application should c.alI GetCaretTune if it is causing the caret to blink itself. The
application would check this value each time through the main event loop to ensure a
constant frequency of blinking.

Applications should never c.alI the TBEM routines DoWIndows and SetSwitch, and
will probably never c.alI the OSEM routines GetOSEvent, OSEventAvail, and
SetEventMask.

USING ALTERNATIVE POINTING DEVICES
The Event Manager can use an alternative pointing device, such as a graphics tablet,
instead of the mouse. When an alternative pointing device is being used, its XY

3·14 Alpha Drott 6/10/86

location and button status will appear in the event records instead of the mouse
information. Mouse-up and Mouse-down events will be posted when the alternative
device's buttons change state. An application which uses the Event Manager will not
know that an alternative pointing device is being used; it will work the same as it does
with the mouse.

More than one pointing device can also be used. In this case, whichever device is
currently moving or changing state will be the device whose XX location appears in
the event records. The cursor will also correspond to the device which is currently
moving or changing state.

Instolling Device Drivers
In order to use an alternative pointing device, a device driver must be written for it
and installed in the system. The user should install the device driver by executing a
startup program. If the startup program is a desk accessory, the user can install the
driver while using an application. The startup program should initialize the device
'and install the device driver into the system as detailed in the follOWing paragraphs.

Devices Using Their Own Cords

If the device communicates using its own card, install the device driver by taking the
following steps:

1. Determine which slot the device's card is in. Store the slot number in the
appropriate byte of the device driver header (described below).

2. Next, perform any initialization needed by the device such as setting up scaling
and offset values, setting the correct operation mode, etc.

3. Install the driver into either the Hea.rt.beat Queue or the IR<l-Other interrupt
vector depending on whether or not the device generates interrupts.

If the device does not generate interrupts, the driver should be installed as a task in
the Heartbeat queue. Install the driver using the SetHeartBeat routine in the
Miscellaneous Tool Set.

If the device does generate interrupts, the driver should be installed in the
IRQ..Other interrupt vector after first saving the previQus contents of the vector.
The contents of the vector are obtained by calling the GetVector routine, in the
Miscellaneous Tool Set, with a reference number of $17. The driver is then
installed by calling the SetVector routine, in the Miscellaneous Tool Set, with a
reference number of $17.

Event Manager 15

Devices Communicating Through the Serial Port

If the device communicates through the Serial port, install the device driver by taking
the following steps:

1. Determine which port the device is connected to. Store the port number in the
appropriate byte of the device driver header (described below).

2. Initialize the device by calling the Serial !nit routine.

3. Install the driver in the Serial fumware's completion vector. This is done by
issuing a SetIntlnfo call to the Serial fumware. The command list for the calI
should specify that 'character available' interrupts should be passed to the driver.

3. Tum on buffering by calling the Serial Write routine with the following three
characters • control I, B, E.

Devices Communicating Through the Apple Desktop Bus

If the device communicates though Apple Desktop Bus, install the device driver by
taking the following steps:

1. Determine the address number assigned to the device. Store the address number
in the appropriate byte of the device driver header (described below).

2. Install the driver in the ADB firmware's SRQ List completion vector. This is done
by calling the SRQPL routine in the ADB Tool Set.

3. Enable SRQ for the device using the Send routine in the ADB Tool Set.

Removing Device Drivers
The user should remove the device driver by executing a shutdown program. If the
shutdown program is a desk accessory, the user em remove the driver while using an
application. The shutdown program should shut down the device and remove the
device driver from 'the system as follows •

Devices Using Their Own Cards

,If the device communicates using its own card, remove the device driver by taking the
folIowing steps:

1. Shut down the device if possible.

2. If the driver is installed in the Heartbeat queue, remove it by calling the
DelHeartBeat routine in the Miscellaneous Tool Set. If the driver is installed'in the
IRQ..Other interrupt vector, restore the previous contents of the vector.

3. Remove the driver from memory.

3-16 Alpha Draft 6/10/86

Devices Communicating Through the Serial Port

If the device communicates through the Serial port, remove the device driver by
taking the following steps:

1. Tum off buffering by calling the Serial Write routine with the following three
characters· Control I, B, D.

2. Remove the driver from memory.

Devices Communicating Through the Apple Desktop Bus

If the device communicates through Apple Desktop Bus, remove the device driver by
taking the following steps:

1. Disable SRQ for the device.

2. Remove the driver from the ADB fIrmware's SRQ List completion vector. This is
done by calling the SRQRMV routine in the ADB Tool Set.

