
LaserWriter1M Reference

Contents

Figures and Tables x
Radio and television Interterenee x

Chcpterl Introduetlonxx I-I
Original LaserWriter x 1-2.
LaserWriter Plus x 1- 2-
The printing environment x /-'"}

Communication x /-1
Operating modes x /-}

Batch mode x /-}
Interactive mode x I-If
Emulation mode x ,-~

Software environment x /-'1'
PostScript x /- r
QuickDraw x (-t;
Font Manager x /-5'
Printing Manager x /-(.
LaserWriter driver x /-7
AppleTalk x /-7

An approach to your application x/-7

Chcpter2 PrInting on the LaserWrltef xx 1-/
Working with the Printing Manager x ;t-;t

The normal printing process x ;:z..:z..
Choosing a printer x :t-3
Setting up the page x:t-$I'
Starting the print job x;2.- r
Using the print record x ~-f)

Managing the print job x~-€
Setting up for the print job x;t-'

Initializing the software environment x -;t -,

Linking the printing code x2-'

iii

Iv

Opening the Printing Manager x;Z - 7
Validating the print record x ;1..-7
Determining the selected printer X;2 -?

Optimizing your application x =z.-B
Memory considerations x ::t-8
Printable page size x :2.-8
Clipping within text strings x J.-8
Protecting character image integrity x ;2.-'
Avoiding zero-width Hlled objects x:/..-9
Tailoring your print loops x :z.- ~

Using the pPageFrame parameter x"-(0

Cancelling or pausing the print job x:t..-IO
Changing the local coordinate system x'l-.-/o
Handling error messages x;;t-II

Working with the LaserWriter driver x-;;l.-/~

Using document control calls x ;t-/3
Using input/output control calls x~-I4f

Working around the Printing Manager x -;;'-17
Using PostScript through QuickDraw x;l.-t1

Working with text x ~-.2.0

Working with polygons x 2-;1..;
Rotating objects x:t -;/.'
Printing forms x :z.-,2.'
Specifying PostScript commands x 2. -:2.7

I
Modifying Printing Manager dialogs x:z.-:z..B
Permanently modifying a printer driver x2.-l;z..

Adding a sheet feeder to the LaserWriter x 2..- '} f
Designing a spooler for the LaserWriter x ~ -) ,

Establishing dictionary status x;2.- '37
Obtaining the font list x p...-~ B
Coordinating non-coordinated fonts x ")..-rrO

Providing your own PostScript dictionary x J.- ~""
Localizing the printing process x ""- ~ J

Changing printer messages x;z. - 'I-~

Changing Laser Prep messages x ~-st> .
Using PostScript in a document x::z. - ¥ ~

Intercepting PostScript f1les x ::z. -f'~

Chapfer3 Working with fonts xx 1-1

Overview x"3 - ::z..
Understanding font terminology x")-2
About screen fonts x 1-'
About printer fonts x J-f

Matching screen and printer fonts x J- ;-

Classifying fonts x"1 - I..:.
Style implementation x ~ -,(.
Character set encoding x 'J-?
Classifying fonts-release I x 'J-8

Style Mapping x 1-r
Encoding character sets x 1-1 0
Specifying printer font names x -; -10
Style mapping process x 1-!f

Naming fonts x 1-IJ
Release I font names x 3-I '>
Release II and later font names x 'J-IJ

Downloading fonts x) -1st

Chapter 4 Working In the printing environment xx ~ -(

Using AppleTalk x II -1
Connecting a LaserWriter to AppleTalk x 'I- -r
Initializing the printer node x If-If-
Opening an AppleTalk connection x /I--f
Transferring data x "'-;
Closing the AppleTalk connection x ~ - ~
Using PAP calls x 11-,(

GetNext]ob x tf- ?
PAPOpen x tI-B
PAPRead x It -It)
PAPWrite x 9--11
PAPClose x q. -12..
PAPUnload x If -I')
PAPStatus x If -I}
PAPRegName x {/.-/'1
PAPRemName x ¥ -1'1'

Naming a LaserWriter x,. -II'
PAP packet formats x If -/tf-
Detecting half-open connections x 1,1- -/5

Accessing the LaserWriter directly x ~ -It.
Working interactively x ~ -/ (,
Working in batch mode x f£ -If"

Using the Diablo 630 emulator x st -::to
Invoking the Diablo emulator x q,. -2.0
Changing print parameters x 9'::t I
Deviation from Diablo protocol x q..::z).

Detecting the end of a document x 'f -:2,.~

Bold and double-strike x If - ;z.}
Proportional fonts x(/.-:z.. J
Paper positioning x ¥- -=t 'f
Unsupported commands x If·")..lf

v

vi

MS-DOS communication parameters x tf - ;;Z if

Figures and tables

Chapter1 Chapt.rTltI. xx

Figure!-! The LaserWriter Printer xx /-:1.1
Figure!-2 Madntosh/LaserWriter Printing Environment xx 1- 'f./

Chapter2 Printing on

Figure2-!
Figure2-2
Figure2-3
Figure2-4
Figure2-5
Figure2-6
Figure2-7

the Las.rWrlt.r xx

Normal Print Process xx ~ - '}./
Selecting a System Printer xx;l- ¥-. I
Page Setup Dialog xx ":2. - >. I
Print Job Dialog xx;z.~. :2.
Font List Query xx:z. - J e./
Font List Query Response xx?,.-,9.1
PostScript Code for Coordinating Fonts xx -,z.-~.l

Table2-1 Printing Manager Errors xx).. -II
Table2-2 Printing Manager Errors with the LaserWriter xx;2.-"
Table2-3 Document Control Calls xx:z.-IJ
Table2-4 I/O Control Calls xx ;;"-lfI'
Table2-5 Embedded Commands for PrinLF and PrintR
calls xx ~-6

Table2-6 QuickDraw Comments xx 2-18
Table2-7 Jump Table of Printing Manager Calls xx;2. - ::r:J
Table2-8 Localizable Resources XX;:J.. -I,t "]

Working with Font. xxChapter3

Table3-!
Table3-2
Table3-3
Table3-4
Table3-5
Table3-6

Font Terminology xx 1-:t.
Font Classification-Release I xx :3 -8
Font Classification (Release II and Later)
Macintosh Style Bits xx 1-1~
Style Code Format xx
Temporary Font Resource Format xx

xx siP

Chapter4 Working In the printing environment xx

Figure4-1 AppleTalk Print Job Cycle xx if - ft ./

vii

viII

Figure4-2

Table4-1 .
Table4-2
Table4-3
mode xx
Table4-4

PAP Packet Header Format xx ~ -IS. I

Operational Modes xx ~ - 3
PAP Call Summary xx ft -"
Persistent Parameters for Diablo Emulation

II- - ;2. t
eescratch Location Assignments xx ft- -;2. ':2..

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in
the manuals distributed with an
Apple product or in the media on
which a software product is dIstrib
uted, Apple will replace the media
or manuals at no charge to you,
provided you return the item to be
replaced with proof of purchase to
Apple or an authorized Apple dealer
during the 9O-day period after you
purchased the software. In addition,
Apple will replace damaged software
media and manuals for as long as
the software product is included in
Apple's Media Exchange Program.
While not an upgrade or update
method, this program offers addi
tional protection for up to two years
or more from the date of your
original purchase. See your autho
rized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different; check with your
authorized Apple dealer.

All L\1PUED WARRANTlES ON
THE MEDIA AND MANUAlS,
INCLUDING IMPLIED WAR·
RANI1ES OF MERCHANTABIL
ITY AND FITNESS FOR A
PARTICUlAR PURPOSE, ARE
LIMITED IN DURATION TO
NINETY (90) DAYS FROM THE
DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCf.

Even though Apple has tested the
software and reviewed the docu
mentation, APPLE MAKES NO
WARRANTY OR REPRESENTA·
TION, EITHER EXPRESS OR
IMPLIED, WITII RESPECf TO
SOFI'WARE, ITS QUALITY,
PERFORMANCE, MERCHANT
ABIUTY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS SOFI'WARE IS
SOLD "AS IS," AND YOU THE
PURCHASER ARE ASSUMING THE
ENTIRE RISK AS TO ITS
QUALITY AND PERFORMANCE.

IN NO EVENT WIll APPLE BE
LIABLE FOR DIRECf, INDlRECf,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECf
IN THE SOFrWARE OR ITS
DOCUMENTATION, even if advised
of the possibility of such damages.
In particular, Apple shall have no
liability for any programs or data
stored in or used with Apple
products, including the costs of
recovering such programs or data.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCW·
SIVE AND IN UEU OF All
OTHERS, ORAL OR WlUTI'EN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modifi
cation, extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

June 6. 1986

'* APPLE COMPUTER, INC.

This manual is copyrighted by
Apple or by Apple's suppliers,
with all rights reserved. Under
the copyright laws, this manual
may not be copied, in whole or
in part, without the written
consent of Apple Computer,
Inc. This exception does not
allow copies to be made for
others, whether or not sold, but
all of the material purchased
may be sold, given, or lent to
another person. Under the law,
copying includes translating
into another language.

© Apple Computer, Inc., 1986
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are
registered trademarks of Apple
Computer, Inc.

Simultaneously published in the
United States and Canada.

2 Boilerplate

• APPLE COMPUTER, INC.

Copyright ~ 1986 by Apple Computer, Inc.

All righrs reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without prior written permission of Apple Computer, Inc. Printed in the United States of
America.

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.

Simultaneously published in the United States and Canada.

ISBN x-xxx-xxxxx-x
ABCDEFGHIJ-MU-xxxxxx
First printing, January 1986

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited, and composed on a desktop publishing system using the Apple
MacintoshTlI Plus and MicrosoftllD Word'Proof and final pages were created on the Apple LaserWriterTli

Plus. POSTSCRI~~. the LaserWriter's page-description language,~ developed by Adobe Systems
Incorporated. --

Text type is ITC Garamond~

(a downloadable font distributed by Adobe-Systems). Display type is ITC Avant Garde Gothi~. Bullers
are ITC Zapf Dingbars llD• Program listings are-set in Apple Courier, a monospaced font.

LaserWriter is a trademark of Apple Computer, Inc.

Macintosh is a trademark of Mcintosh Laboratories, Inc., and is being used with express permission of
its owner.

Microsoft is a registered trade-mark of Mi~._CorpqfariQo.

POSTSCRIPT is a trademark of Adobe Systems Incorporated.

ITC Garamond, ITC Avant Garde Gothic, and ITC Zapf Dingbats are registered trademarks of
International Typeface Corporation.

June 6. 1986 3

Preface

About This Manual

Who Should Use It
This manual is intended for you if you want to do any of the
following:

l1li Use PostScript to take full advantage of the LaserWriter's features
in your application program.

II Access the LaserWriter from an Apple II or other computer.
(You can connect the LaserWriter to any computer eqUipped with
an RS232 or RS422 port.)

II Develop a font for the LaserWriter or the Madntosh.

LaserWrlter Reference assumes that you are familiar with the
information presented in the documents listed in the Related
Documents section, below.

What It Covers
LaserWriter Reference describes the operating modes and special
capabilities of the LaserWriter and LaserWriter Plus, as well as the
hardware and software interfaces of these printers to the host
computer.

Conventions

Related Documents
Information pertinent to using the LaserWriter in a Macintosh
environment can be found in the documents listed below.

l1li Item

III LaserWriter and LaserWrlter Plus User's Manual. This manual
explains how to set up a LaserWriter in the standard configuration
as a network printer connected to AppleTalk, and gives basic
operating information, such as how to load paper or change
toner cartridges.

III The PostScript Language Reference Manual. This manual (by
Adobe Systems, Inc.) describes the programming language that
tells the LaserWriter what and how to print

l1li The PostScript Language Tutorial and Cookbook. This
manual(by Adobe Systems, Inc.) gives an introduction to
PostScript and also provides a collection of useful PostScript
programming examples.

III The ·Printing Manager" chapter of Instde Mactntosh. This
chapter describes how to print from a Macil}tosh application
using the generic Printing Manager/Printer Driver interfaces.

l1li The "Font Manager" chapter of Instde Mactntosh. This chapter
describes fonts, their structures, and how the Printing Manager
communicates with QuickDraw.

LaserWrlter Reference Beta (7/7/86)

Chapter 1

Introduction

The Apple LaserWriter™, shown in figure 1-1, is a laser-scanning,
xerographic printer driven by a powerful microcomputer. The
computer in the LaserWriter consists of a Motorola MC68000
microprocessor (the same microprocessor used in the Macintosh),
one-half megabyte of read-only memory (ROM), and 1.5
megabytes of random-access memory (RAM). The ROM contains
Adobe Systems' PostScript™ page description language, diagnostic
code, AppleTalk® code, code to emulate the Diablo 630 printer,
and a number of printer fonts. The RAM contains additional fonts
and PostScript code downloaded by the printer driver, your
application or the user.

Figure 1-1
The LaserWrlter Printer

Original LaserWriter
The original LaserWriter has four font families resident in ROM:

III Times™

III Helvetica®

III Courier

l1li Symbol

-> Note: The term LaserWriter is used in this manual to represent
both the LaserWriter and the LaserWriter Plus. The terms
original LaserWriter and LaserWriter Plus are used when it is
necesssary to distinguish between the two models.

LaserWriter Plus
The LaserWriter Plus increases the number of built-in fonts to
eleven by adding the following seven:

III New Century Schoolbook™

II ITC Bookman®

III ITC Avant Garde®

III Helvetica Narrow

III Palatino®

IIiI ITC Zapf Chancery®

III ITC Zapf Dingbats®

1-2 LaserWrlter Reference Manual - Beta (7/7/86)

I - I f Tne

.... ·7-', lip-

~ \:.:,,~~~~.s;.z..-:;..-:.:.

The driver for the LaserWriter Plus also supports downloadable
fonts, thus improving both the quality and the speed of the printing
process.

The printing environment
In normal operation, the LaserWriter continually cycles through the
following three steps:

1. It begins by setting up a clean initial environment for executing
the PostScript code that makes up a print job.

2. It obtains the job over a communication channel (see
Communication, below), interpreting and executing the job as it
receives it.

