Sound Tools ERS

REV 1.7

Developed by:
Gus Andrade

Copyright Apple Computer 1986
see Confidential eee

rev.1.0

rev,

rev.

ev.

rev.

rev.

rev.

eV,

1.1
1.2

1.3

1.4

1.5
1.6

1.7

Revision History:

Initial release

Start sound call added.

Changed Start sound call.

Added added a description for generators.

Added Sound tools status call for sound tools startup call.

Added individual generator status call.

Updated the Start Sound call to include the new parameter

block. _

Added FFSoundDoneStatus function ($14).

Changed the Frequency formula in the FFStartSound call to use integer values
instead of floating point values for the frequency register calculations.

Changed the descriptions in the low level routines to access the DOC registers or
ram.

Updated the Generator/Mode word parameter in the FFStartSound call.

Changed the paramerter block format for the FFStartSound call to conform with
the word aligment of parameters passed to functions.

Reserved oscillators thirty and thirty one for use by Apple Computer. These two

~ oscillators can NOT be used by application programs.

Updated stop sound call to show 1 = stop corresponding generator.
Added examples for each of the Sound Tools function calls.

Sound Tools ERS Rev. 1.7 June 26, 1986 12:33PM Confidential page 2

1.0 Introduction.

The sound tool package gives developers the ability to access
the Sound hardWare without having to know specific hardware
/O addresses. The Cortland sound hardware comes In two
configurations. The first configuration Is 100% compatible
with the Apple //e sound capabilities. In this mode
applications toggle a soft switch, which In turn generates
clicks in a speaker. Also, with Cortland it is possible for an
application to control the volume of the speaker.

The second configuration requires the Ensoniq (DOC) digital
oscillator chip and two 64K x 4 ram chips. The sound tools
will contain all of the firmware routines required to access
the hardware in the Ensoniq configuration. The follo;ving
block diagram shows the major functional blocks of the sound

hardware. .
Cortland Sound Block diagram
[)

Sound
*caf"lﬂd Vo i Gy

] Ee

[ram areq $Sound Connector

N J

The sound GLU acts as the interface chip between the Cortland I/O and

system volume, ram chips or the DOC. The following diagram shows a

diagram for the register breakdown for the sound glu:
Sound glu register breakdown

disable

Mm Hloc-t
usy siatus
Data register Addrees polnter low

Gl eleTaT sl2T To] FTelsTeTsT2T 1 To]

Address polnter high

[1shafispiapht1]1o] of 8]
Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential | page 3

The DOC ram Is used to store waveforms which will be used by the
DOC for sound generation. The DOC Is the work horse of the sound system.
With this chip we can create sounds of any pitch and duration. A register

breakdown of the DOC follows: ,
Eosomig Digital Delllator Chip
Bogister Dilocation

Oscillator number 0 |

Oscillator #XX | Oscillator number 1 |
[Oscillator number 2 |

[Frequency low |

[Frequency hlgh—l o o
| Volume control | { Oscillator number 1E |
Data Sampling | [Oscillator number 1F}

Ram Ptr.’pg. no.|

| control register | | “Oscillator_Intefrupl enabie]

| Resolution/Table size | . | Uscillalor enabie regisier |
| Anaiog to Digitai converter|

DOC register table

REG# Function D7_Dbe b5 |D4|{ D3| B2] DI DY
00-1F [FREQ LOW FL7|FL6|FLS| FL4|FL3[FL2 | FL1| FLO
20-3F |FREQHI FH7| FRE{ FH5| FH4| FHB[FR2 | FH1| FHO
40-5F |VOLOME V7 [VE[V5[Va[Va[V2 [VI[V0
[60-7F [DATABAMPLE We WA W3[We [Wi[WO
80-0F | WAVEFORM TABLE PTR P7| Pe| PY P4| P3[P2|P1] PO
AO-BF |CONTROL CA3 |CAZ|CAT|CADl 1E [M2 [M1] H
CO-DF__|BANK SEL/TBL. SIZE/RES. X |BS|T2 | T1 | T0|R2 |R1| RO
EO OSCILLATOR INTERRUPT RQ[1 | 04| 03| 0207 {00 1
E OSCILLATOR ENABLE X | X | E4] E3| E2|E1 | EO| X
E2 A/D CONVERTER s7{ se| ss| s4] s3|s2] 81} so

Please refer to the Ensbniq_DOC Ers for a detailed description of the part.