3. Remove the .driver from memory.

Device drivers will be called with the processor in native 8-bit mode and must exit in
native 8-bit mode. If a device driver will be installed as a Heartbeat task, it must be
written in accordance with the instructions in the Miscellaneous Tool Set, under the
Heartbeat Interrupt Tools. All other device drivers must be written according to
interrupt routine guidelines.

Ali device drivers should begin with a 6 byte header as follows -

BRA CodeStart (this generates 2 bytes of code)
2 bytes of device information
2 bytes initialized to $~89 which is the device driver signature

If the device driver is installed ~ a Heartbeat task, the driver header should be
immediately after the Heartbeat task header.

The low byte of device information should be set up as follows -
Bit 0 - Set if the device has its own card and does not generate interrupts
Bit 1 - set if the device has its own card and does generate interrupts
Bit 2 • Set if the device communicates through the Serial port
Bit 3 - Set if the device communicates through Apple Desktop Bus
Bit 4 - Reserved for future use
Bit 5 - Reserved for future use
Bit 6 - set if the device is a relative device
Bit 7 - Set if the device is an absolute device

The high b~e of device information should be initialized to $FF. The startup
program should then set up this byte differently depending on the type of device
being installed -

Event Manager 17

Card device· byte will contain the siot 1* where the card was found
Serial device • byte will conwn the port 1* the device is connected to
ADB device· byte will contain the address 1* assigned to the device

A device driver should perform the following steps:

1. Call the GetAddr routine in the Miscellaneous Tool Set to obtain the address of the
relative or absolute clamp values (depending on whether the driver is for a relative
or absolute device). Save the address so that this call only has to be made the fU'St
time the device driver is executed.

2. If the driver is Installed as a Heartbeat task, reset the heartbeat task counter to 1 or
2. Poll the device to obtain its current XY position and button state.

If the driver is for a serial device, issue an InQStaCUS call to determine how many
characters are in the serial fumware's input queue. Read the characters by calling
the Serial Read routine.

If the driver is for an ADB device, there will be a buffer pointer on the stack at
offset 7. The fU'St byte in the buffer spedfies the number of data byteS in the buffer.
Read the data bytes.

3. Determine if the device's XY position or button state has changed. If no changes,
exit.

4. Push a word on the stack which is set up as follows •
Bit 1 • set if XY position has changed, else dear
Bit 2 • set if button state has changed, else dear

S. Read the keyboard modifiers latch at $C025 (must be done in 8-bit mode) and
push the byte on the stack. Push a byte of 0 on the stack.

6. Determine the device's absolute X position. Get the current X damps, using the
address saved above, and damp the X position. Push a word containing the
damped, absolute X position on the stack.

7. Determine the device's absolute Y position. Get the current Y damps, using the
address saved above, and damp the Y position. Push a word containing the
damped, absolute Y position on the stack.

8.Push a word on the stack which is set up as follows·
Bit 8· Previous state of button 1 (0 if up, 1 if down)
Bit 12· Current state of button 1

. Bit 14 • Previous state of button 0
Bit 15 • Current state of button 0

9. Call the FakeMouse routine in the Event Manager (must be called in native 16·bit
mode).

10. Go back to native 8-bit mode.

11. RTI

3·18 Alpha Drott 6/10/86

The Journaling Mechanism
The Event Manager has a journaling mechanism that can be accessed through
assembly language. The journaling mechanism "decouples" the Event Manager from
the user and feeds it events from a file that contains a recording of all the events that
occurred during some portion of a user's session. Specifically, this file is a recording
of all ca.l.Ls to the TEEM routines GetNextEvent, EventAvail, GetMouse, Button, and
TickCount

When a journal is being recorded. every call to any of these routines is sent to a
journaling device driver, which records the call (and the results of the call) in a file.
When the journal is played back. these recorded TEEM calls are t<l.ken from the
journal me and sent directly to the TEEM. The result is that the recorded sequence of
user-generated events is reproduced when the journal is played back.