3. Finally, when it encounters an end-of-job or error condition, the
LaserWriter cleans up its virtual memory, where the print image
is constructed, and starts over at step one.

Communication
The LaserWriter is connected with the outside world via either
AppleTalk or a point-to-point RS-232C or RS-422 serial link. (The
four-position mode switch determines this choice.) This
connection is referred to as the communication channel (or
simply channel>. A computer at the other end of the channel is
referred to as the host. The host uses the channel to send PostScript
programs and dara to the LaserWriter. (The device at the other end
of the channel can also be a terminal operated directly by a user, or
a Macintosh running MacTerminaI™.)

Operating modes
The LaserWriter operates in one of three modes: batch, interactive,
or emulation.

Batch mode

Batch mode is the LaserWriter's normal operating mode, used
almost exclusively for printing. In this mode, the LaserWriter
accepts a job as a single PostScript program file. It executes that me

Introduction 1-3

until it encounters an end-of-fIle or error condition. In this mode
the LaserWriter transmits only the information specified by the
executed code.

Interactive mode

Interactive mode is an option available to a user with a terminal
cqnneeted directly to the LaserWriter. In this mode the user can
experiment with PostScript to obtain various page description
effects, or even use the LaserWriter as a host computer. PostScript
is designed to be a general-purpose programming language, much
like FOR'IH.

In interactive mode, the LaserWriter accepts input directly from the
user. It echoes the input characters and provides limited editing
capabilities. An interactive job terminates only when the user
explicitly requests job termination.

Emulation mode

Emulation mode forces the LaserWriter to imitate another printer.
In this manner programs written to print on other printers can
(along with emulation code) print on the LaserWriter. While in this
mode the LaserWriter expects incoming data to be combined text
and control codes acceptable to the imitated printer.

The LaserWriter has code in ROM that enables it to emulate the
popular Diablo 630 printer interface.

Software environment
Many programs within the Macintosh and the LaserWriter interact
to print a Macintosh file on the LaserWriter. Figure 1-2 shows some
of these programs and their interrelation.

FIgure 1-2
Macintosh/LaserWrlter Printing Environment

PostScript
PostScript is an industry-standard page-description language for
describing text, graphics, and images for printed pages. It also can
be used to control aspects of a printer's behavior. It is designed for

1-4 LaserWrlter Reference Manual - Beta (7/7/86)

Dialog
Manager

Laser Prep
Dictionary

ROM)0-_.........----(RAM

FIGURE 1-2. MACINTOSHILASERWRITER PRINTING ENVIRONME

use with high-resolution printers and typesetting equipment. The
LaserWriter executes PostScript programs to construct the image to
be printed.

Page deterlptlen: PostScript programs are typically generated by
application programs running on a host computer. For example,
in normal printing with the Macintosh Printing Manager,the
application uses QuickDraw commands to describe the image to be
printed The Printing Manager then causes these QuickDraw
commands to be translated into PostScript programs in order to
print on the LaserWriter.

The user, however, can write his own PostScript programs to
achieve effects not available through Quickdraw, such as printing
rotated text

Printer centrel: Normally, PostScript programs are run to print
pages. You (or the user) can, however, use PostScript to inquire
about or to change values of some parameters in the LaserWriter
itself (e.g., baud rate- or parity settings), or perform some
computation whose results are sent back over the communication
channel.

-> Reference: For more information about PostScript, see
Appendix B, "Laser Prep Dictionary", and the Adobe Systems
documents listed in the Preface.

QuickDraw

QuickDraw performs all Macintosh graphics operations (including
text depiction), both on and off the screen. Using mathematical
constructs, QuickDraw is able to create a wide variety of graphics.
The QuickDraw interface is a set of general-purpose routines that
can be accessed by your application, -by the user, and by other parts
of the Macintosh toolbox, such as the Printing Manager.

QuickDraw must call the Font Manager (see below) to obtain
information about character sizes and styles before it can draw text.

Because the LaserWriter speaks PostScript, QuickDraw commands
must be translated before the LaserWriter can execute them.

Font Menager

Whenever QuickDraw needs to draw text, it calls the Font Manager.
The Font Manager controls specific information about how to draw
the characters, including character widths, style implementation

Introduction 1-5

algorithms,and kerning details. It also ensures that the most
appropriate font deftnition is used in a given situation.

In the MacintoshlLaserWriter environment fonts can be divided
into two basic categories: printer fonts and screen fonts. Screen
fonts are defmed to provide the best appearance on the Macintosh
display screen. The screen, however, has a resolution of only 72
dots per inch, whereas the LaserWriter prints at the comparatively
high resolution of 300 dots per inch. Consequently, printer fonts
are usually defmed differently than screen fonts.

<0> Reference: For more information about fonts and the Font
Manager, see Chapter 3, "Working With Macintosh Fonts", and
the "Font Manager" chapters of Inside Macintosh, volumes I
and IV.

Printing manager

Due to the wide variety of current printing technologies, a general
purpose printer device driver would be either extremely limiting or
impossibly large. For a system to be useful, however, it must
provide a standard printing interface for a number of printers. The
Printing Manager is that standard interface for printers connected
to the Macintosh. It is a set of routines that allow an application to
use QuickDraw to print on a printer without regard to device
speciftc details.

The Printing Manager performs the functions common to most
print jobs; for example, it calls the Dialog Manager to allow the user
to specify such parameters as page ranges and the number of
copies.

Each printer is represented by a printer resource me which contains
the printer driver. The driver translates communications between
the Printing Manager and the printer, thereby providing device
independence.

<0> Reference: For more information about the Printing Manager
and printer drivers, see Chapter 2, "Working With the Printing
Manager", and the "Printing Manager" chapter of Inside
Macintosh, volume II

1-6 LaserWriter Reference Manual· Beta (7/7/86)

LaserWriter driver

The LaserWriter driver is a low-level Macintosh interface to the
printer. It perfoms such functions as monitoring the print job status
and ensuring that the necessary fonts are available on the printer.

The driver is usually called by the Printing Manager to perform
printing and printer control. Your application can access the
driver directly to alter the normal printing process.

AppleTalk

The AppleTalk network provides for efficient communication
between the Macintosh and the LaserWriter. Some AppleTalk code
is resident in both the Macintosh and the printer. Very few
applications will be actually interact with AppleTalk, although
everything an application sends to the LaserWriter must be passed
through AppleTalk.

An approach to your application
If you are developing a Macintosh application, you should make
every effort to utilize the Printing Manager whenever possible. The
Printing Manager is designed to serve as a simple, general printer
interface, enabling your application to use a wide variety of printer
devices, and to avoid the pitfalls of device dependence. By using
the standard interface, you help to ensure the longevity and
usability of your product and to improve its upgrade path to new
Macintosh hardware and software products.

However, the generality provided by the standard interface is
achieved at a loss of some flexibility. To take full advantage of the
LaserWriter's unique capabilities, you may have to modify or bypass
parts of that interface. For example, you can alter or add to the
standard printing dialogs, or even generate your own PostScript
instructions to be passed to the LaserWriter. Such options are
described in Chapter 2 for developers who require them.

If your application manipulates text to be printed on the
LaserWriter, or if you are developing fonts for the LaserWriter, you
should read Chapter 3.

Introduction 1-7

You should read Chapter 4 if you intend to develop a print spooler
on the AppleTalk network, if your application is designed to print to

a Diablo 630 compatible printer, or if you are simply interested in
the environment in which the LaserWriter performs its job

1-8 LaserWriter Reference Manual - Beta (7/7/86)

Chapter 2

Printing on the LaserWriter

The process of printing from a Macintosh to a LaserWriter can be
surprisingly simple if your application does not need to print
unusual text or graphics effects. In this case, using the standard
printing interface enables you to write your application without
concern as to what printer will be used: the user selects the printer
via the Chooser application and spedfies printing parameters, and
the Printing Manager ensures that the best available method of
printing is used.

This chapter describes the standard printing interface and how you
can work with it (or work around iE, if necessary) to allow your
application as much control over the printing process as it needs.

Working with the Printing Manager
Selecting a print option from a menu to print a document on the
LaserWriter can be deceptively easy. Several software packages
interact on several levels to allow this ease. The Macintosh Printing
Manager controls this interaction to remove the printing
responsibility from your application, yet ensure that printing is
performed properly.

The normal printing process
The printing process involves a set of intertWining events that occur
before, during, and after the LaserWriter actually prints a page.
Figure 2-1 shows how these events fit into the process.

2-2 LaserWrlter Reference Manual· Beta(7 /7 /86)

MSCNNNN
ART: NN xNN
16.5 picas text to FN bib

FIgure 2-1
Normal Print Process

Choosing a printer

The printing process begins with the selection of a system printer.
The user selects this printer by using the Chooser in combination
with the Control Panel. For example, on an AppleTalk network with
several LaserWriters and an ImageWriter, the user might see the
dialog box in figure 2-2. By selecting the LaserWriter icon, he will
see the names of the LaserWriters on the network. He can choose
any of these as the system printer. This choice may be changed
whenever printing is not being performed.

Working with the Printing Manager 3

/
V/

/~=- II~~ J==.. -----
I

~ J I

\V

ICHOOSER IC~~~L PAGE SETUP PRINT JOB
DIALOG DIALOG

~~
,/

'} -_.-~
\ '------
,
i

- __- ---"'""7

..,'/

PRINT RECORD ---

PRINTING
MANAGER

F~O(,(fe. () -I.

.' '

MSCNNNN
ART: NN x NN
16.5 picas text to FN bib

Figure 2-2
Selecting a System Printer

~ Note: The user can change the name of a LaserWriter by using
the Namer program. Your application should not rely on the
printer name remaining constant.

Selecting the system printer allows the Printing Manager to locate
the necessary printer-dependent printing procedures (including
the printer driver) and make them available to your application, so
that you can make the same Printing Manager calls regardless of
printer has been selected.

Setting up the page

Before printing begins, the user normally sets certain page
characteristics by choosing the page setup menu option. You
accept those characteristics by calling the page setup dialog or style
dialog (via the Printing Manager call PrStlDialog). This dialog
allows specification of such printing aspects as paper size, page size,
smoothing, font substitution, and orientation, as seen in figure 2-3.

2-4 LaserWrlter Reference Manual - BetaO /7 /86)

1- '
i r 0,

/' I ~'.,..,
f.". I r"'" \ t .. . #

" I I/ ~ .. -
,-'... / . -

r I " fJ r

MSCNNNN
ART: NN xNN
16.5 picas text to FN bib

FlgurG 2-3
Page Setup Dialog

Starting the print job

Printing on the LaserWriter is usually accomplished as a batch
process known as the printjob. The user initiates a print job by
choosing a print option from a menu. At this time you provide the
print job dtalog (via the Printing Manager call Pr]obDialog), asking
him to specify options peculiar to the individual print job, such as
the number of pages and copies to print The standard print job
dialog is shown in figure 2-4 Information obtained dUring the page
setup and print job dialogs is stored in the print record for the job.

Using the print record

The print record contains information about the print job, such as
the number of copies, printing style, and page dimensions. You
should store this record in the document's resource file whenever
you save the document.

Working with the Printing Manager 5

=l=as_e....r_W.....r....it_e_r lIIIIIIIIIIiov•3 •...,.1_ K OK)]

Paper: @ US letter 0 A4letter Reduce or Iml % (Cancel)
o US legal 0 85 Letter Enlarge:

Orientation

~
Printer Effects:
18I Font SUbstitution?
18I Smoothing?

Margins:

Top: 1""'7-2-p-t-, Left: 190 pt

Bottom: 172 pt IRight:190 pt

Gutter:I....o_p_t _

;2-). f'o 0,::.
....

fV; rl' ' ,~(I

LaserWriter

cOPies:I_1

Couer Page:

<Kubla Khan> v3.1 [OK n I

Pages: @ All 0 From:DTo:D (cancel)

@ No 0 First Page 0 last Page (HelP)

Paper Source: @ Paper Cassette 0 Manual Feed

..

'/ ' -I--
\' -I "" 'I' ' -

<00 Note: The print record is used by the Printing Manager to
create the proper print image.You should not change the print
record directly.

Managing the print job

When the user clicks the OK button in the print job dailog, your
application can use the necessary Printing Manager calls to
formulate the image to be printed The Printing Manager then
supervises the printing process, including communication between
the Macintosh and the LaserWriter.

Setting up for the print job
Setting up to print on the LaserWriter involves several steps on your
part Before you call the Printing Manager, you must first initialize
the software environment. You can then open the Printing
Manager and perform other steps such as determining the selected
printer and validating the print record for the document.

Initializing the software envrionment

Before you call the Printing Manager, you must first initialize
QuickDraw, the Font Manager, the Menu Manager, TextEdit, and
the Dialog Manager. The appropriate initalization procedures
(e.g., 'InitGraf and InitFonts) are detailed in Inside
Mactntosh. These procedures ensure that the necessary variables
are initialized, the required heap space is allocated, and so forth.

Unking the printing code

In order to present a convenient printing interface, the Printing
Manager appears to be a monolithic set of multipurpose routines,
In reality, when you call the printer interface procedures,the
Printing Manager dynamically links the appropriate executable
printing code to your application, in accordance with the type of
printer chosen by the user. To access the Printing Manager calls
you must link your object code to ob j / PrLink . ob j, In your USES
statement you should include the line {$U obj/MacPrint}
MacPrint. MacPrint is the application interface to the Printing
Manager and the LaserWriter driver.

2-6 LaserWriter Reference Manual - Beta(7 /7 /86)

Opening the Printing Manager

When you have initialized the printing environment, you can open
the Printing Manager with PrOpen, as explained in Inside
Macintosh.

Validating the Print Record

The print record is stored with the document. Consequently, it can
be mismatched with the current version of the Printing Manager or
the currently selected printer. You should establish the validity of
the print record when your application starts up and each time it
interfaces with the print record (e.g., when it determines the size of
the printable page). You validate the print record by calling the
Printing Manager routine PrValidate; if the information in the print
record is invalid for the current Printing Manager and selected
printer, PrValidate corrects that information. The dialogs
PrStlDialog and Pr]obDialog will call·PrValidate when they are
called You should not call PrValidate, PrStlDialog, or
Pr]obDialog between pages of a document.