The analog section contains all the circuitry needed to amplify and
filter the signal coming from the Sound Glu or the DOC, which will be sent
to the speaker. | |

Finally, the sound connector gives developers the ability to design

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 4

interface cards, which can take the tones generated by the DOC and modify
‘them further. Two examples of possible sound cards are, programmable
filter stereb interface cards, and sound sampling cards. The remainder of
this document will deal with a detailed description of the Sound tool calls

and how they can be used to access the hardware to generate sounds.

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidentiat page S

1.1 Sound Tools Definitions.

An oscillarqr Is defined as the basic sound generating unit in the DOC.
The DOC contains thirty two oscillétors; each of which can function
independently from all the other oscillators.

One of the modes the DOC can be set to is called swap r:node. In this
mode each pair of oscillators is grouped together to form a swap pair of
oscillators. This is the mode used by the Free Form synthesizer to generate
sounds. Each of these swap pair of oscillators is called a Generator. There
are fifteen generators defined in the Cortland sound system. Oscillators
thirty and thirty one a reserved for use by Apple Computer and should not be
used by application programs. An oscillator to generator translation table
has been defined to get the generator number corresponding to a particular
oscillator number. '

Before a generator can be accessed, a sound tools startup call must be
made. This call assigns a work area for the sound tools. The work area is
broken down into sixteen groups of sixteen bytes each. Each sixteen byte
group is defined to be a generator control block (GCB). The first byte of
each GCB is defined to contain the synthesizer mode being used by that
generator. The low nibble of the byte contains the mode. The high nibble is
reserved for use by the system. The remaining fifteen bytes are user
defineble. |

The Sound tools set is made up of four main blocks; the Free Form
Synthesizer, the Note Synthesizer, the Note Sequencer and the Instrument
generator. |

Sound Tools ERS Rev, 1.7 June 26, 1986 12:15PM Confidential page 6

_, !

1.0 Free form syntheslizer tool set definition.

As mentioned before, the tool set gives a developer the ability to
control the sound hardware without having to access the hardware registers
directly. The tool set Is defined from the point of view of a complete sound
system. The tool set must be able to read and write to ram, read and write
to the DOC registers and raise and lower the volume.

The sound tool package is accessed through the Tool locator. This
tool locator lets an application set up parameter lists on the stack, call tool
functions and return to the caller with return parameters on the stack. It is
the responsibility of the caller to make room on the stack for values which
may be returned to the caller from the tool calls.

The Sound Tool set has a tool number assigned to it. With this tool
number the Tool Locator can access the sound tools. '

The sound tool calls are broken down into two groups. The first group
of calls Is made through the Tool Locator. Each of these calls has a function
number assigned to it. With this function number the Tool locator knows
which function to call within the tool set. All parameters for these calls
are passed on the stack. Function results are returned to the caller in the
stack. The number of parameters will vary depending on the type of call
being made. It is the responsibility of the individual tool functions to do
the stack manipulation to keep It aligned. Also the accumulator and the
carry bit will reflect the success or failure of the function call. Please
refer to the “Tool locator® documentation for a detailed description of the
interface. _ |

The second group Is a set of routines which can be accessed through a
jump table located somewhere In ram. Parameters are passed to these
routines In the processors registers. Results from these calls are passed
back In registers. The following list gives a breakdown of the sound tools.

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 7

Sound tool function calls:

B (Low level routines)*®

oundBootinit = $01 ead Register
SoundStartup = $02 Write register
SoundShutdown = $03 Read Ram
SoundVersion = $04 Write Ram
SoundReset = $05 Read Next
SoundToolStatus = $06 Write Next
WriteRamBlock = $09

ReadRamBlock = $0A
GetTableAddress = $0B
- GetSoundVolume =3$0C
SetSoundVolume = 30D
FFStartSound = $0E
FFStopSound = $OF
FFSoundStatus = $10
'FFGeneratorStatus = $11
SetSoundMIRQV = $12
SetUserSoundiRQV = $13
FFSoundDoneStatus= $14