The joumaling device driver does not exist , but hooks are present in the Event
Manager which allow one to be written. In order to use journaling, the address of the
joumaling driver must be place~ in the EM variable journalper. The Event
Manager calls the journaling device driver by jumping through journalper.
Journalptr is set to SOOOOOOOO when EMStartUp is executed.

The information pushed on the st<l.ck is as follows:

I II preVious concencs I
I journaUlag I 'Word indicating current value stored at SE100E7.

I journal code I 'Word indicating Code for the routine c:illing the journaling driver.

I resulCpoincer I Pointer to the actual dat<l. being returned by the routine.

I I~sp

The locations of journalper and journalflag should be obtained by calling the
Miscellaneous Tools routine GetAddr. The journalflag controls whether
journaling is active. and, if so, whether it is in recording or playback mode. If
journalflag is set to 0, journaling is not active. If journalflag is non-zero,
journaling is active. A positive value indicares recording mode and a negative value
indicates playback mode. journalflag is set to SOO when EMSt<l.rtUp is executed.

If journaling is active, the TEEM routines GetNextEvent. EventAvail, GetMouse,
Button. and TickCount will push information on the stack and do a JSL to the
journaling device driver whose address is at SE100E9. The journaling driver should
remove the information from the st<l.ck before returning.

The values for the journalcode and resultpoineer are summarized in the
following t<l.ble:

Event Manager 19

Table X-X: Journal Codes and Result Pointers

Jour.na1 Code

o
1
2
4
4

TickCount
GetMouse
Button
GetNextEvent
EventAvail

R.esuIt Pointer points to:

LONG
Point
BOOLEAN
Event Record
Event Record

3·20 Alpha Draft 6/10/86

EMBootlnit

Called at boot time. Does nothing. Should not be called by an application.

Stack Be Parameter Definition

Stack Before and After Call

Call does not aff~et the suck.

c
Call should not be made from an application"

Pascal

Call should not be made from an application.

Event Manager 21

EMStorfUp

Initializes the Event Manager, sets size of event queue, specifies minimum and
maximum mouse clamp values. and defines ID program will use to get memory from
the Memory Manager.

stack & Parameter Definition

Stack Before Call

Manager.

Integer specifying starting address in bank 0 for EM's one-page work area.

Integer specifying maximum number of event records the queue can hold.

Integer specifying minimum X clamp value for the mouse.

rnteger specifying maximum X clamp value for the mouse.

Integer specifying minimum Y clamp value for the mouse.

Integer specifying rrwc.imum Y clamp value for the mouse.~__Ym_a_x_c_l_a_mp l
!--__p_ro_g_r_a_m_I_D 1 Integer specifying IDto use to get memory from Memory

I~sp

f-------,I
_p_r_9_v1_'o_u_s_c_o_n_c9_n_e_s_1

__z_fIIr_o_p_a_g_fII_a_dd_r_s__1

:--__q_Ult_U_lt_S_i._Z9 1

___xm_l_'n_c_l_am_p 1

~__xm_a_x_r:_l_a_mp 11

Ymi.nclamp

Stack After Coli

f-------I
previous coneencs I

I~sp

If queuesiZe is equal to zero, a default size of 20 will be used. If queuestze is greater
than 3639, an error will be returned and the Event Manager will not be initialized.

Before the Event Manager passes the clamp values to the mouse, it decrements
XMaxClamp and YMaxClamp by one.

If the event queue cannot be allocated due to insufficient memory, an error is
returned and the Event Manager is not initialized. Duplicate EMStartUp calls also
cause an error to be returned.

3-22 Alpha Draft 6/10/86

c

Pescel

Event Manager 23

EMShutDown

Shuts down the Event Manager and releases any workspace allocated to it.

Steck & Peremeter Definition

Stack Before and After Call

Call does not affect the stack.

c

Pescel

3·24 Alpha Draft 6/10/86

EMVersion

Returns the version of the Event Manager.

Stack Be Parameter Definition

Stack Before Coli

1_' 1

I previous c::onc:enc:s I
I resulc:space I Word allowing space for the output

I I~sp

Stack After Coli

_____1

previous conc:enc:s I
versioninfo I Word indicating which version of the Event Manager is present.