<0> Note: You should not change the print record data directly.
The Printing Manager needs this data to create the proper print
image.

The format of the print record is described in detail in Inside
MaCintosh.

Determining the selected printer

Differences in printer capabilities sometimes make it important to
know what type of printer is currently selected. The printers are
designated as follows:

ImageWriter'" 1

LaserWriter .. 3

Your application can check the high byte of the wDev word in the
PrStl subrecord of the print record to determine the currently
selected printer. The value in that byte will be a positive 1 or 3
depending on the type of printer currently selected. (Be sure to call
PrValidate to ensure that you have the current print record.)

Working with the Printing Manager 7

Optimizing your application
Consuucting a page description is an intricate and time-consuming
process. As you might expect, there are steps that you can take at
the application level to speed up that process or make it more
efficient The following guidelines are presented to help you print a
document quickly and efficiently on the LaserWriter.

Memory Considerations

On the LaserWriter you can print only in draft mode. (Draft, in
this instance, refers to printing without spooling, rather than to
printing a lower-quality copy.) Your data and printing code,
therefore, will have to be resident in memory at the same time,
requiring approximately 15K to 20K for the printer driver,
AppleTalk, and other required code every time you print. If you are
facing memory restrictions, you may want to bracket individual
Printing Manager calls with PrOpen and PrClose. This approach
closes the Printing Managers resource me, eliminating the
associated overhead.

Printable page size

It is important to make the distinction between the page size (the
area of the paper that can actually be printed) and the paper size
(the physical size of the paper) on the LaserWriter. The LaserWriter
limits the page size in accordance with the paper size. To achieve
uniformity across many different printers, the printing manager
limits the page size even further: a non-printable border of 0.42"
surrounds the printed page. Note that this is different from the print
area available when using the Imagewriter. The printable rectangle
is known as the page rectangle; its value is stored in the variable
prlnfo. rPage in the print record. The paper size is stored in the
print record as the rectangle rPaper.

Clipping within text strings

The clipping region limits drawing to an arbitrary area within the
grafPort. Although the drawing can be larger than the clip region,
only the part within the clip region is actually drawn in the grafport.
Clipping text can be especially troublesome; each clipped
character must be redrawn, and that takes time. Therefore, when

2-8 LaserWrlter Reference Manual - Bata(7 /7/86)

you need to clip strings, make sure that the clipping region or
rectangle is larger than the bounding box of the text (Le., be sure to
clip only outside of the string bounds). Beware especially of
ascending and descending parts of characters. Also, because of the
difference between screen fonts and printer fonts, it can be difficult
to clip to the correct characters.

Protecting character image integrity

One method of avoiding grafPort garbage is erasing before
drawing. However, erasing before drawing text can cause the
erasure of portions of characters on the previous line, particularly
the descending portions of characters such as g and Yi this can
occur when an application uses an eraseRect whose height
consists of the ascent plus the descent plus the leading.

You can avoid this problem by using a line spacing of the above
height plus one pixel; this ensures the integrity of the descenders,
but will make your line spacing wider. The alternative is to leave line
spacing alone and make sure that your application does not use
eraseRect calls.

Avoiding zero-width filled objects

QuickDraw objects that enclose zero pixels and are filled but not
framed will not be displayed on the screen nor print on the
Imagewriter, but they are real QuickDraw objects and will be drawn
for printing on the LaserWriter. Even though these objects do not
appear in the printed image, they do require time to print. You
should avoid them whenever possible.

Tailoring your print loops

Most applications will not have to know on which printer they are
currendy printing. Because of disk space limitations, however,
some applications spool a page and then print it when printing on
the Imagewriter. Spooling is not currently performed when printing
to the LaserWriter. In order to optimize for the LaserWriter though,
you will probably want to have two sets of printing loops: one would
spool a page and then print it (for the Imagewriter), and the other
would print without spooling (for the LaserWriter). Since you can
tell which printer is currently selected (see Determining the selected

Working with the Printing Manager 9

printefJ, you will be able to switch correctly between the two
methods.

<0> Note: LaserWriter printing will probably be accomplished
through spooling on the 128K Macintosh, so be sure to call
PrPicFile to print the spool file if bJDocLoop is set for
spooling.

Using the pPageFrame parameter

The pPageFrame parameter is intended for scaling the QuickDraw
picture of a page in a spooled file, for printing on the ImageWriter.
When printing on the LaserWriter, this parameter is ignored and
does not affect the print output

Cancelling or pausing the print job

If your application provides a procedure for handling the user's
requests to cancel printing, with the option of pausing the printing
process, beware of timeout problems when printing to the
LaserWriter. Communication between the Macintosh and the
LaserWriter must be maintained; if it is not, a no-response error will
be generated and the Printing Manager will cancel the print job.

The LaserWriter's default watt timeout period is thirty seconds.
This period is the maximum time the LaserWriter will wait for input
from the application before terminating the print job. This default
cannot be changed via the standard Printing Manager interface.
Your application should check whether printing is to be performed
on the LaserWriter, in which case you should disable the
pause/cancel option.

Changing the local coordinate system

When printing to the LaserWriter, the application will not be able to
change the origin of the portRect for drawing purposes while in the
Printing Manager's printing loop (between the PrOpenP age and
PrClosePage calls). A general workaround for this problem is to
use offsetReet. Note that you can change the origin within the
PrOpenDoc and PrCloseDoc calls; this facilitates printing
multiple-page documents.

2-10 LaserWrlter Reference Manual - Beta(7/7/86)

Handling error messages

If the Printing Manager gets an operating system error, it will put
that error in low memory and tenninate printing if necessary. Your
application can retrieve such errors with a tcall to PrError. If an
error occurs in the printing loop between PrOpenDoc and
PrCloseDoc, the application should not jump out of the loop; it
should continue through and let the Printing Manager terminate
properly. For example, if an error occurs on PrOpenDoc, the
application should ensure that PrCloseDoc is called. If an error
occurs on PrOpenPage, be sure to call PrClosePage as well as
PrCloseDoc.

Table 2-1 lists errors relevant specifically to the Printing Manager.

Table:H
Printing Manager Errors

Error Values

o
128
-1
-17
-27
-108

Constant

noErr
iPrAbort
iPrSavePFil

iIOAbort
im~mFullErr

Description

No error
Abort the printing process
Problem saving print file
Unimplemented control instruction
Trouble with IO
Not enough heap space

In addition to the Printing Manager errors, several error messages
apply specifically to the LaserWriter. Table 2-2 lists these errors.

Table 2·2
Printing Manager Errors With the LaserWriter
Error Values Constant Description

-4101
-4100
-4099
-4098
-4097
-4096
-8150
-8151
-8159
-8160

Printer closed or not found
Connection just closed
Write request too big
Request already active
Bad connection refNum
No free Connect Control Blocks (CCB's) available
No LaserWriter chosen.
Version mismatch between Laser Prep dictionaries.
No Laser Prep dictionary installed on LaserWriter.
Zoom scale factor outside legal range.

Working with the Printing Manager 11

Error -8150 indicates that the user has not selected a system printer.
This condition occurs only within the bounds of a PrOpenDoc and
PrCloseDoc print loop. The Printing Manager handles this error,
displaying an alert dialog prompting the user to use Chooser to
select a LaserWriter on the network. It then clears the error
condition before the end of the print loop.

Error -8151 indicates that the version of the Laser Prep dictionary in
the printer does not match that of the Laser Prep dictionary in the
system folder. This error also occurs only within the bounds of the
print loop, and is handIed with an appropriate alert dialog and
cleared by the Printing Manager before the end of the print loop.

The Printing Manager automatically corrects both errors -8159 and
-8160; these errors are not passed on to the application. Error
8159 occurs when printing is attempted before the LaserPrep
dictionary is downloaded to the LaserWriter. Error -8160 occurs
when the zoom scale factor-the percent of reduction or
enlargement, usually specified in the page setup dialog-is out of
range.

Working with the LaserWriter driver
If your application needs more direct control of the LaserWriter,
you can bypass the standard interface of the Printing Manager, and
issue calls direetIy to the low-level LaserWriter driver. The calls
your application makes to driver routines are the same for all
printers. However, printer drivers are device-dependent, and
therefore must function differently.

Warning This approach Is not as safe as using the standard Printing
Manager Intertace. The usable life and range of product
applicablll1y of your appllcatlon can become limited by the
devlce-dependent nature of printer drivers.

The generic interface to printer drivers' control routines is a four
parameter control call:

PrCtlCall[iCtl:lnteger; lPararnl,lParam2,lPararn3:Longint);

2-12 LaserWriter Reference Manual - Beta(7/7 /86)

Table 2-3
Document control calls

Using document control cells
You use document control calls to direct the LaserWriter in
processing job initiation, execution , and termination. The
document control calls, il?rDevCtl [iCtl=-7) I match those of
the Printing Manager. These calls take the form
PrCtlCall [il?rDevCtl, ll?araml, 0, 0) where ll?araml is
composed of two integers, iHigh and iLow. The document
control calls for the LaserWriter driver are shown in table 2-x.

iAdvance Advance the PostScript pen by iAdvance printer's points. If

negative, use 1/6th inch.

a Flush buffers and send PostScript for printing iCopies pages.

a Close the printer connection and release the driver buffers.

The control calls formerly named Re5et and PageFeed have been
renamed DocOpen and l?ageClo5e.

Two new controls, PageOpen and DocClo5e, have been added.

000 Note.' The LaserWriter driver attempts to detect the omission
of the control calls PageOpen and DocClo5e and to insert
them where required, but you should not depend on this
feature.

The LineFeed control obeys the convention that negative amounts
signify a linefeed of 1/6th inch, zero signifies carriage return, and
positive numbers are in bits; 1/72nd of an inch on LaserWriter.

Variant

DocOpen

PageOpen

LineFeed

PageClose

DocClose

iHigh

4

3

2

5

iLow

iCopies

a

Meaning

Open the printer and prepare to transmit data. ICopies is the

number of copies of each page to make.

Initialize PostScript and driver buffers for a new page.

Working with the LaserWrlterdrlver 2- 13

Tobie 2·4
I/O Control Calls

Using input/output control colis
The driver input/output control calls use iPrIOCtl [iCtl=5].
There are six control calls, each identified by a unique value in the
low byte of lParam3. Table 2-4 shows these input/output control
calls.

Variant

ShowBuf
StdBuf
HexBuf
Fill
PrintF
PrintR

IParaml

pBuf
pBuf
pBuf
bFiII
pFmtStr
iReslD/ilndex

IParam2

iBytes
+/- iBytes
iOffset I +/. iBytes
iLines I iBytes
pArgs
pArgs

IParam3

o
1
2
3
4
5

The showBuf call takes a pointer in lPararnl and a length in the
low integer of lPararn2 as text to be streamed to the printer. It does
this by embedding the data in a PostScript show call.

The stdBuf call sends data to the printer without the PostScript
show call. If the count is negative, the data is treated as PostScript
text. This means that parentheses and the backslash characters are
preceded by the PostScript backslash escape character, and that
characters in the upper 128 range (Le., with the most significant bit
set) are sent as octal.

The hexBuf call takes a pointer in lPararnl, a shift count in the
high integer of lPararn2, and a count in the low integer of
lPararn2. The data is sent to the printer as ASCII hexadecimal
data. The iOffset quantity specifies the number of bits to skip
over, providing a bit addressing capability. If the count is negative,
the data is inverted before it is sent to the printer.

The fill call sends a single byte to the printer many times. It
formats the data as iLines of data with iBytes of data on each
line. Each line is separated by a carriage return. Thus the total
amount of data is the product of iLines multiplied by iBytes.

The printF call is a formatting package, similar to the printf
function in a 'e' library. LPararnl points to a string with embedded
commands. LPararn2 points to the data used by the commands.

2-14 LaserWriter Reference Manual - Beta(71?/86)

The printR call is similar to the printF except that its format
string is in a string index resource. The high integer of lParaml is
the resource id, and the low integer is the index. The resource type
is POST""STRt.

Table 2-5 shows the commands used in the printF and printR
calls.

Table 2-5
Embedded commands for printF and printR calls

Command

Ai

AI

Ar

AA

i\s

Args

integer

long integer

char

ptr, integer

ptr,2 integers

long,2 integers

integer

10ng,2 integers

any

Meaning

The argument is converted to signed decimal ascii.

The argument is converted to signed decimal ascii.

The argument is a PostScript character. Parentheses and
backslashes are preceded by an escape character, and
characters greater than 127 are sent as octal.

The arguments specify a buffer and are treated exactly as in the
atdBuf control call.

The arguments compose a buffer and are treated exactly as in the
hexBuf control call.

A newline character is sent.

The long is a resource type; the integers are a resource id/index
pair. If the index is zero, the resource is treated as a string
resource. If it is positive, it is treated as a string list resource. If it
is negative, its size is determined by getHandleSize.

The argument is treated as a boolean.

A single A character is sent.

This command works the same as the Ar command, except that
the data immediately follows the AR in the format string itself.

This command skips past any of the arguments used above but
the quantum skip is exactly one integer or word size. It may be
used to ignore certain arguments in an argument list so that the
same argument list may be used for several different printF or
printR calls.

Working with the LaserWrlter driver 2-15

string pointer The pointer points to a Pascal string whose length determines
the number of bytes sent. This command works exactly the same
as Ab, but with no length argument required.

Ap This command works the same as Ap, above, except that the
integer length pointer follows the Ap in the format string itself.
Only absolute page zero pointers are valid.

Ae Causes a PostScript end-of-me. On AppleTalk, the PostScript
session is closed, but the connection is not broken. On
captured PostScript text mes, a carriage retum and control-D
are recorded in the me, but it is not closed. Neither AppleTalk
nor the text me are closed until printing is completed.

A(Start PostScript text string conversion. This works just as a
negative count in the stdBuf call described above, except that
the negative count is not required. The string conversion
continues until the A) command to end PostScript string
conversion is encountered, (see below). Note that the left
parenthesis is still sent as a data character, and the conversion is
not begun until after the parenthesis is sent This command
cannot be nested.