°* The low level routines are entered through a jump table. The table address can be obtained
through a call to "Get Address® function. The format of the jump tabie is as follows:

Offset

" Read Register $00 Addr low Addr high Bank $00
Write Register $04 Addr low Addr high Bank $00
Reed Ram $08 Addr low Addr high Bank $00
Write Ram $0C Addr_low Addr_high Bank $00
Read Next $10 Addr _low Addr_high Bank $00
Write Next $14 Addr low Addr high Bank $00
Qsctable §18 Addr low Addr_high Bank $00
Generator table $1C Addr low Addr high Bank $00
Geb.addr. table $20 ASET 16w Acdr high —Hank $00

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 8

SoundBootlnit function #01
This call is made on system powerup or system reset to bring the
sound hardware to powerup state. The call is made by the firmware and can
NOT be made by an application program!| This call will reset all of the DOC
sound memory to $80, zero out the sound tools work areas, halt all the
osclllators and turn the volumes down o zero.

Error Codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 9

SoundStartup function #902
The Sound tools startup call is made by an application to set up a
sound tools wér__k area. This call must be the first call made by the
application program. The call initializes a work area to be used by the
sound tools. The pointer to the work area must be passed as a parameter to
the call. This work area will be used as a zero page. This page will be
allocated by calling the memory manager. It must be page aligned and

locked until a shutdown call is made. The stack configuration for the call is
as follows:

Stack configuration for SApplnit

Wap:word ; Work area pointer in Bank $00

Error Codes:
$10 = No DOC chip found
$18 = Sound tools already started

Example:

PEA Label ; One page work area in bank $00
_SoundStartup ; Sound Tools startup macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 10

SoundShutdown function #03
This call will shut down the sound tools. It shuts off all of the
oscillators resets-the WAP back to $0000 and zeros out the sound tools
work memory to zero. There are no parameters passed to the call on the
stack and no values returned It is the responsibility of the application to
relase the memory allocated to the work area back to the memory manager.

Error Codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 11

SoundVerglon funciion #04
This call returns the Sound tools version number. The format of the
version number IS as specified in the Tool Locator documentation. There are
no parameters passed to the call but room must be made on the stack for one
word of version information returned to the caller,

Error Codes: None
Example:

PEA $0000 , make room for version
_SoundVersion ; Sound Tools version call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 12

SoundReset function #05
This call stops all of the generators which may be generating sound.
This call can not be used by an application to stop sound generation. It is
intended for use by the firmware to control the shutdown of generators. An
application program should use the stop sound call to shut down a
generator. This call does not require any parameters on the stack or returns

any values back to an application. This call does not update the active
generators flag.

Error Codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 13

y

SoundToolStatus functlon #06
This call will return the status of the sound tools.. It returns a $FFFF
it a SApplnit ($02) call has been made. otherwise it returns $0000. Room
must be made on the stack for a one word value which will be returned to
the caller. '

Error Codes: None
Example:

PEA $0000 ; make room For sound tools status
_SoundToolStatus ; Sound Tools Started status

Sound Tools ERS Rev, 1.7 June 26, 1986 12:15PM Confidential page 14

WriteRamBlock function #09
The Write Ram Block call will write a specified number of bytes from
system ram Into-DOC ram. The parameter list Is made up of the starting
address, and a byte count to move. |f the sum of the starting address and
the byte count are greater than 64K, an error status will be returned.

Stack configuration for write ram block:
Source_ptriLong word ; data source start address
DOC.start:word ; DOC buffer start address
Byte_count:word ; number of bytes to move

Error Codes: .
$0004 = DOC address range error.

Example:
‘Pushlong Label » Source buffer address
PEA DOC.buft ; DOC ram buffer start address
PEA byte.count , humber of bytes to move
_WriteRamBlock ; Write ram block macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 15

BeadRamBlock function #0A
This call reads any number of locations from the 64K DOC ram area
into a user specified bufter. The number of bytes and the starting location

must not add up to a value greater than 64K, otherwise a range error will be
generated. The format of the parameter list is as follows:

Stack configuration for Read Ram block

Dest_ptriLong word ; Destination system buffer address
DOC.start:word , Source start address In DOC ram.
Byte_count:word ; humber of bytes to move

Error Codes:
$0004 « DOC address range error.