I~sp

c

Pascal

Event Manager 25

EMReset

Returns an error if the Event Manager is active; otherwise does nothing.

Steck Be Peremeter Definition

Stack Betore and After Call

Call does not affect the stack.

c

Pescel

3·26 Alpha Draft 6/10/86 ,

EMActive

Returns a non-zero value if the Event Manager is active; returns zero if the Event
Manager is inactive.

Stock & Parameter Definition

Stack Before Call

:-- 1

previous concencs I
resulcspace I Word allowing space for the output

If-SP

Stack After Call

_____1

previous contencs I
acci veflag I Integer indicating zero if Event Manager not active, non·zero if active.

If-sp

c

Pescel

Event Manager 27

DoWindows

Returns the address of the zero-page work area used by the Event Manager to the
Window Manager. .

DoWmdows is called by the Window Manager when the Window Manager is
initialized. The Window Manager uses the high end of the ZeroPage.A.drs returned by
DoWindowsj the Event Manager uses the low end nus routine should not be used by
an application.

Steck Be Peremeter Definition

Stack Betore Coli

f-------I
previous concencs I

:"esulespat;:e I Word allowing Space for the output.

If-sp

Stack After Coli

1--------1
previous concencs I

zeropageaddrs I Integer returning the zero page address of the EM's work area.

If-sp

c·
Call should not be made from an application.

Pescol

Call should not be made from an application.

3·28 Alpha Draft 6/10/86

Event Monoger 29

GetNextEvent

Returns the next available event of a specified type or types and, if the event is in the
event queue, removes it from the queue.

Stock Be Parameter Definition

Stack Before Cell

~ ,I

previous concencs I
rasule.space I Word allowing space for the output.

evenCmasJc I Integer spediying which typeS of events are to be retrieved.

evencpcr I Pointer to event record in which the event will be placed..

I+-sp

Stack After Cell

f-----_I
previous concenc.s I

handleevene? I Boolean returning TRUE if appliation should handle event;

I+- sp FALSE if system or null event.

c

j

Pascal

3-30 Alpha Draft 6/10/86

GetNextEvent returns the next available event of any type designated by the mask,
subject to the following priority order:

1. Activate (window becoming inactive before window becoming active).

2. Switch.

3. Mouse-down, mouse-up, key-down, auto-key, device driver, application
defined, desk accessory, all in FIFO order.

4. Update (in front-to-back order of windows).

if no event of any of the designated types is available, GerNextEvent returns a null
event. This priority order is further discussed in "Event Priority ".

Events in the queue that aren't designated in the mask are left in the queue. The
events can be removed by calling the FlushEvents tool.

Before reporting an event to the application, GetNextEvent first calls the Desk
Manager tool SystemEvent to see whether the system wants to intercept and respond
to the event. If so, or if the event being reponed is a null event, GetNextEvent returns
a Boolean result of FAlSE; a Boolean result of TRUE means that the application
should handle the event itself. The Desk Manager intercepts the follOWing events:

l1li desk accessory events

l1li activate and update events directed to a desk accessory

l1li mouse-up and keyboard events, if the currently aaive window belongs to a desk
accessory

In each ease, the event is intercepted by the Desk Manager only if the desk accessory
can handle that type of event As a rule, all desk accessories should be set up to
handle activate, update, and keyboard events and should not handle mouse-up
events.

Event M9nager 31

EventAvoil

Returns the next available event of a spedfied type or types. If the event is in the
event queue, leaves the event in the queue. Otherwise, the call works exaaly like
GecNextEvent

An event returned by EventAvaiI cannot be accessed if, in the meantime, the queue
becomes full and the event is discarded. However, because the oldest events are the
ones discarded, useful events will be discarded only in an unusually busy
environment.

Stack & Parameter Definition

Stack Before Coli

_____1

previous eoneenes I
resulesp.sr::e I Word allowing space for the output.

evenemask I Integer specifying which types of events are to be retrieved.

eveneper I Pointer to event record in which the event will be placed..

I~sp

Stack After Coli

_____1

previous eoneenes I
hanc:tleevene? I Boolean returning TRt.JE if application should handle event;

I~ Sp . FALSE if system or null event.

c

Pascel

3·32 AJphO Draft 6/10/86

GetMouse

Returns the current mouse location.