A) End PostScript text string conversion. This causes the effects of
the Start PostScript text string conversion to be canceled (except
that the negative count in StdBuf calls can still be used). The
right parenthesis character is still sent as part of the data but the
conversion ceases immediately before the parenthesis. This
command cannot be nested.

At This command works just as Ar except that the data in the target
resource may also contain format escape sequences which are
interpreted in the same manner as any other escape sequence.
This provides a limited nesting feature. Note that any A(and A)
escapes are still in effect during the nesting.

AT This command works just as AR except that the data in the target
resource may also contain format escape sequences which are
interpreted in the same manner as any other escape sequence.
Note that any A(and A) escapes are still in effect during the
nesting.

2-16 LaserWrlter Reference Manual· Beta(7 /7 /86)

Working oround the Printing Monoger
The standard printing interface provided by the Printing Manager is
sufficient for most applications' printing needs. The information
below is provided for those developers whose applications must
provide features not accommodated by the Printing Manager.

Warning The longevity and product applicability of your application can
be limited If It relies on features other than those provided by
the standard Printing Manager Interface.

Using PostScript through Quickdrow
With the Quick.Draw picture comment facility, picComment, your
application can take advantage of features that are available in
PostScript but not in Quick.Draw. For example, rotating text is not a
feature of Quick.Draw, but it is available through PostScript. Using
picComment can also improve the efficiency of your application
by performing certain operations (such as defining polygons)
directly via PostScript rather than through the more general
purpose QuickDraw routines.

Six categories of picture comments are available through
QuickDraw:

11II text layout

11II polygon definition

11II line width definition

III object rotation

11II forms printing

11II PostScript command specification

Most of the picture comments are designed to be issued along with
embedded QuickDraw commands that simulate (on the Macintosh
screen) the commented commands. The LaserWriter driver
processes picture comments, but other printer drivers (for
example, the ImageWriter) do not. If the driver does process the
picture comments, it ignores the accompanying Quickdraw
simulated commands. If the printer driver does not process the
picture comments, the QuickDraw commands are used. The
comments and the embedded Quick.Draw commands must occur in

Working around the Printing Manager 2- 17

the correct sequence to produce the correct state, as with any other
QuickDraw facility.

The format of the picComment procedure call is as follows:
Procedure PicComment (kind, dataSize: INTEGER; dataHandle: Handle);

The kind parameter identifies the type of comment DataSize is
the size of that data in bytes. Datahandle is a handle to additional
data (if appropriate).

Table 2-6 lists the picture comments recognized by the LaserWriter
driver. A detailed description of each comment follows the table.

Table 2-6
QuickDraw Comments

Comment
Type Kind Size Data Description

TextBegin 150 6 T'I'xtpicRec Begin text function
TextEnd 151 0 NIL End text function
StringBegin 152 0 NIL Begin pieces of original

string
StringEnd 153 0 NIL End pieces of original string
TextCenter 154 8 TTxtCenter Offset to center of rotation
LineLayoutOff* 155 0 NIL Turn LaserWriter line layout

off
LineLayoutOn* 156 0 NIL Turn LaserWriter line layout

on

PolyBegin
PolyEnd
picPlyByt
PolyIgnore
PolySmooth
picPlyClo

160 0
161 0
162 0
163 0
164 1
165 0

NIL
NIL
NIL
NIL
PolyVerb
NIL

Begin special polygon
End special polygon
Byte size offsets
Ignore following poly data
Close, Fill, Frame
Close the poly

SetLineWidth*

PostScriptBegin*

PostScriptEnd*
PostScriptHandle*
PostScriptFile*
TextIspostScript*

ResourcePS*

182

190

191
192
193
194

195

2

o

o

o

8

Point

NIL

NIL
PSData
FileName
NIL

Type/ID/Index

Set fractional line widths

Set driver state to
PostScript

Restore QuickDraw state
PostScript data in handle
FileName in data handle
Send QuickDraw text as

PostScript
PostScript data in a resource

2-18 LaserWriter Reference Manual - Beta(7 /7/86)

RotateBegin**
RotateEnd**
RotateCenter**

200 4
201 0
202 8

TRotation
NIL
Center

file

Begin Rotated port
End Rotation
Offset to center of rotation

FormsPrinting** 210

EndFormsPrinting** 211

o

o

NIL

NIL

Don't clear print buffer
after each page

End forms printing after
PrClosePage

* Implemented in LaserWriter driver version 3.0 and later.
** Implemented in LaserWriter driver version 3.1 and later.

As shown in the table, some comments are not implemented in the
earlier versions of the LaserWriter driver.

Working around the Printing Manager 2-19

TYPE
TTxtpicRec

Working with text

Line layout capabilities of the LaserWriter include justifying,
rotating,or flipping lines of text, as well as spacing between lines. In
keeping with the what-you see-is-what-you-get philosophy, the
LaserWriter performs extensive text line layout to maintain the
format of the text as it appears on the Macintosh screen.
Unfortunately, this feature can add as much as 50% to the reqUired
printing time-in excess of any time required by the application,
should it do any text formatting of its own.

The Font Manager in the Macintosh Plus ROM has a feature known
as fractional character width processing. This feature enables a
screen font character to be defmed in a one-point size as a single set
of characteristics. The true width of the character can then be
determined as a multiple of the one-point size. The Font Manager
chapter of [nsute Mactntosh, Volume IV; contains an in-depth
explanation of this feature.

The text layout comments (numbers 150 through 156) enable your
application to optimize the LaserWriter's line layout performance,
espedally when used in conjunction with the true character width
feature.

The text line layout algorithm is optimized to produce the best
possible printer output across several point sizes, fonts, and styles.
There are, however, cases wherein the position of a word or phrase
can change within the line: the line layout function emphasizes
good character and word spacing, and cannot guarantee that the
position of an individual character or word will not change.

formatting text: In order to spedfy formatting for text, you must
be able to identify text that belongs together. You can use the
comments TextBegin and TextEnd to bracket text that belongs in
the same paragraph, and also to spedfy formatting for the text.
After each TextBegin, you must use an associated TextEnd prior
to any subsequent TextBegin: they are not designed to be nested.
You can specify the following additional alignment, rotation, flip
and spadng data in the TextBegin comment:

PACKED RECORD

2-20 LaserWriter Reference Manual - Beta(7 /7 /86)

tJus: Byte; {justification - O:none, l:left, 2:right, 3:center,}
{ 4 or greater:full)

tFlip: Byte; {coordinate flip - O:none, l:horizontal, 2:vertical}
tRot: Integer; {clockwise rotation in degrees - 0 to 360}
tLine: Byte; {line spacing - l:single, 2:1-1/2,3:double)
tCrnnt: Byte; {Reserved)

END;

You use the tJus field to tell the driver whether your application
will provide left, center, right, or full line justification. In these
cases the printer driver requests the LaserWriter to measure each
line of text being printed and to adjust its line length according to
the Macintosh screen length. In the case of left, center, or right
justification, the driver lets the printers natural line lengths prevail
unless they exceed the Macintosh screen length; the driver still
must perform line length measuring to make this test. If your
application does not use text layout comments, the driver always
performs line layout as though you had specified full justification.

With the fractional character width feature, screen font and printer
font character widths can be matched more precisely, so that line
layout can be relaxed even more. When the printer driver detects
that this feature is present, it will completely tum off its line layout
algorithm if left, center, or right justification is specified. In this
condition, no line length measuring is performed on the printer,
allowing printing to proceed at its highest possible speed.

+> Note: Your application can suspend execution of the line
layout algorithm at any time by issuing the LineLayoutOff
text comment (number 155). This comment forces suspension
of line length measuring on the printer under all conditions, for
all Macintoshes.

Reconstructing text strings: In order to avoid stack overflows,
some applications draw long strings of text in short pieces. The
LaserWriter needs a way to reassemble strings properly, without
unusual gaps. You can use the StringBegin and StringEnd
commentsto bracket short strings of text, identifying them as
sections of an original long string. You should perform any erasing
or filling of background rectangles prior to the St r ingBegin
comment so as not to disrupt the reconstruction of the original
string.

Working around the Printing Manager 2-21

TYPE
TTxtCenter

Rotating text

QuickDraw does not have a facility for rotating text; text rotation has
been the responsibility of the application. For example, MacDraw
creates rotated text by intercepting StdText calls from TextEdit,
drawing into an off-screen buffer, rotating the buffer, and
performing a call to CopyBits. The result of the CopyBits call is
a bitmap that can be displayed on the screen, or printed on the
printer.

The printer may be required, however, to print a picture that was
pasted from one application (MacDraw, for example) into another.
The center of rotation used by MacDraw is the center of the
bounding box for the complete object When the picture is then cut
and pasted into another application, the bounding box will have
different coordinates in the application's grafPort. The printing
code would have to reconstruct the object in order to calculate its
new bounding box, calculate the center of the box, then rotate.
Such an application-specific approach is extremely inefficienl
Providing for a relative offset for communicating the center of
rotation would significantly simplify rotation. This relative offset
approach is provided by the TextCenter comment

When printing on the LaserWriter, text rotation is performed better
by the printer itself. Resizing the bitmap of the rotated text can
affect the integrity of the text image. Therefore, the original text
data must be contained in the picture to make it available to the
LaserWriter. To place the data into the picture, MacDraw actually
draws the text in the picture, but first sets clipRgn to zero and
makes the following calls before calling copyBits:

GetClip(saveClip);

ClipRect(zeroRect);

DrawString(textData);

SetClip(saveClip);

The TextCenter comment contains the offset from the present
pen location to the center of rotation. The offset gives the y
component, then the x-component as Fixed numbers, allowing the
center to be in the middle of a pixel. This comment should appear
after the TextBegin comment and before the first following
StringBegin comment. The data associated with the
TextCenter comment is as follows:

PACKED RECORD
yInt: Integer; {Integer part of y offset to center}

{ of rotation}

2-22 LaserWriter Reference Manual - Beta(7/7/86)

yFract:lnteger; (Fractional part of y offset to center)
(of rotation)

xlnt:Integer; (Integer part of x offset to center of)
(rotation)

xFract:Integer; (Fractional part of x offset to center)
(of rotation)

END;

Immediately following a TextBegin comment, the La.serWriter
printer driver expects to see a TextCenter comment spedfying
the center of rotation for any text enclosed within the text comment
calls. It ignores all further CopyBits calls, and prints all standard
text calls in the rotation specified by the information in
TTxtP icRec. The center of rotation is the offset from the
beginning position of the fIrst string following the TextCenter
comment The printer driver also expects the string locations to be
in the unrotated coordinate system, Le., in the coordinate system
of the current QuickDraw port The printer driver rotates the entire
port to draw the text, so it can draw several strings with one rotation
comment and one center comment. It is a good practice to enclose
an entire paragraph or even several paragraphs of text in a single
rotation comment so that the driver makes the fewest number of
rotations at a time.

The printer driver can draw non-textual objects within the bounds
of the text rotation comments, but it must reverse the rotation to
draw the object, then re-rotate to draw the next string of text. To do
this the printer driver must receive another TextCenter comment
before each new rotation. Thus, rotated text and unrotated objects
can be drawn inter-mixed within one TextBegin/TextEnd
comment pair, but performance is slowed.

Rotated text comments are not associated with the orientation of the
printer paper as selected by the Page Setup dialog. These are
rotations with reference to the current QuickDraw port only.

<0> Note: All bitmaps and clip regions are ignored during text
rotation so that clip regions can be used to clip out the strings
on printers that can't take advantage of the comment capability.
This has the unfortunate side effect of not allowing rotated text
to be clipped.

Working with polygons

Polygons are defIned in QuickDraw by spedfying a sequence of line
segments, each connected to the next at one common endpoint.
The sequence of segments must be closed; that is, the last segment

Working around the Printing Manager 2·23

ends where the first began. The line segment definitions within a
QuickDraw polygon data structure are not directly accessible in
Pascal, and are therefore not easy to manipulate.

Spectlyll'lg a polygon: The polygon picture comments
PolyBegin and PolyEnd bracket polygon line segments,
providing an alternative way to specify a polygon, and allowing
more control over its structure. AlI QuickDraw StdLine calls that
occur between these two comments draw part of the polygon.

Clollng ex polygon: You can use the comment picP lyClo to
specify that the current polygon should be closed. It is not sufficient
to simply check that the starting point (begPt) of the polygon
equals the ending point (endPt), to ensure that a polygon is really
closed. TItis is especially critical for smooth curves because it can
detennine whether or not a sharp comer occurs in a curve. If you
use this comment, you must use it immediately after a PolyBegin
comment.

Using polygon comments with StdPoly: You can also use the
polygon comments with the QuickDraw StdPoly call. If a
FillRgn call is encountered before the PolyEnd comment, then
the polygon is assumed to be filled. In order for a fJ.1led but not
framed polygonal object to be deciphered from a QuickDraw
picture drawn by MacDraw, MacDraw always frames its polygonal
objects, using a pen size of zero width and zero height when no
framing is otherwise needed.

One problem with the StdPoly call is that it assumes the data is
already in integer format, which is not always true. MacDraw stores
freehand objects as byte offsets, typically with several hundred
nodes and no arbitrary upper limit In documents that use 90% or
more of memory, situations can easily arise where there is not
enough memory to create a polygon that represents the freehand
data, especially since the polygon, with integer data, requires twice
as much memory. MacDraw polygonal objects are stored as fixed
point numbers. It takes more code to convert them to a QuickDraw
polygon and then call FramePoly than it does to call LineTo
directly.

Setting Initial pen location: Unlike QuickDraw polygons,
comment polygons do not require an initial MoveTo call within the
scope of the polygon comment TItis means that the polygon will
be drawn starting from the current pen location at the time the
polygon comment is received. You must therefore set the pen
location before issuing a polygon comment

2-24 LaserWrlter Reference Manual - Beta(7(7(86)

Smoothing polygons: A spline is a method used to fit a curve to the
smallest number of points, or to determine the smallest number of
points that define a curve. In MacDraw, splines are used to smooth
polygons. The vertices of the underlying unsmoothed polygon are
the control nodes for the quadratic B-spline (or Bezier curve) that is
drawn. PostScript has a direct facility for cubic B-splines. The
LaserWriter translates the quadratic B-spline nodes it receives from
QuickDraw into the appropriate nodes for a cubic B-spline. You
can use two comments specify smoothing for polygons:
PolySmooth and PolyIgnore.