Example:
Pushlong Label ; System ram buffer start address
PEA DOC.buft ; DOC ram buffer start address
PEA byte.count ; humber of bytes to move
_ReadRamBlock ; Read ram block macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 16

GetTableAddress function #08
This call returns the jump table address for the fast access routines.
The table of low '.level routines Is defined as follows:

Offset .

Read Register $00 Addr_low Addr_high Bank 300
Write Register $04 Addr_low Addr high Bank 300
Read Ram $08 Addr_low Addr high Bank $00
Write Ram $0C | Addr low Addr_high Bank $00
Read Next $10 | _ Addr low Addr high Bank $00
Write Next $14 Adar low Addr high Bank $00
Osctable $18 Addr low Addr high Bank $00
Generator table $1C Addr low Addr high Bank $00
Geb.addr. table g20 AGdr 10w Adar high Bank $00

With the exception of the last three entries, each of these routines
are defined later In this document. -
The Osctable translates from generator number to oscillator number,

. The oscillator number returned through this table is the first oscillator of
the pair. The Gcb address table points to the first location of the GCB
corresponding to a generator, and the Generator table translates from
oscillator number to generator number.]

The application making this call must make room on the stack for a
long word returned from the call.

Error codes:None
Example:

Pushiong $00000000 ; Make room for long address
_GetTableAddress . ; Get table address macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 17

GetSoundVolume Eunctlon $0C

This call will read the volume setting for a generator. The possible
range of values read back are between $00-$FF. All eight bits are valig for
DOC volume registers.

If the generator specified Is greater than fourteen ($0E), then the
system volume setting will be returned. The hardware for the system
volume control uses the low nibble of a byte to set the volume. In order to
be consistent with the DOC volume registers, we map the low nibble Into the
upper nibble of a byte. We end up with each possible system volume setting
mapped sixteen times. Volume settings $00-$0F correspond to system
volume setting $00, values $10-$1F correspond to system volume $01, etc.

Room must be made on the stack for a one word value which will be
returned from the call. ‘

Stack configuration for Get Volume call:
Gen_number:word ; Generator number

Error codes:None
Example:
PEA $0000 ; room for volume setting

PEA gen.num ; Generator number
_GetSoundVolume ; Get volume macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential : page 18

SetSoundVolume Eunction $0D
The set volume call changes the volume setting for the volume
registers 'in the DOC and the system volume. Generator numbers $00-$0E
will set the volume on pairs of generators in the DOC. Generator numbers
$0F or greater will set the system volume control. The range of values for
the volume setting are $00-$FF. The DOC volume registers use all eight bits

of resolution. The system volume control will use the upper nibble of the
setting to determine the setting.

Stack configuration for SetVolume call:
Volume_setting:word ; new volume setting
' Gen_number:word . Generator number to sst

Error codes: None

Example: .
PEA New.volume ; new volume setting
PEA gen.num » Generator number
_SetSoundVolume ; Get volume macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 19

EEStartSound . Eunction $0E
This call will enable the DOC to start generating sound on a particular
generator based on the parameter list passed to the call. If a generator is
already active and a start sound call is made for it, then the previous sound
generation process will be terminated and the new sound process will be
started. The parameter list for the Start Sound call is as follows:

The stack configuration for StartSound call:
GenNumbJ/FFsynth:word ; Channel noJ/generator number/mode
DOC ehannel number ($0-$F)
)

Generator number sg SE)
Reserved (must be $0
Synthesizer mode ($0-$F)

FFSynth = $01

i
b15 b0
Pblock_ptriLongword ; Parameter block pointer
The parameter block format:
Wave_start:Longword ; Start address of wave

Wave_size:word ; Waveform size In ;pages1
Freq_ofset:word ; waveform playback frequency2
DOC_butter:word ; DOC buffer start address*

DOC_butter_size:word ; DOC buffer size code®
Nextw_addr:Longword ; Next wave parameter block ptr5
Volume_setting:word ; DOC volume setting.4

-t

. The smallest which can be played back Is one page. A waveform size of

$FFFF will play back 65536 pages.