The location is given in the local coordinace syscem of the current GrafPort (for
example, the currently active window). This differs from the mouse location stored
in the where field of an evenc recordj thac location is always in global coordinaces.

Stack Be Parameter Definition

Stack Before Cell

1 1

.1 previous contents I
I mouselocptr I Pointer to a record in which the current mouse location will be returned..

I If-SP

Stack After Cell

!----~~__I
previous contents I

If-sp

c

Pascal

Event Manager 33

Button

Returns the current state of a specified mouse button.

Stock Be Parameter Definition

Stack Before Call

~ I
previous contents I

resulespace I Word allowing Space for the output.

buttonnumber I Integer specifying number of button (0 or 1) to check.

I~sp

Stack After Call

___--1
previous contents I

butt on down ? I Boolean returning TRUE if the button is down, or FALSE if it isn't

I~sp

An error is returned if buttcmnumber is not 0 or 1.

c

Poscol

3-34 Alpha Draft 6/10/86

StillDown

Tests whether a specified mouse button is still down.

Usually called after a mouse-down event, StillDown is a true test of whether the mouse
button is still down from the original press. (Button is not a true test, because it
recums TRUE whenever the mouse button is currently down, even jf the button was
released and pressed again since the original mouse-down event.)

Steck Be Peremeter Definition

Steck Before Coli

!--- I
previous conCencs I

ruulCspdce I Word allowing space for the output.

bucconnumber I Integerspec:ifying number of button (0 or 1) to check.

I~sp

Steck After Cell

~ I
previous contencs I

butCondown? I Boolean recurning TRUE if the button is down,and there are no mouse.

I~ SP events pending in the event queue.

An error is returned if Outt01'lnumber is not O' or 1.

c

Pescel

Event Manager 35

WoitMouseU P

Tests whether the mouse button is still down, and, if the button is not still down from
th~ original press, removes the preceding mouse-up event before returning FALSE.
An error is returned if ButtonNum is not 0 or 1.

WaitMouseUp could be used, for example, if an application attached some special
significance to mouse double-clic.ks and to mouse-up events. WaitMouseUp would
allow the application co recognize a double-ciick without being confused by the
intervening mouse-up.

Stock & Parameter Definition

Stack Before Coli

If-----=---II previous contents I
.If-__r'_es_u_l_t_s_p_a_ce l Word allowing space for the outpur.

I buttonnumber I Intege:rspecifying number of button (0 or 1) to check.
,f--------!+_ SP

Stack After Coli

~ I
previous contents I

buttondown? I Boolean returning TRUE if the button is down,and there are no more

I+_ SF mouse events pending in the event queue.

An error is returned if lJuttonnumber is not 0 or 1.

c

Pascol

3-36 Alpha Draft 6/1 0/86

../

PostEvent

Places an event in the event queue.

An application must be careful when it posts any events other than its own
application-defmed events into the queue. Attempting to post an activate or update
event (which aren't normally placed in the queue), for example, will interfere with
the normal operation of the Event Manager.

If PostEvent is used to repost an event, the event time, mouse location, state of the
modifier keys, and state of the mouse buttons will all be changed from the originally
posted event. This can alter the meaning of the event.

Steck & Paremeter Definition

Stack Before Call
_____1

previous contents I
resultspace I Word allowing space for the output

eventcode I Integer specifying type of event to be placed in the queue.

even tms;, I Longint specifying event message.

I~sp

Stack After Coli

1---- 1

previous contents I
resul tcode I Integer returning 0 if event posted, 1 if event type not designated in system

I~ SP event mask.

In the eventmsg , the current state of the modifier keys and mouse buttons are
supplied in the high-order word of the message. The current time and mouse
location are also recorded in the message.

Event Manager 37

c

Pascal

3-38 Alpha Draft 611 0/86

FlushEvents

Removes all events of the type or types specified up to but not induding the fU"St event
of any type specified by stopmask. If the event queue doesn't contain any event of the
types specified by eventmask, FlushEvents does. nothing.

Steck Be Perameter Definition

Stack Before Coli

!---- I
previous concencs I

resulcspace I Word allowing Space for the output

evenCmask I Integer specifying type or types of evenLS to be removed from the queue.

scopmask I Integer specifying the first event type to not be removed (0 to remove.