The PolySmooth comment specifies that the current polygon
should be smoothed This comment contains a byte of data as
follows.

TYPE
PolyVerb ... PACKED RECORD

f7:Boolean;
f6:Boolean;
f5:Boolean;
f4:Boolean;
f3:Boolean;
fPolyClose:Boolean;
fPolyFill: Boolean;
fPolyFrame:Boolean;

END;

{not used}
{not used}
{not used}
{not used}
{not used}
{close the polygon}
{fill the polygon}
{frame the polygon}

The PolyIgnore comment specifies that the remaining StdLine
data is to be ignored You can use it to define splines. When a
smooth curve is to be put into the picture, the pen size is set to zero,
and the defming nodes of the curve are drawn. Because the pen size
is 0, these nodes are not displayed, but they are drawn. Then the
pen size is set to the appropriate size and the smoothing algorithm
is called, creating many short lines. The short lines are of no
interest in re-creating the spline (and are even at the wrong
resolution for printing on the LaserWriter), but the spline can be
completely reconstructed from the defining nodes.

If framing is specified by the PolyVerb, the LaserWriter frames the
smoothed polygon using the pen size at the time the PolyBegin
comment is received When the PolyIgnore comment is
received, the LaserWriter ignores all further StdLine calls until the
PolyEnd comment For polygons that are to be smoothed, your
application should set the initial pen width to zero after the
PolyBegin comment so that the unsmoothed polygon will not be
drawn by printers that cannot process polygon comments. To fill
the polygon, the application should call StdRgn with the fIll verb

Working around the Printing Manager 2-25

and the appropriate pattern set, as well as specifying fill in the
PolySmooth comment

Rotating objects

The LaserWriter can rotate objects as well as text. Object rotation
comments work much like the text rotation comments.

Starting the rotation: The RotateBegin comment (number 200)
tells the driver that the following commands will be drawn in a
rotated plane. This comment contains four bytes of additional
data, a handle that points to the following data structure:

TYPE
Rotation - RECORD

Flip: Integer;

Angle: Integer;
END;

{coordinate flip - O:none, l:horizontal,}
{ 2:vertical}
{clockwise rotation in degrees - 0-360}

Stopping the rotation: The comment RotateEnd (number 201)
is used to terminate a sequence of rotation comments.

Setting the center ot rotation: The RotateCenter comment
(number 202) specifies the relative center of rotation for objects just
as the TextCenter comment does for text, but objects are drawn
in the rotated coordinate system (specified by this comment) plus
the pen location of the first object drawn in the rotated format. This
comment must occur before the RotateBegin comment The
additional data for this comment is 8 bytes. The data structure of
the accompanying handle is exactly like that of the TextCenter
comment.

Printing forms

The form printing comments enable your application to modify
information in fields of a form without forcing the LaserWriter to
change or redraw the form.

Starting torms printing: You can use the FormsPrinting
comment (number 210) to specify that the LaserWriter's print buffer
is not cleared after each page is printed. As a result, when
PrClosePage is called, the same data will be printed again, except
that which has been whited out, modified, or erased by additional
QuickDraw calls.

2-26 LaserWrlter Reference Manual - Beta(7 /7/86)

stopping tOI'l'N printing: The EndFormsPrinting comment
(number 211) is used to stop forms printing after the next
PrClosePage call. The print buffer is again cleared after each
page is prinred. This comment should be issued immediately
before the last form page is printed.

Specifying PostSCript commands

The PostScript comments notify the prinrer driver that the
application will be communicating with the LaserWriter directly
using PostScript commands rather than QuickDraw. Essentially,
you use these QuickDraw comments to bypass QuickDraw itself.
There are two ways to do so: your application can specify data in
the comment handle itself, or it can point to another file which
contains text to send to the printer.

Warning You should use these comments very carefully. No error
checking Is performed on Postscript text that your appllcatlon
generates.

Setting the Postscript state: The PostScriptBegin comment
(number 190) sets the driver state to prepare for the generation of
PostScript commands by the application.

Restoring the QulckOraw state: The PostScriptEnd comment
(number 191) restores the QuickDraw stare of the printer driver.

Sending PostScript In text strings: teThe PostScriptHandle
comment (number 192) points (via PSData) to the rext of the
PostScript commands to be sent. PSData is a generic handle that
points to text, without a length byte, which is terminated by a return
character.xt

Sending Postscript In tIIel1: The PostScriptFile comment
(number 193) rells the printer driver to send the PostScript
commands contained in the file FileName. The format of this file
is the same as that of a downloadable font file (see chapter 3).

Sending QulckOraw text as PostScript: The comment
TextIsPostScript (number 194) specifies that all QuickDraw
text following this comment is sent as PostScript. No error checking
is performed. This comment is terminated by a PostScriptEnd
comment.

Working around the Printing Manager 2-27

Sending Postscript from a relllOurc:::e: The ResourcePs comment
(number 195) causes the printer driver to send the PostScript
commands contained in the specified resource.

Modifying Printing Manager dialogs
Because of the universality of the Printing Manager interface,
flexibility is sometimes reduced Occasionally a printer feature is
needed by the application, but is not available through the normal
interface. You may want to use unusual options or features of a
printer or to supply printing parameters not available through the
Printing Manager, but which fit logically into the print dialogs,
particularly the Page Setup dialog. Your application can append
(pIggyback) its own dialog information to Printing Manager dialogs
or supersede them with its own dialogs, rather than implement a
discrete dialog which follows the Printing Manager dialog.

Appending an application dialog to a Printing Manager dialog is
discouraged,because it almost guarantees obsolescence as the
Printing Manager architecture changes with time. With the current
architecture, however, there is occasionally not much of an
alternative; therefore, the technique for modifying Printing
Manager dialogs is described below.

The Printing Manager contains executable code that is essentially
linked to the application dynamically when printer interface
procedures are called. The correct printer procedures are
determined in accordance with the current printer selection. Once
these procedures have been linked, your application can intercept
or patch into the printing dialog calls to append its own dialog
interface. The application can add dialog options specific to itself
or alter parameters already provided by the print dialog.

Warning It is the responsibility of your application to perform patched
operations with care and in conformance with normal print dialog
activity. Even though an application may intercept dialog calls,
normal print dialog procedures that have been patched must still be
called in their proper sequence as part of the patch changes. The
application must call the normal intercepted print procedures after
it has performed its own operations.

You can change a dialog resource dynamically as long as you ensure
that the resource is kept in conformance with the dialog resource
format You may choose to append to or alter information in both

2-28 LaserWrlter Reference Manual - Beta(7 /7/86)

the 'DLOG' and 'DITL' resource types. Rectangles may be
modified without too much concern.

When you add items to a dialog, however, you must determine the
current maximum number of items and add the additional number
to that count You must still pass all original dialog items to print
routines to process, and process the new items with your own
routines. The maximum number of dialog items must be
determined dynamically, never programmed into your
application; this number may change between printers and from
one release to another.

The resource that contains the printing dialogs is contained in the
currently selected printer driver file. To ensure that the current
printer is activated,you can call PrOpen, which guarantees that
the current printer driver resource file has been opened.

In addition to the familiar print manager dialog calls such as
PrStlDlg and PrJobDlg there are three other calls available,
PrStlInit, PrJobInit, and PrDlgMain. The Pascal entry
syntax for these routines is as follows:

FUNCTION PrStlInit(hPrint:THPrint) :TpPrDlg;

FUNCTION PrJobInit(hPrint:THPrint) :TpPrDlg;

FUNCTION PrDlgMain(hPrint:THPrint; pDlgInit:ProcPtr) :BOOLEAN;

THPrint is a handle to a valid print record as would be passed to
either dialog during normal print procedure calls. TpPrDlg is a
pointer to a print dialog which in reality is a normal dialog pointer
with some print information appended.

The relevant portions of the PrD19 record are the dialog record
portion itself followed by two procedure pointers, one for filtering
keyboard input and the other for evaluating selected dialog items.
These are referred to as pFltrProc and pIternProc respectively.
(The ftrst procedure pointer is offset in the PrDlg record by 170
bytes, $AA hex, and the second pointer by 174, $AE hex.) The
pointer pDlglnit points to a Pascal procedure which PrDlgMain
calls to initialize the dialog window. The calling syntax of this
procedure is:

FUNCTION xDlgInit(hPrint:THPrint) :TpPrDlg;

Appending your own information to a printer dialog involves
several steps. First, your application must call PrDlgMain with a
print record handle and a pointer to an initialization procedure.
The initialization procedure is called by PrD 19Main to initialize the
dialog appropriate for the selection made by the user. After the

Working around the Printing Manager 2-29

initialization is performed, PrDlgMain shows the dialog and then
loops, calling ModalDialog with pFltrProc and then
pItemProc until the user terminates the dialog.

The initialization routine that you supply performs all the
modification of the dialog. It reads in the dialog resources for the
dialog, modifies the window rectangle to the necessary size (usually
by increasing the bottom value), and then adds items to the item list
in the form expected by the Dialog Manager's GetNewDialog
function. (See the Dialog Manager chapter of Inside Macintosh.)
This is the critical portion of appending information to a dialog;
you must maintain the correct dialog format while adding to it

Warning You must never rewrite a modlfled dialog resource to disk: If fhe
Resource Manager procedures ChangedResource and
UpdateResFile are called for fhe dialog resources you hove
modified, fhe changes will be permanent for all appllcattons and
will likely couse them to crash.

The xDlgInit procedure you supply to PrDlgMain must get the
resource for the appropriate dialog. The resource ill numbers
are$EOOO (-8192) for the style dialog and $EOO1 (-8191) for the job
dialog. The procedure must make its in-memory changes to mese
reources.

Next you call eimer PrJobInit or PrStlInit to actually create
the dialog. This step must be performed no matter how completely
or simply you perform the initialization. When this Print Manager
initialization routine reUJrns, you can modify the dialog record
further by setting buttons, drawing initial conditions, or setting user
procedures for some items.

Next you must note the entries that are in the pFltrProc and
pItemProc locations of the dialog pointer record and store these
for future reference. Then you can insert your own routines into
these locations; your routines must internally call the procedures
they replaced.

The pFltrProc is a normal number filter or keyboard entry filter
procedure. You do not necessarily have to replace mis procedure if
it is not required. The procedure pItemProc is called with me
following Pascal syntax:

PROCEDURE pItemProc(pDlg:TpPrDlg; itemHit:INTEGER);

where pDlg is me expected dialog record and itemHit is me item
number that the user selected in the dialog window. This procedure
must decide whemer the item number is within the range of me

2-30 LaserWrlter Reference Manual - Beta(7 /7/86)

Printing Manager's normal hit list or is one of the appended items.
If it is an appended item, your application handles it,without calling
the Printing Manager's pItemProc procedure. If it is in the range
for the Printing Manager, your application can take any further
action it deems appropriate and then pass the item on to
pItemProc.

If your application always calls the Printing Manager procedures
where required, the display, item handling, and disposal of the
dialog will be handled properly, the only real work required of the
application is that of appending and handling its own items.

To call the additional printing procedures mentioned in the
previous paragraphs, you need only declare the routines to be
external in the syntax described and link your application with the
print link module (PrLink or PrintCal15). In Pascal this can be
done by the EXTERNAL declaration. In assembly lanquage this can
be done with the REF directive, and in MPW assembly with the
IMPORT directive.

The following Pascal example shows a call to the style dialog after
page setup has been selected from the File Menu.

VAR
maximum
ItemProc
FilterProc :

INTEGER;
ProcPtr;
ProcPtr;

FUNCTION PrStlInit(hPrint:THPrint) :TpPrDlg;

FUNCTION PrJobInit(hPrint:THPrint) :TpPrDlg;

EXTERNAL;

EXTERNAL;

..

FUNCTION PrDlgMain(hPrint:THPrint; pDlgInit:ProcPtr) :BOOLEAN; EXTERNAL;

PROCEDURE MyStlInit(hPrint:THPrint) :TpPrDlg;
BEGIN

hStlDLOG:=GetResource('DLOG',-8192);
(Make changes to DLOG Re50urce}
hStlDITL:=GetRe50urce('DITL',-8192);
maximum:=hStkDITL AA .(fir5t integer in resource};
(Make changes to DITL}
PtrToDialog:=PrStlInit(hPrint);
ItemProc:=PtrToDialogA.pItemProc;
FilterProc:-PtrToDialogA.pFltrProc; {Optional}
(Make other cal15 such as SetDItem of DITL items or set certain

buttons)
MyStlInit:=PtrToDialog;

END;

Working around the Prlntfng Manager 2-31

PROCEDURE pItemProc(pDlg:TpprDlg; itemHit:INTEGER);
BEGIN

IF (itemHit <- maximum) THEN ItemProc(pDlg,itemHit)
ELSE {Do It Myself};

END;

FUNCTION MyStyleprocedure(hprint:THPrint) :BOOLEAN;
BEGIN {The main code to handle the style dialog}

MyStyleprocedure:-prDlgMain(hPrint,@pItemProc);
END;

Assembly language routines can also be called in a manner similar
to the method above. Linking with the normal printer module,
PrintCalls (formerly prLink), will provide the necessary
external procedure entry points.

Permanently modifying a printer driver
You can modify the printer driver in such a way that dialog
modifications become permanently attached to the driver rather
than to your application. In this case you must make the changes
permanent by manually editing the printing manager resources or
by writing the changes noted above back to disk as changed
resources. In this way the driver becomes a new driver with differing
features and characteristics from the original driver.

warning The process described below Is very highly subject to
obsolescence It new prlnter dr1vers and Prlnl1ng Manager
architectures are Introduced In future machines and prlnters.
The architecture described below Is provided to assist those
who must modify existing printer drivers. It Is not guaranteed to
remain the some In future releases.

+ Note: If you change the driver, you should change the printer
name (that used in both dialogs as well as that of the file), the
signature, icons and device rD, so that it becomes a new print
driver.

You must also patch or link procedures such as those above into the
regular Printing Manager calls so that they become permanent
procedure calls.