The Frequency register setting can be calculated with the following

formula: FR=((32°PF)/1645), where PF=Playback frequency in hertz

& FR«Frequency register value.

3. This code assigns a size for the DOC buffer used for the waveform being
played. One of these buffers is assigned for each oscillator In the
generator pair being used 1o play the waveform. The DOC start address
for the second osclllator Is assigned at start address + DOC butfer size.

4. For further information on these settings, please refer to
the Ensoniq DOC ERS.

5. These three bytes point to another waveform parameter block. If the

setting of the Nextw_addr and Nextw_bank are zero, then there are no

more Free-Form synthesizer waveforms to be played back through this
start sound call.

»

Error Codes:
$0012 = NO SAppinit call made
$0013 = Invalid generator number
$0014 = Synthesizer mode error
$0015 = Generator busy
$0017 = Master IRQ not assigned

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential ' page 20

Example:

PEA Gen.mode , Generator/mode word

Pushlong Pblock , Parameter block pointer

_FFStartSound , Free Form Synth start sound macro
Pblock equ’ ; Waveform parameter block

DC l4'Wave.start’ ; Waveform start address

DC 12Wave . size' Wave size in pages (1 page min.)

DC 12’DOC.Freq' ; DOC frequency register value
DC 12DOC.buffer ; DOC ram buffer start address
DC 12’DOC.buf.code’ ; DOC buffer size code $00-$07
DC 14'Next.wave' , next wave parameter block ptr.
DC 12DOC.volume' ; DOC volume reqister setting

Next.wave equ , Next wave parameter block

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 21

EEStopSound Eunction $0F

This call will stop sound generators which may be running. A
generator running is defined to be one playing a waveform or one which has
completed playing a waveform. The generator will stay busy until a stop
sound call Is made, even though waveform playback has ended. Depending on
the setting of a sixteen bit flag passed as a parameter to the function any ot
fiteen generators will be stopped If running. Each bit position in the stop
generator mask corresponds with @ sound generator. Bit zero corresponds to
generator zero, bit one corresponds with generator number one, and so on.
There are only fifteen generators defined. This call does not return any
error information back to the caller. The format of the parameter list is as
follows: :

~ Stack configuration for Stop Sound:
Gen_mask:word ; generators to stop

T#
STOP SOUND MASK ?
OlE|D|C|B|A|S|8|7|6(5]4|3[2|1]0

L

enerator #
enerator #

enerator #
enerator z
enerator

enerator #5
eneralor #6
enerator #
enerator #
enerator #9
enera}or #A
enerator
generator #8
generator #
enerator #

Must be zero 1 = stop corresponding generator
0 = leave it generator alone

Error Status: None
Example:

PEA Stop.mask , mask for stop generators
_FFStopSound ; Free Form Synth stop sound

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 22

EESoundStatus Eunction $10 .

This call will return the status of the all fifteen generators. Any bit

position In the status word returned from the function call signifies that

the corresponding generator Is active. There are no parameters passed to
the function. The format of the word returned form the call is as follows:

. }T#
Generators status word
O|E|D|(C|Bj|A|9|8|7]|6|5]|4]|3|2|1]0

L enerator #
b 8enerator &

—— §enerator #§

enarator

- (aenerator

Generator #5

Generator #6
enerator #
enerator #
enerator #9
enerator #A

generator gg
enerator
enerator #D

enerator #E
Must be zero 1 = Generator is assigned/busy
0 = CGenerator free
Error Status: None
Example:
PEA $0000 » make room for status word
_FFSoundStatus , Generators status macro call

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 23

EEGeneratorStatus Eunctlon=$811
This call will read the first two bytes of the GCB corresponding to
the generator specified. Room must be allocated on the stack for the word
returned from the call. For the Free form synthesizer these two bytes have
the following format:

$01 = Last block of
wave loaded.

$00 = Gen. available
$01 = Free Form synth.
$02 = Note Synth.