I~ SF a.ll events).

Stack After Coli

1--=- 1

previous concencs I
resul Ccode I Integer returning 0 if a.ll events removed, or the event code indicating

I~ SF what type of event caused the process to stop.

c

Pescel

Event Meneger 39

GetOSEvent

Returns the next available event of a specified type or types and, if the event is in the
event queue, removes it from the ·queue.

GetOSEvent returns the next available event of any type designated by the mask. If no
event of any of the designated types is available, GetOSEvent returns a null event.

Events in the queue that aren't designated in the mask are left in the queue. The
events on be removed by calling the FlushEvents tool.

Stock & Peremeter Definition

Stack Before Call
_____1

previous concencs I
resulCspace I Word allowing space for the output.

evenCmasJc I Integer spedfying which types of events are to be retrieved.

evencpcr j Pointer to event record in which the event will be placed..

I~sp

Stack After Call

~ I
previous concencs I

evenCChere? I Boolean returning TRUE if any of the events specified are available;

I~ Sp FALSE if null event

c

Pescel

3-40 Alpha Draft 6/10/86

OSEventAvoil

Returns the next available event of a specified type or types. If the event is in the
event queue, leaves the event in the queue. Otherwise, the call works e.xaaly like
GetOSEvent.

An event returned by OSEventAvail cannot be accessed if, in the meantime, the
queue becomes full and the event is discarded. However, because the oldest events
are the ones discarded, useful events will be discarded only in an unusually busy
environment.

Steck & Peremeter Definition

Stack Before Call

_____1

previous c;ontents I
resultspace I Word allowing space for the output

eventmas)c I Integer specifying which types of events are to be retrieved.

eventptr I Pointer to event record in which the event will be placed..

If-SP

Stack After Call

~ I
previous contents I

eventthere? I Boolean returning TRUE if any of the events specified are available;

If- SP FALSE if null event.

c

Pescel

EventManager 41

TickCount

Returns the current number of ticks (sixtieths of ~ second) since the system last surted
up.

Applications should not rely on the tick count being exact. The tick count is
incremented during the VEL interrupt, but that interrupt can be disabled. Also,
since an interrupt cask can keep control for more than one tick, an application should
also not rely on the tick count being incremented to a ceruin value (for example,
resting whether the tick count has become equal to its old value plus 1). Instead, the
application should check for a ·greater than or equal to· condition.

Steck & Peremeter Definition

stack Betore Call
_____1

previous conCenes I
resulcspace I Long allowing space for the output

If-sp

stack After CaD

1------1
previous concencs I

numberofCicJcs I Longille returning the number of ticks since system sun-up.

If-sp

c

Pascel

3-42 Alpha Draft 6/1 0/86

GetDblTime

Returns the suggested maximum difference (in ticks) between mouse-up and mouse
down events in order for the mouse clicks to be considered a double click.The user
can adjust this value by using the Control Panel.

Stock Be Parameter Definition

Stack Before Coli

_____1

previous contents I
resulc:space I Long allowing space for the output.

If-SF

Stack After CaU

l------'----I
previous contents I

maxticks I Longint returning the maximum number of ticks between mouse clicks.

If-SF

c

Pascol

Event Manager 43

GetCoretTime

Ret.ufnS the time (in ticks) between blinks of the "caret" (usually a vertial bar)
marking the insertion point in text

If an appliation is not using TextEdit, the application must cause the caret to blink.
On every pass through the program's main event loop, the application should check
nurlUtcks against the elapsed time since the last blink of the caret .

The user can adjust this value by using the Concrol Panel.

steck & Parameter Definition

Stack Betore Call

!-- I
previous coneenes J

nsul t:space I Long allowing space for the output.

I~sp

Stack After Call

~ I
preVious coneenes I

n ume i cks I Longtnt teD.uning the number of ticks between blinks of the caret.

I~sp

c

Pascal

3-44 Alpha Draft 6/10/86

SetSwitch

Informs the Event Manager of a pending switch event SetSwitch is called by the
Control Manager and should not be called by an application.

Stack & Parameter Definition

Stack Before and After Call

Call does not aff~et the stack.

c
Cill should not be made from an application.