When you permanently attach such procedures to a printer driver,
they can never share information through global variables. There
are no global variables in Printing Manager routines. The globals

2-32 LaserWrlter Reference Manual - Beta(7/7 /86)

in the above example must be rewritten into the routines themselves
or shared in some other way such as via a resource or a table
compiled into the code.

Once you have written and compiled the procedures, they can be
linked in a partial link process (essentially linked as a stand alone
program with more than one entry point). Then they must be
patched into the original Printing Manager code with additional
resource editing operations. In the Printing Manager file is a
resource, PDEF 4, which contains a jump table as the first 32 bytes
of the resource. The format of this table is shown in table 2-7.

Table 2·1
Jump table ot PrInting Manager calls

Procedure Byte Offset

PrJoblnit

PrDlgMain

PrStiDialog

PrJobDialog

PrStllnit

o
4

8

12

16

20

24

28

Each entry in the table consists of a JMP instruction with an
immediate offset into the rest of the resource. The jump table
points to the procedures of the appropriate Printing Manager calls
as described above. Once the routines are ready, you must append
the code data to the I?DEF 4 resource and displace the above table
with a new table of similar structure pointing to the added routines.
One way to accomplish this task is to simply precede the above table
with a table containing the correct offset for the added routines.
You can simply add 32 to the offset for procedures you do not
modify.

To link from the added routines back into the original routines
where necessary, you need only provide an assembly language glue
routine which causes a jump to the beginning of the resource into
the desired routine, offset by the correct amount to get to the
original jump table.

Working around the PrInting Manager 2·33

Adding a sheet feeder to the LaserWrlter

This section presents an example of how a special feature can be
added to the LaserWriter driver-in particular, a sheet feeder. If
you want to add a feature to the printer itself, it is necessary to also
change the driver that drives the printer, since it must control,
activate or otherwise monitor that feature. The example that follows
is just one method of accomplishing this task.

A sheet feeder is attached to the printer itself, feeding sheets from
its external trays into the external or manual feed slot of the
LaserWriter when it is in operation. When a page is ready to be
printed, the driver must dedde whether or not the page must come
from an internal tray, an external tray or manually fed by a human
user (most sheet feeders still provide for this feature too). In this
example the user chooses the correct feeder option tray dedsion in
an expanded job dialog box (see Modifying Printing Manager
dialogs, above).

The external sheet feeder is mechanically connected to the printer.
The feeder is assumed to be activated or controlled via an RS232
cable connected, in this case, to the LaserWriter's 25-pin
connector. This connector is a standard %00 baud serial port
which is not normally active when AppleTalk is active. The printer
is controlled though AppleTalk, which in turn controls the sheet
feeder through the 25-pin serial connector. A spedal piece of
PostScript downloadable code must be invoked in order to use the
25-pin port during AppleTalk activity. (This piece of code is
included below but must not be copied from the text The code can
be obtained on diskette from Apple.)

o serverdict begin exitserver
currentfile-eexec
17BF14FF462224C4349FF737240S9E7C6DC33BS9279B12DAEB9B2C8724DC6ES4
A10E69A6987227553F8DBE1B79DCDD44531DECDD4B49B84528SB21537ABEE646
696C1A74A6CBF10611FFA2A6COE2CB10D72B771E92E200899F41221FD9D34D30
53E451FBE903B1363B87411221BFC275C702AA24AB675972AE01C010638AA3CF
D7CDDE6CBSC758D1939D6ECC69599DDllDF039E4DBDC88995F5365F3B05574BA
3A99Db394918463COFE790C5DBDDF67E1324BD1E8CFBE6FD60BE392D2E08E64A
DOFE29A2DE24A77D9B72ACD37920EA8921CA6DOB006DD6E00926BD2A2FBA1D97
lOBOCFOA7EDS5B233S1FADBD5A791A86A8064D3989851248382BA8383El170EC
D3924BDE2CF829AA4FFE57A73625F230E4E27CC1FB5274E75A675D66870F4D94
54DF9A4BBEBE75240860808822C094FF3BDF83669B4831BE7C2S8E6C3C63BA4B
A3640ECBF745C94599BB92DF925D6D69A6ACE63BC8DFDDBEAF9606D407BCA123
EAFDAB921678642F50DC9F97EC35E45A19361EDEBBD408753B5D10DC4FB03BEA
68E750837CE20940F7226C9B436CF24120FBABOF6A8C86F3A26D3646B69DB850
2FB86EF7B832EB6D69ADA83576E8C968F857D0453936D7CBBA9BF399B5AC249D
3DD24DOBD7D96CCFFDBEA04DE6B3E94D7F475120641BA053B06674397CEAS464

2-34 LaserWrlter Reference Manual - Beta(7/7 /B6)

157012E4D448E2F85B562432A84EllBF99AFDDCDAAOD90BB3377A92773703CD8
lBF8D71A841F1DFOF80757ACF06EF343449180D8FCBA93D605D048552826CD1A
81F07E7809BDAllE3840DEOD97807BBDFD2D36B97EF469445A24B5B3924A561E
EEOA948B6B6B277BF7C3B49BCD464C98F2A28FCAA3A2E94F404BE70BODE3CE07
AE536ADA2B5BB76FAB81F5FFAE27C168B8E100BAA7BEOBB7374EF31A9B2B740E
DB6EB926D2E7E7C4460BE8AB8ABC461EBE36BA7D52B3E09B91F2103B59FC6D02
36F4781F48E77FA5AF30A3F44E7990CA9754D595951FF1B17A4BOF9263305FBO
25596C3CC61D84CCAF481C53B337991E09CDEE2B42FC623045C02D316F96Al16
B44689008870A380D4FFDA5A44DB5E77428F0848BOC96EDFABCB8D3D3885EF7F
4E9376BA28F48707A644620124BDB6807DD0359AD2D206B9407BEB52F1691BAB
26E1B9C477COBC1E27A2AF633EA2573CFA3BB6B1F6B9B2E45776EAE8CBF5ACF9
10053D5CBF5CCDAD45C6972D8BAE082A6192BEE42434AD1D8DE3577574BD55BC
009BA9DAODD409E418DF24B2B14A48E5E2B6057627BD9076A7B32471COEA922E
lB3F1A3E3923AC67A04ADAEFF70FF3842A7B1EOF7E91C096A25EAOF8CAB4FA7BDA

The above code implements several PostScript calls:

9600 3 setupRS232 % is used to setup the 25 pin connector and must be %
called at the beginning of every document.

nn writeRS232

readRS232

% outputs a character to the 25 pin port where the %
character ordinal value (nn) is given in decimal.

% returns (nn true) or (false) where false means no %
character available and true means nn is character

These PostScript calls must be polled calls; they are not interrupt
driven. nus limits the speed at which I/O can take place, but is
probably adequate for operating a general sheet feeder.

Other PostScript routines that the developer might provide are
procedures to replace copypage and showpage that will cause a
sheet to be fed from the desired paper tray or an appropriate
internal tray as necessary. Part of this action might be to switch
from internal feeder operation to manual feed (see the PostScript
manual), send the appropriate codes to feed a sheet into the
manual feed slot, and synchronize with the showpage call. The
PostScript code for this process is dependent on the particular sheet
feeder being supported.

When all the items described above are available for packaging the
following steps should be performed:

Working around the Printing Manager 2-35

III Assemble all the PostScript code into a single resource or set of
resources as described in Providing your own PostScript
dictionary, below. Special commands which are intended to
handle tray selection. showpage/copypage replacement,
operation of the 25 pin RS232 connector. and other spedal
purpose activities can go in these resources. When the Printing
Manager code is activated during the printing of a document,
this PostScript code will be automatically downloaded for you.

III Develop your own dialogs to attach or append to the existing
LaserWriter driver dialogs. This is described in modifying
Printing Manager dialogs, above. In these dialogs you can
provide tray selection buttons, tray sequence selections, or other
options to the user.

III During printing, when your application determines that an
external sheet feeder must be activated and controlled, it should
send PostScript code in QuickDraw picComment commands
through the Printing Manager as described in Using PostScript
through QuickDraw, above. The showpage call will be made by
the Printing Manger, so it is never necessary to do this yourself.

l1li If your product is a driver or sheet feeder, you will want to supply
these capabilities to all applications; this is more difficult to
accomplish. Selected options from the user cannot be easily
passed through to the PostScript procedures provided above,
since access to QUickDraw picComment calls is available only to
applications. In this case it is still possible to provide sheet
feeder operation by replacing often used PostScript operators
with routines which perform the task automatically. It is also
possible to provide dynamically modified PostScript routines,
which are created each time a dialog session is completed, to
reflect the options selected by the client This PostScript can be
the downloaded code mentioned above that is sent to the printer
at the beginning of every document

+ Note: The process described in the above steps is perhaps
awkward but is operationally sound. These techniques are by no
means unique nor necessarily recommended by Apple but are
intended to serve only as an example.

Designing a spooler for the LaserWriter
Currently, documents to be printed on the LaserWriter are not
spooled. Consequently, during most of the time required to print a
document, the user is unable to use the Madntosh. Spooling files to
the LaserWriter for printing can significantly improve the

2-36 LaserWrlter Reference Manual - Beta(7j7 /86)

productivity of the network.A spooler effectively inserts itself in the
network between the LaserWriter driver and the LaserWriter itself.

To implement a remote AppleTalk-connected spooler for the
LaserWriter driver on Macintosh, you must be familiar with printer
drivers. ¥oumust also understand the protocol used at the
PostScript level in order to preserve this interchange in a spooling
device. There are three main areas of concern when splicing into
this interchange: establishing PostScript dictionary status,
obtaining the font list, and downloading fonts the requited fonts.

At the beginning of every print job on the LaserWriter, the
LaserWriter driver interrogates the printer twice, in PostScript; first
for the status of the Apple Laser Prep dictionary, and then for font
information.

Establishing dictionary status

The first query, the dictionary status query, asks for information
about the state of the Apple PostScript dictionary. It is preceded by
the comment string, "%7appledict version tn.n", and is
followed by the string, "% 7end". The driver expects a single
character response: 0 (not defined), 1 (dictionary present and
correct) or 2 (dictionary present, but does not match version
number sent). The n.n sequence above is the current version
number that the driver knows about, in ASCII fLXed point decimal
notation, and which the printer is expected to verify for a correct
match. Version numbers match (for the purposes of this query) if
the integer part of the version number of the downloaded
dictionary matches the integer part of the version number in the
Apple Laser Prep dictionary. Higher fractional numbers indicate
the presence of minor fLXes or alterations which are still functionally
compatible with versions of smaller fractional value. This simply
means a document generated for one version will not trigger a
PostScript error on a different version as long as the integer parts
match.

Working around the Prlntlng Manager 2·37

.. Note: AAhough there are few released versions of the Apple
dictionary, in actuality the version numbers tend to change
frequently, and the architecture is not guaranteed to remain
constant It is therefore recommended that your spooler not
reply to or rely on specific versions of the dictionary.

Obtaining the font list

In the second or font list query. the printer driver asks for the list of
all known fonts on the printer. The query begins with the string,
"%,?fontlist", followed by the necessary PostScript code and
then the string "%'?end". Figure 2-5 shows a font list query. The
printer (and therefore your spooler) is expected to respond with a
list of its fonts. The anticipated response differs according to the
version of the driver. These differences are described below.

MSCNNNN
ART: NN xNN
16.5 picas text to FN bib

Figure 2-5
Font Ust Query

Font list response for release I drivers: Release one LaserWriter
drivers (with version numbers less than 3.0) expect the response to
this query to be a sequence of strings each terminated by a carriage
return. Each string specifies a single font (from PostScript's
FontDirectory) which has been coordinated (see Chapter 3) and
which is available on the printer. The string sequence is terminated
with a string containing the single character I.', ASCII hex ZA. Only
coordinated font names should be sent in response to this query.

2-38 LaserWrlter Reference Manual - Beta(717/86)

o/c;"I"1..o Ifle query
md begin
%?fomUst
1st
%?end
end

FI~ :2-5'

r-c:> ...:r- /....;>t Q 1.J.e/')'

<0> Note: Each font string transmitted by AppleTalk is
encapsulated in a single packet (accomplished by executing a
PostScript flu s h operator on the printer). This is the
recommended convention for all strings the driver receives
from the spooler, because it must sift meticulously through all
responses to distinguish between Sb.tus and dab..

Font list response for release II drivers: Later releases of the driver
(with version numbers 3.0 and greater) expect a similar sequence of
font names in response to the font list query, as described above for
earlier drivers, but with one difference: both coordinated and non
coordinated font names are valid responses. The driver will
recognize the difference between the two types of font names by the
vertical bar I I' character at the beginning of coordinated names, as
seen in figure 2-6, which shows the response to the font list query in
figure 2-5.

MSCNNNN
ART: NN x NN
16.5 picas text to FN bib

Figure 2·6
Font Ust Query Response

Both the coordinated and non-coordinated name of a font can be
defined in the dictionary.Your spooler should be able to
distinguish between the two types of names, and it should never
respond to a font list query with the non-coordinated name of a font
that has already been coordinated. When the LaserWriter driver
receives non-coordinated font names in response to the font list
query,it attempts to coordinate them before proceeding with the
document body.

Working around the Printing Manager 2-39

% Sample List for LaserWriter Plus
NewCenturySchlbk~Bold

Times-Boldltalic
Palatino-ltalicL
Bookman-Light
Helvetica-Narrow-Obliqu9
Helvetica-Bold
Helvetica-Narrow
Courier-Oblique
Times-Bold
Times-Roman
NewCenturySchlbk-Boldltalic
Palatino-Bold
Palatino-Roman
I Courier

%Asample
pre-initialized font
lapfChancery-Mediumltalic
ZapfDingbats
I Seattle
Courier-Bold
AvantGarde-Book
Palatino-Boldltalic
Helvetica
Bookman-Lightltalic
Times-Italic
Courier-BoldOblique
NewCenturySchlbk-ltalic
NewCenturySchlbk-Roman
Helvetica-Narrow-BoldOblique
Bookman-Demi
Helvetica-Narrow-Bold
Helvetica-BoldOblique
Helvetica-Oblique
AvantGarde-Demi
Bookman-DemiItalic
Symbol

AvantGarde-BookOblique
AvantGarde-DemiOblique

Coordinating non-coordinated font#: One of the major new
features of the 3.0 driver is the ability to configure fonts as necessary
for any given document If this requires downloading a font or
coordinating a font, the driver will initiate this process. Two
conditions occur to signal the driver to coordinate a font. First, the
font must be present (along with its 'FOND' resource info) on the
Macintosh that initiated the print job. Additionally, the name of
that font in the font list query must flag it as non-coordinated

When the driver determines (from the font list response) that it
must coordinate a font, it generates the appropriate PostScript text
to coordinate the given font, rename it, and make it semi
permanent on the printer. (The driver will also coordinate a font to
be downloaded with a document, but in this case the font
information will be part of the document and thus transparent to
any intercepting spooler.) Figure 2-7 shows the PostScript code
generated by the driver to coordinate the fonts listed in figure 2-6.