Channel $00-30F

Gen $00-$0E
/ yd
| B SRR T SRR SRR R Tt T B G S
0 0O Mode Chan. NO. | Gen NO.
|1 1 1 i 1 | 1 { 1 | B | !
bit 15 bit 0

Stack configuration for Gen. status call:
Gen_number:word , generator number for status

Error Codes: None

Example: _
PEA $0000 ; room for Generator status
PEA Gen.number ; Generator number.
_FFGeneratorStatus; generator status macro cait

] VIR SR

Sound Tools ERS Rev. 1.7° June 26, 1986 12:15PM Confidential page 24

This calls sets up the entry point Into the sound interrupt handler.
This routine will be accessed every time an Interrupt is generated by the
DOC. The processor will be in full native mode when the sound interrupt

handler is entered. The parameter list for a set sound IRQ vector is as
follows:

Set Master Sound Irg vector stack config.
SMaster_irg:Longword ; Sound Master IRQ vector

Error Codes: None

Example:
Pushlong Master.irq.vect ; Set master irq vector macro

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 25

SetUserSound|BRQY Eunction=%$13

This calls sets up the entry point for a users synthesizer interrupt
handler. When an Interrupt occurs for a user defined synthesizer then
control will be passed to the ram based synthesizer code through this
vector. The old vector installed will passed back to the caller. This old
vector must be preserved by the caller. |If control is passed to the user
vector and the synthesizer mode Is not his, then control will passed further
down the chain through this vector. Control will be passed through a JSL,
therefore the user must return control through an RTL instruction. Room
must be made on the stack for long word returned on the stack.

Stack configuration for Set User's Sound IRQ vector.
User_irq_vector:Longword . New user IRQ vector

Error Codes: None
Example:
Pushiong $00000000 , make room for old vector

Pushlong New.vector ; new vector
_SetUserSoundIRQV ; set user sound irq vector macro

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 26

EFSoundDoneStatus Eunctlon #14

This call will return the status of the Free Form synthesizer sound
playing status. =~ If the generator specified Is currently playing out a
waveform, then the status returned to the caller will be $0000. | the

generator Is done playing then the status will be $FFFF. Room must be made
on the stack for one word of status returned to the caller.

Stack configuration for FFSoundDoneStatus
Gen_number:word ; Generator number

Error codes:
$0013 = Invalid generator number

Example:

PEA $0000 : Make room for status
PEA Gen.number : Generator number to check
_FFSoundDoneStatus; FFsynth Sound done stat. macro

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 27

Read reglster**

This low level routine lets an application read any DOC register. The

routine Is entered through the Jumnp table provided by the "GetTableAddress"

function call. This call will return to the caller through an RTL instruction.

Atter this call is made the Sound Glu register is left in register access

mode with auto increment enabled.

Through the generator to "oscillator” table, an application can

“assertain the setting of any register corresponding to an oscillator..

Import:

e = 0 ; native mode
m = 1; 8 bit accumulator

x = 0 ;16 bit Index registers

X = DOC register to read

Export:

AL = contents of register requested

Error codes: None

DOC register table

REGS Function D7 [pe ps |Ds (B3 |2 DI DY
00-1F |FREQ LOW FL7 | FL6| FLS| FLAl FL3 [FL2 [FL1| FLO
20-3F |FREG. HI FR7[FFRE FR4 FH3 [FR2| FR1[ERD
40-5F |VOLUME Vi VB | VBl Val V3 V2 [VI [VD
60-7F |DATA SAMPLE W7 WE [WE| W3 W3[W2 [Wi W0
80-9F | WAVEFORM TABLE PTR P7| P6| PH P4| P3| P2]| P1] PO
AD-BF |CONTROL CAS [CAZ|CATCACl TE [MZ TMITH
[CO-DF |BANK SEL/TBL. SIZE/RES. X |BS|T2[T1 | TO|R2 | R1] RO
ED CSCILLATOR INTERRUPT | B[§ G2 161 00 7
] [OSCHLATOR ENABLE X | X | E4| €3] E2| E1 | EO| X
E2 A/D CONVERTER 87| 88| 85] 84| 83] s2| s1] 80
Note: Register types are grouped Into register classes. Within each

register class, the register number for each oscillator is assigned in

assending order.

For example: the low byte of the frequency register

for oscillator zero is register $00, the low byte of the frequency for

-oscillator number Is register $01.