Pascel

Call should not be made from an application.

Event Manager 45

SetEventMosk

Sets the system event mask to the specified event mask.

The Event Manager will post only those event types that correspond to bits set in the
mask. It will not post activate, update, or switch events, because those events are not
stored in the event queue.

The system event mask is initially set to post all events. An application should not
change the system event mask, because desk accessories may depend upon receiving
certain types of events.

Stack & Parameter Definition

Stack Betore Call
_____1

previous coneenes I
syseemevenemdlSK 1 Integer specifying the system event mask.

If-SP

Steck After Cell

1:-:---. I

I previous conr:enr:s I
I If-SP

c

Pascel

3·46 Alpha Draft 6/10/86

,.
St>cond
digit

l 0

The Toolbox Event Manager

First digit

2 3 4 5 6 7 8 Q ABC 0 E F

o

2,.
3

4

5

6

7

8

Q

B

C

o

E

F

NUL::: OLE:::
0 @ p ,

A
A t .

:~:~:~:~:~:~ :~:~:~:~:~~~
spact> p e 00 (, -

SOH;: OC1::: I 1 A Q a A e 0 +
,

:~:~:~:~:~:~ :~:~:~:~:~:~ q I -.
STX:: OC2;: " 2 B R b ~

;

¢ cc
:~:~:~:~:~~~ :~:~:~:~:~:~ r 1 ~

..,
ETX OC3:: ; ,

,f..........:. # 3 C S C 5 E 1 £ L n
:::::;::::::

EDT::: OC4::
$ - A f:~:~:~:~:~~~ :~:~:~:~:~~~ 4 D T d t N 1 § ¥ c

:~~%
NAK::

~ 5 E U b 1 • W
,

:~:~:~:~:~~~ e u --
ACK:: SVN;:

& 6 F V f 0 ..,
qr a ~

.
:~{:f~ :~:~:~:~:~:~ y n .
BEL::: ETB::: I

7· G W
; ;

13 L 0::::::::::;: ::::::;:::;: 9 w a 0 «-:.:.:.:.:-: .:-:.:.:.:.:
BS CAN:: (8 H X h

, ,
® n:::::::::::: X a 0 » y.:-:-:.:.:.:

HT EM::::) 9 I Y 1 Y
A A

@ 11:~:~:;:~~~~; a 0 ., .
t{~~~

sus::
'* J Z

. a TM J:~:~:~:~:~~~ · J z 0·
VT:;::: ESC

K [{
.., - ; ,

:~:~:~:~:~:~ + · k a 0 ~ A,
FF:::::: FS

I I
0 ; .. -

:~:~:~~~~? , < L \ a u Q A
CR os] }

,
0 -- - M m C; u ;t 0

so:;::: RS
N A - ; A

1£ IT:;:~:;:;:~:~ , > n e u 2E

:fY)\~
us

/ ? 0
OEL::: ,

U 00:. e (lj CE· - :::;:;:;:;:;

...... stands for a nonbreaking space} the same width as El digit.

The shaded characters cannot normally be generated from the Macintosh keyboard

or keypad.

FokeMouse

FakeMouse allows an alternative pointing device, such as a graphics t.ablet, to be used
in place of or in conjunction with the mouse.

stock Be Parameter Definition

stack Before Cell
_____1

previous contents I
changedflag I Integer specifying the .

modlatch I Byte specifying the .

padding I Byte specifying the .

Xposition I Integer specifying the.

Yposieion I Integer specifying the .

buetonstaeus I Integer specifying the .

If-- SP

Stack After Cell

1............ 1

previous contenes I
If-- SP

c

Pescel

Event Manager 47

Event Manager Error Codes
The error codes returned by the Event Manager are summarized in the following
table:

Table X-X: Event Manager Etfar Code.

$0601
$0602
$0603
$0604
$0605
$0606
$0607

$0681
$0682

3-48

Duplicate EMStartUp call
Reset Error.
Event Manager not active.
Illegal event code.
Illegal button number.
Queue size too large.
Not enough memory available for queue.

Faw system error· event queue damaged.
Fatal system error - queue handle damaged.

Alpha Draft 6/10/86

	v4_10_01
	v4_10_02
	v4_10_03