MSCNNNN
ART: NN X NN
16.5 picas text to FN bib

Figure 2-7
PostScript Code for Coordinating Fonts

Coordinating fonts: The process of coordinating- a font is very
font-dependent and dynamically generated; trying to manage it
through a spooler may become very cumbersome. There are two
possible approaches that you can take to font management and
replying to a font list query with your spooler.

2-40 LaserWriter Reference Manual· BetaO /7 /86)

% Make it stick
serverdict begin 0 exitserver
md begin .
% General format is...
% ICoordinated-Name IPrevious-Name MacEncoding-Vector-flag rf
II Times-Roman /Times-Roman T rf
II Times-Bold mmes-Bold T rf
II Times-Italic mmes-ltaJie T rf
II Times-Boldltalie mmes-Boldltalie T rf
II Helvetica IHelvetica T rf
II Helvetica-Bold IHelvetica-Bold T rf
II Helvetica..Qblique IHelvetica..Qblique T rf
II Helvetica-BoldOblique lHelvetica-BoldOblique T rf
II Courier-Bold ICourier-Bold T rf
II Courier..Qblique ICourier-Oblique T rf
II Courier-8oldOblique ICourier-BoldOblique T rf
II Symbol/Symbol F rf
II AvantGarde-OemiOblique IAvantGarde-OemiOblique T rf
II AvantGarde-BookOblique IAvantGarde-BookOblique T rf

•..
II Palatino-Roman IPalatino-Roman T rf
II ZapfCha~csry-Mediumltalic IlapfChancery-Mediumltalio T rf
II ZapfO~ngbats lZapfOingbats du fe
% Redefine encoding vector for above font.
% encoding-position, name, operand.
128/a89 os
129/a90 os
130 la93 oe
131 la94 os
132/a9t ce
133/a92 ce
134 1a20S os
13S/a8S os
136/a206 os
137/a86 os
138 la87 cs
139 la88 os
140 la9S ce
141 la96 cs
nf

One approach is to have the spooler reserve the font coordinating
and downloading functions to itself, and return only coordinated
font names in a font list In this approach the driver never sees a
non-coordinated font on the printer. Therefore, the driver never
coordinates a font except when downloading a font required by a
document but not returned in the font list ('The La.serWriter driver
assumes that this approach is in effect when the Command-H
option is used to send a print job to a text file.)

A second approach requires less intelligence on the part of the
spooler and may be more independent of external changes. In this
approach the spooler can impersonate the printer, capturing
PostScript text from the driver to help it in its work. To impersonate
the printer, .the spooler can assume the name of the printer, and
remove the name of that printer from the list of printers available
on the network. To do so, the spooler can change the product
name if it's an original werWriter or the AppleTalk name if it's a
LaserWriter Plus. The spooler essentially becomes transparent to
the font coordinating and downloading process, but passes relevant
queries onto the printer and replies on its own whenever possible.

to> Note: It is also possible for a spooler to appear as a device
other than a Macintosh printer device. For such a device to be
recognized or manipulated by the Chooser, it must conform to
the Chooser device standard. In this form the spooler either
can be made independent of available network printers, or can
be used as a replacement for them.

In this second approach the spooler waits for the fIrst font list query
from a connecting workstation and captures it for later use. It then
passes this query on to the client printer. When it receives a reply,
it notes the font names and caches them away internally. Then it
passes this information back to the inquiring workstation and waits
for any further response from the workstation. When any font
coordinating information follows from the workstation, the spooler
captures this information and passes it onto the printer as a regular
job. The spooler can then make font list queries of the printer
periodically (perhaps after every printing job completes), capture
the results, and then, when it recieves workstation queries, simply
return its own cached list of fonts, always reflecting the most recent
status of the printer being observed.

Working around the Prlnttng Manager 2-41

The danger of this second approach is that the spooler's font list can
get out of synchronization with that of the printer. ('This
synchronization problem can be especially troublesome for
sPOOlers that do not capture the printer and isolate it from the
network.) If the spooling administrator ensures that no permanent
fonts can be added to the printer while the spooler is in operation,
this problem can be minimized.

Providing your own PostScript dictionary
An application can now supply its own document header
(PostScript dictionary) either permanently (till the printer is
powered off) along with the Apple Laser Prep dictionary, or
temporarily with each document to be printed. -

The recommended method for downloading your own PostScript
dictionary is to supply it on a once-per-document basis. This not
only happens very quickly but it minimizes interference with the
Apple PostScript dictionary, prevents unnecessary consumption of
valuable virtual memory space on the printer, and allows more
downloadable fonts to be used more abundantly by other
applications. The method for accomplishing this is to provide a
resource in your application of type PREC and ID 103, decimal,
which consists of text data (including all necessary carriage returns
or line feeds). When printing occurs the driver will look for a
resource of this type and ID and, if it finds it, will send it to the
printer during document open time. It is your responsibility to
make this text syntactically correct

Warning Under no circumstances should your application Issue a
Postscript exitserver operator.

The other method of providing your own PosCScript dictionary is
permanent (until power off). Your application must provide a
'PREC' resource, ID 201, which contains a set of parameters
pointing to an unlimited number of resources that contain the
actual PosCScript code. This approach also allows for data to be in
hex.

2-42 LaserWrlter Reference Manual - Beta(7 /7 /86)

Resource 201 contains a pair of integer items for each separate
resource to be downloaded. When the driver initializes the
LaserWriter (and only then), it downloads its own PostScript
dictionary. Then it looks for resource 10 201. The driver does not
open any resource mes, so this resource must be in an open
resource me. The driver uses the fU'St word of each pair in the
resource as the ID of another resource of type 'POST'. The driver
sends that resource to the printer, as text if the second integer of the
pair is a 1 or as hex data if the second integer is a O.

There are two special types of these pairs; if the nrst word of the pair
is an integer 0 or 1 then there is no second word of the pair, and the
fust word is taken as an end-of-me indicator. An integer 1 in the
nrst word of the pair indicates a temporary end-of-ftle: the file is
closed, but the AppleTalk connection is not broken. An integer 0 in
the fust word indicates the absolute end of the dictionary data; this
type of end-of-ftle indicator must be immediately preceded by a
temporary end-of-me. It is the responsibility of the application to
perform a PostScript exitaerver if it is required in this mode.

Localizing the printing process
The Macintosh human interface is designed to allow applications to
be localized for users across national and cultural boundaries. By
viewing information as resources, the system allows you to modify
much of interface accurately and easily. This is UUe of the printing
process as well: all the relevant messages and menu items are
available as strings in the driver that you can localize by modifying
the appropriate resources. The only string not editable is the
version string in the dialogs. The version string is in the code to
preserve version identity. The strings that you will need to modify
are shown in table 2-8.

Teble 2·8
Localizable Resources

Resource 10

'PREC' 109

'STR' -4096

Explanation

Pascal-style string pairs used in displaying status messages read from the printer.

'STR 'strings are used by the Chooser to inform the user of available printer options.
This string is the printer device name .

-4095 Singular form of the printer device name.

-4094 Plural form of the printer device name.

Working around the Printing Manager 2-43

Printer mis-match alert. The printer designated in the print record is not of the
proper type, e.g. an imagewriter print record has been detected.

Zoom or reduction value selected by the user is out of range. The maximum or
minimum is substituted automatically, and the user is alerted that this will happen.

Style dialog items.

Alert text.

Select string for the select-a-particular-printer-of-this-type option.

Job dialog button and selection items. These may be modified as necessary.

No Laser Prep file available on the Printer or for downloading. Printing cannot
continue until the user inserts a disk with a valid Laser Prep file into the internal disk
dirve. If there is a disk already in the internal drive. it is ejected

-4091

'DITL' -8191

'DITL' -8192

'DITL' -8181

'DITL' -8179

'DITL' -8160

'DITL' -8159

'DITL' -8152 This alert cannot be used

'DITL' -8151 The Laser Prep file on the Printer and the Laser Prep me for this version of the
LaserWriter driver are not the same. The printer must be powered down to be re
initialized.

'DITL' -8149 The help screen for the LaserWriter job dialog. These strings may be altered as
necessary. Each string is in a separate rectangle for ease in formatting and
appearance. You may wish to completely alter this Alert.

'DITL' -8150 No name has been chosen in the Chooser Desk Accessory. Consequently, the host
cannot access a printer on the AppleTalk network.

'STR ' -8191 The name of the default spool me (normally PostScript) when Command and H keys
are held down at the start of the print job.

'S1R ' -8160 "Looking for LaserWriter <name>." The sequence "0." should not be moved from
the end of the string. This may cause translation difficulties in some languages, but
the code expects the string to be of this form.

'S1R I -8159 "Creating PostScript File." The string in the status dialog box when Command Hand
Command K options are spedfied

2-44 LaserWrlter Reference Manual - Beta(7 /7 /86)

Changing printer messages

'PREe' string pairs are used to construct messages from the printer.
For example, in the error message "PrinterError: .reason" the error
type would be matched to a pair via its first string. Consequently,
this fltSt string must not be altered in any way. The first string of the
pair serves as a key to the second string. This second string is the
one that would actually appear in the message in place of the word
reason. It is this string you should translate.

Youcan add any number of string pairs to this list,do not remove
any of the original pairs. The end of the list is indicated by a pair
whose fltSt string is empty. The strings sent over AppleTalk by the
printer are as follows:

"job: ... ; document: ._ ; status: ... ; source: AppleTalk"

The values for the variable fields are as follows:

III possible values for job are infinite

III possible values for document are infinite

11II possible values for status are busy, waiting, or idle. These
are modified to read processing job, preparing data, and
starting job, respectively.

The other forms of messages are:

III "Error: error message j OffendingCommand: operator"

III "PrinterError: reason"

III "Flushing: rest of job (to end-of-file) will be ignored"

II "exitserver: permanent state may be changed"

Changing Laser Prep messages

Some messages are generated by the LaserPrep me which are of the
form:

"101", "Ill", "121", ...

The correct interpretation for these strings is already in the string
pair list and the second string of the pair may be translated as
needed.. You should never move the string pair beginning with "out
of paper" from its position in the list

Working around the Printing Manager 2·45

Using PostScript code in a document
Resource 'STR ' -8188 contains the string "PostScript Escape",
representing the PostScript escape font If this string is changed to
the name of a font in the system resource file, when a document is
sent to the printer, all text in that font will be sent to the printer as
PostScript rather than as text to be printed In this way the user has
the ability to send special-effect PostScript code to the printer. The
following restrictions apply to escape font text:

III All the text must be on one page; it cannot overlap onto an
adjoining page.

11II The text should not be on the same line as text in any other font

11II The QuickDraw characteristics of the text, such as pen
positioning, style, and font size have no effect on any other
printed attribute of the document

Intercepting PostScript files
The user can intercept the PostScript version of a document to be
printed This is done by holding down the Command and H keys
immediately after clicking on the OK button in the job dialog box.
The code is written to a me named PostScript which can be edited
with a standard editor or word processor in text only mode.

The user can also intercept the Laser Prep dictionary code with the
PostScript code for his document This is done by holding the
Command and H keys immediately after clicking on the OK button
in the job dialog box. This code is also written to the file named
PostScript.

This feature makes no provision for renaming such flies. If a flle
named Postscript already exists. It will be overwritten.

2-46 LaserWrlter Reference Manual - Beta(7/7 /86)

Chapter 3

Working with fonts

'i

Tablet
Font Terminology

Font Family

Font

Overview
Like traditional publishing systems, the MacintoshlLaserWriter
desktop publishing system uses fonts to display text Although fonts
for both types of systems are used to produce the same effect, they
are alike in almost no other way. Fonts for the Macintosh and the
LaserWriter are software entities that describe how characters
should be formed. Even fonts for the Macintosh can differ greatly
from those for the LaserWriter. Fonts designed to be displayed on
the Macintosh are known as screen fonts. Fonts designed to be
printed on the LaserWriter are called printer fonts. The LaserWriter
driver matches these two types of fonts together to achieve a
publishing system whereby "what you see is what you get" This
chapter describes the requirements for matching and using fonts in
this system, including classifying, naming, and downloading fonts.

Understanding font terminology
As a result of the dynamic evolution of publication methods,
terminology used to describe the printing process and printed text
has become very confusing. The advent of desktop publishing has
unfortunately added to this confusion.

•> Note: The "Font Manager" chapters of Inside Macintosh,
volumes I and Iv, give a detailed introduction to fonts.

To avoid as much confusion as possible, table t1 'presents some
common terms and their meaning, as used in this chapter.

A generic set of characters, including all styles and sizes of those characters.
The Geneva font family, for example, would include 12-point Geneva italic
characters and 36-point Geneva bold characters.

A specific set of characters in a single size and style, for example, 12-point
Geneva italic. A particular font may be intrinsic or derived.

3-2 LaserWriter Reference Manual (beta, 7/7/86)

Leading

Size

Style

Intrinsic Font

Derived Font

The space between lines of text. The term-pronounced leddtng-is
derived from the lead strips typesetters used to separate rows of type.

The vertical measurement of a font in points, equal to the height of the
font rectangle plus the leading.

The characteristics other than size which uniquely define the fonts of
a single font family. Geneva bold and Geneva italic are two styles of the
Geneva font family.