The high frequency register for

oscillator number zero is accessed through register number $20,

oscillator one uses register number $21 etc...

are provided In the table defined above.

Sound Tools ERS Rev. 1.7 June 26,1986 12:15PM Confidential

The register numbers

page 28

The Write DOC call will write a one byte parameter to any register in
the DOC chip. The call will be made through the jump table provided
to the application by the tool call "Get Address". To write to an
oscillator register corresponding to a generator we get the oscillator
number from the oscillator table, bump It by one if we want to access
the odd oscillator of the pair, add the base register of the specific
register we want to access and then make the write register call
through the Write register routine address in the jump table. This call
will return to the caller through an RTL instruction. After this call is
made the Sound Glu register Is left in register access mode with auto
increment enabled. Please refer to the “"Note® in the Read register
description for information on register assignments for each
oscillator.
import:

e = 0 ; native mode

m = 1; 8 bit accumulator

x « 0 ; 16 bit index registers

AL = data to write

X « DOC register number

Error codes: None

DOC register table

REG# Function D7_pe ps (D6 |D3 [D2]| D1| DO
00-1F |FREQ LOW FL7 | FL6IFL5| FL4| FL3 |FL2 | FLY| FLO
[80-3F |FREG M FR7 FHS FHY FRO
40-5F |VOLUME V7 Bl V4| Va3 |V2 T Vo
[80-7F |DATA BAMPLE W7 W8 | W4 W3[W2 | Wil WO
" 80-9F |WAVEFORM TABLE PTR | P7| P6| PH4 Pa| P3|P2| P1]| PO |
AO0-BF |CONTROL CAT] CATJCAS| TE M2 | M1 L
[CO-DF |BANK SEL/TBL. SIZE/RES. X |BS [T2]7T1] T0|R2 | R1]| RO
T B0 |OSCILLATOR INTERRUPT - oRAR! 04] 03 | T [00] 3
EY OSCILLATOR ENABLE X | X | E4| €3] E2[E1 | €O X
E2 A/D CONVERTER s7| se| s5| s4| sa| s2| s1]| so

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 29

TN

Bead Ram®®
This call will read any Ensoniq ram location specified by the caller.
This call leaves the address pointer register in the Sound Glu in auto
increment mode and in ram access mode. The call does not do any
type of error checking on the address, or data. This call exits back to
the caller through an RTL Instruction. After this call Is made the

Sound Glu register is left in RAM access mode with auto increment
enabled.

Import:
e = 0 ; native
m e« 1 ; 8 bit accumulator
x = 0 ; 16 bit index registers
X = Ensoniq ram address to read

Error codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 30

This call will write a one byte value to any Ensoniq ram location
specified. - The call does not do any type of error checking on the
address or data value to be written. This call returns to the caller
through an RTL Instruction. After this call is made the Sound Glu
register Is left in RAM access mode with auto increment enabled.

Import:
e = 0 ; native
m = 1 ; 8 bit accumulator
x = 0 ; 16 bit index registers
AL = data value to be written
X = Ensoniq ram address to write to

®

Error codes: None

Sound Tools ERS Rev. 1.7 June 26,1986 12:15PM Confidential page 31

This call will read the next location pointed to by the Sound Glu
address reQister. The previous call must have been a Read register,
write register, read ram, or a write ram call for this call to work
properly. Any of these four calls will leave the Sound Glu set to auto
increment and pointing to DOC register or ram access mode. Afer the

read Is made the Sound Glu address/DOC register pointer will be
incremented to the next location.

Import:
~ None
Export:
AL = data byte read

Error codes: None

Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 32

This call will write one byte of data to the next DOC register or ram
location dspending on the setting of the Sound Glu control register.
The call will write to DOC registers or ram and then increment the
" address pointer register in the Sound Glu, if the address pointer
register was enabled for auto increment. If a Read register, read ram,
write register or write ram call is made then that call will leave the

Sound Glu control register in that type of access mode and with auto
increment enabled.

Import:
AL = byte value to be written

Error codes: None

- | ,
Sound Tools ERS Rev. 1.7 June 26, 1986 12:15PM Confidential page 33

	v4_12_01
	v4_12_02