A font whose characteristics are entirely defmed in a 'FONT' resource.
The plain-style font of any family is an intrinsic font: other styles mayor
may not be intrinsic. An intrinsic font can be used by QuickDraw or the
LaserWriter without modification.

A font whose characteristics are partially determined by modifying an
intrinsic font. A derived font might be one whose characters are scaled
from an intrinsic font to achieve a desired size, or slanted to achieve an
italic style.

About screen fonts
Any black and white image can be displayed as a collection of black
and white dots. These dots are called picture elements, or pixels.
Fonts for electronic publishing are really data structures that spedfy
arrangements of pixels. The Madntosh displays pixels on its screen
as tiny squares, at 72 per linear inch. (This size coinddes with the
definition of a printer's point-l/72nd of an inch.) In contrast, the
LaserWriter can print 300 pixels per inch.

Macintosh screen fonts are spedfted as bit maps: a bit image of
each character in the font is stored in memory. When the user types
that character, each pixel of the character is drawn on the screen as
spedfied by the corresponding bit in memory. The bitmap
approach works well for a screen display, but it does have
drawbacks. Each character for each font must be represented by its
assodated bit map, which can require large amounts of memory as
you add fonts to the system. Enabling the user to freely spedfy
different sizes of characters requires either more bit maps or a
mechanism for enlarging and redUcing bit images. In reality, both
methods are used by the Madntosh for screen displays.

The Madntosh provides a wide variety of font families with a well
defined set of styles uniformly available across all families. For

WorkIng WIth Fonts 3-3

each Macintosh font (screen font) the user may select up to seven
distinct styles provided by QuickDraw:

III plain (often called Roman)

III bold

III italic (or oblique)

III underline

III outline

III! shadow

l1li small caps

Usually the plain style is the only style available in an intrinsic font,
and the other six are derived. (Some applications provide even
more styles than QuickDraw does.) In some cases, and especially
with the new Font Manager for the 128K ROM,screen font styles
other than the plain style are intrinsic rather than derived.

About printer fonts

Printer fonts are defIned in a very different manner from screen
fonts. The image of a character is defmed as a series of Bezier
curves, or B-splines, These curves are stored as mathematical
constructs that form the outline of the character, which is then
simply filled in. There are several advantages of this type of
character definition:

III Drawing the image of the character takes much less time than
constructing the image from a bit map,

III The sizes of the curves are easily reduced or enlarged, producing
a clear image of the character, regardless of its size.

III Since one defInition specifies all sizes of a character, less
memory is required to store many sizes of a font

III The defmition is device-independent It can be reproduced on
any PostScript printer, The resolution of the printer determines
the quality of the printed image.

The LaserWriter contains a number of built-in printer font families
in its ROM, including several intrinsic bold and italic fonts. In
addition, the LaserWriter has the capability of accepting new fonts
that may be downloaded to it either on a once per document basis
(temporary downloading), or for use on any document until the
printer is powered down (permanent downloading). The number
of downloadable fonts that can coexist on the printer at anyone

3-4 LaserWriter Reference Manual (beta, 7/7/86)

time is limited only by the available memory, but, depending on
the size of the fonts involved, is usually between 5 and 10.

At the beginning of every document the LaserWriter printer driver
queries the LaserWriter, asking it to list all the fonts it has. The
driver stores information about all these fonts in a temporary font
cache. The driver parses this cache whenever a new font is
encountered in a document If the desired font is in the cache, the
printer is switched to that font If the desired font is not in the
cache, the driver initiates a disk search for a font me to download to
the printer. If an intrinsic font is found, it is downloaded to the
printer. If one is not found, the derived (bit map) version is created
and downloaded. In either case, the downloaded font name is also
entered into the cache.

When the driver requests the font inventory from the printer, it
receives information about permanently downloaded fonts as if
they were built-in fonts. It can then use permanently downloaded
fonts in the normal manner, provided the downloaded font is
consistent with other printer fonts. (To be consistent, the
downloaded font must be defIned and classified correctly and must
be matched through an appropriate 'FOND' resource to a
corresponding screen font on the Macintosh.

Downloadable fonts are not limited to splines or outline forms but
can be arbitrarily defIned by your application or the user as long as
they conform to Macintosh and PostScript conventions. Bitmap
fonts are just one example of fonts that can be defined and
downloaded. As mentioned above, the LaserWriter driver can
temporarily download a screen bitmap font automatically when that
font is encountered in a document but does not exist on the printer.

It is at this juncture that the differences between screen and printer
fonts becomes painfully obvioUs. If the user selects a character in a
size that is not defllled in the screen font's bit map, QuickDraw
attempts to resize the character by a method called scaling. The
result of this process can sometimes be less than spectacular; the
character can be signifIcantly distorted, with rough curves and
jagged edges. It is this image that is sent to the LaserWriter. The
LaserWriter then accurately reproduces the bit map on the printed
page.

Matching screen and printer fonts
The crux of implementing a desktop publishing system is the
process of properly matching screen fonts with printer fonts. In the

Working WIth Fonts 3-5

typeset world a font family may contain anywhere from 1 to perhaps
50 different styles. The Macintosh can provide upwards of 64 styles,
but not necessarily the same styles as in typeset font families. For
example, the Macintosh has only one level of bold weight per
family, whereas some typeset families may have more than four
weights (light, demi, bold, heavy, ultra, etcetera).

Font matching is further complicated by the large number and
many types of characters that can exist in a fonl For example,
Japanese kanji fonts typically contain more than 3,000 intricate
characters,and Arabic fonts include ligatures and characters whose
forms change depending on their context

Additionally, some styles may be derived in some fonts yet intrinsic
in others. To make matters worse, a derived style in one font family
may be implemented differently from the same derived style in a
different font family (this is true particularly for outline and shadow
styles).

In order for the printer driver to be able to handle all these
variations correctly, each font must be marked by its own
characteristics. These characteristics determine the font class;
when they are properly established, the font is considered
classified. A font that is not classified is unusable.

Classifying fonts

Font classes are specified differently for the different versions of the
driver. In the first version released, the font class is specified in the
'FONT' resource for the fonl In the second release, the font class is
specified in a style mapptng table. For both releases; the font class
comprises two basic types of information about the font: the style
tmplementatton method and the character set encodtng scheme.

Style implementation

A style implementation is a set of methods used to obtain font
styles. It may include both inherent and derived style types. Each
font in any given class implements its styles according to these
methods defIned by the class. The class also helps the driver
distinguish between inherent and derived styles.

3-6 LaserWrlter Reference Manual (beta, 7/7/86)

Character set encoding

Character set encoding arises from the implicit difference between
the Macintosh character set and the Adobe StandardEncoding
vector. PostScript allows characters within encoding sets to be
rearranged at your discretion to match other sets (such as the
Macintosh character set), but it does not allow characters to be
swapped between different character sets. As an example, the
Adobe Standard Encoding for the Times Roman and Helvetica
fonts does not normally contain the characters '®', '©', 'TN', and '.',
but they are available in the encoding for the Symbol font Since
these characters are present in the Macintosh character set, the
printer driver must switch automatically to the Symbol font to print
these characters whenever it encounters them. Fonts that require
this type of character borrowing are called re-encoded fonts and
fall in a different class from those that don't

~ Note: Although re-encoded printer fonts do not contain these
characters, tlie associated screen font must. (Also note that
when a font switch of this type occurs, the design appearance of
the switched font Is not altered to match the initial font familYi
for example, sans serif does not carry over into the serif Symbol
characters.)

It Is also possible for a font to incorporate other encodings which
are neither the Adobe nor the Apple character set. A fom with its
own character coding defined intrinsically presents no problem. In
such a case the screen font Is made to match the printer font in each
character position, and the font creator can assign character
positions within the font arbitrarily.

There are some printer fonts (such as Zapf Dingbats), however,
which contain additional characters that are not assigned to any
particular character position. (PostScript, allows a. font to contain
an arbitrary number of characters-even more characters than the
number of available encoding positions.) These characters can be
assigned to normally unassigned positions in the encoding vector
or to character positions already defined. In order for such fonts to
be downloaded by the driver, the encoding information must be
available to the driver whenever it Is ready to make the new
character encoding assignments.

The font characteristics described above determine the class of a
font. The format of the class entry to the style mapping table varies
according to the version of the printer driver number.

Working With Fonts 3-7

'1../ 7
Table ./.2
Font Classification-Release I

Classifying fonts-release I

In its flI'St release, the LaserWriter driver had to process only a
limited number of fonts; therefore, font classifications were neither
very extensive nor comprehensive. Nevertheless, fonts may be
added in the original release software, provided that the fonts fit
into the limited classification set space available and are
downloaded using the permanent downloading technique.

o The default class. Screen fonts without corresponding printer
fonts fall into this category. These fonts are not re
encoded.

1 The standard class of Adobe fonts. Class 1 fonts are
outlineable and re-encoded. Note that Courier, while a
standard Adobe font, does not fit in this class because it is
not outlineable in the PostScript sense.

2 Class 2 fonts are outlineable but not re-encoded. There are
no bold or italic faces for this class. The Symbol font is a
good example of a font in this class.

3 Class 3 fonts are re-encoded but not outlineable. This class
is identical to class 1 except for the outlineable property.
Courier fits into this class.

4 Class 4 fonts are both re-encoded and outlineable, as are
class 1 fonts. But there are no other bold or italic faces
available for the family. Italic is simulated by obliquing,
and bold by increasing the point size slightly.

In the flrst release, the font class is determined by the Laser Prep
header at the time it is loaded into the printer. Your application
can add new fonts in o~ of two ways. The flI'St is to download the
font to the printer prior to the header, in which the font must be
non-coordinated (see Coordinating fonts, below) and must belong
to class 1 above. Alternatively, the font can be downloaded to the
printer after the Laser Prep header, in which case it can belong to
any of the above classes,and must be pre-coordinated It is
possible to add classes, but it is a difficult process and it is not
recommended.

Classified screen fonts are matched with printer fonts by a process
called style mapPing.

3-8 LaserWriter Reference Manual (beta. 7/7/86)

Style mopping
The new LaserWriter driver (versions 3.0 and later) uses a process
called style mapping. It uses a style mapping table (part of the
'FOND' resource) to match screen and printer fonts. This table
contains the font class identification, character encoding
information, and a mechanism for obtaining the name of the
appropriate printer font That font can be a built-in printer font or
a downloaded (either permanently or temporarily) font. Figure t
shows the structure of the style mapping table. '7
.... figure t1 Style mapping table •••,

aiL Meaning
o Set if font name needs coordinating.
1 Set if Macintosh vector re-encoding scheme is required.
2 Set if font is outlineable by changing PaintType to 2.
3 Set to disallow outlining simulation by smear and whiteout.
4 Set to disallow emboldening by smear technique.
S Set if emboldening is simulated by point size increase.
6 Set to disallow obliquing for italic.

Working IMfh Fonts 3-9

Style Mapping Table

2

4

4

1

1

1

1

Font Class

Offset to Encoding Table

Reserved

Suffix index for Style Code 00

Suffix index for Style Code 01

Suffix index for Style Code 02

,..

Suffix index for Style Code 47

7
8
9

10-15

Set to disallow automatic simulation of condensed style.
Set to disallow automatic simulation of expanded style.
Set if re-encoding other than Macintosh vector is required.
Reserved

In the absence of any defmed class, the class defmition defaults to
class 0, which has default settings that indicate that the bold, italic,
condensed, and expanded styles should be derived from the plain
font Intrinsic fonts, either downloadable or printer-resident, are
assigned classes which prevent the derivations from occurring.
Thus the distinction between derived and inherent styles is
apparent Bits 10 through 15 of the class definition integer are
reserved; your application should not use them.

Encoding character sets
If the font class indicates that the font must be re-encoded, the
second and third words of the style mapping table are used as an
offset to a character set encoding table. Figure~ shows the format
of this table. 7-?- "'7 - ~
'''Figure~ Character Set Encoding Table •••

If the encoding for the font differs from the conventional Macintosh
character set, does not contain its own font encoding, or otherwise
needs to be altered, the new encoding vector is derived from this
table. If the offset in the style mapping table is empty, there are no
extra encoding requirements.

The encoding table itself contains an integer length field followed
by an entry for every character position requiring re-assignment
Each character position entry consists of a single byte character
code and a Pascal string comprising the PostScript character name
key (excluding the normal preceding slash). Note that fonts which
require this re-encoding scheme must also be flagged as requiring
coordination as well as re-encoding.

-> Note: The offset to the character set encoding table is a relative
offset from the beginning of the style mapping table, not from
the beginning of the 'FOND' family defmition record.

Specifying printer font names
Because there are so many more font weights available on the
printer than on the Macintosh, all printer font families are first

3-10 LaserWrlter Reference Manual (beta. 7/7/86)

ChQ'rQ Cot€ ';." >eI
Enc.-oding Table

Example:
Char Code Character Name

$90 a89

2

1+String Size

1+String Size

1+String Size

1+String Size

1+String Size

Number of entries (1 word)

Char Code Character Name String

Char Code Character Name String

Char Code Character Name String

•••••••••• 00000 ••• • ••••••••••011.0•••••••••••••••••••••••••••••

Char Code Character Name String

$A8 diamond

fCj,-;-IO,1

lP 3

subdivided into subsets. There may be one or more subsets per
family, including the subset that encompasses the entire family.
Each subset is given a unique font name (usually a derivative of the
font family name).

The user selects a screen font from the Macintosh font and style
menus. For each selectable screen font, each printer font family
subset contains at most a single font into which that Madntosh font
will be mapped. Subsets can vary in size and can overlap within a
family, but they can never overlap another font family nor exceed
more than one font per Macintosh font

For every font that is available" in a given style there is a non-zero
entry in the corresponding position in the table:, cThat entry is an
index that points to the style name table, from which a unique
printer font name is derived.

On the LaserWriter, many derived styles can be generated
automatically by modifying existing fonts, as determined by the
font class. Underline, shadow, and outline styles are derived this
way and are relatively easy to generate dynamically. On the other
hand, bold, italic, and bold italic styles are often not so easy to
generate. Thus these styles are usually obtained from intrinsic
fonts. Some font families have missing fonts: fonts for which there
is no supplied face and for which no derivation is required. For
missing fonts, the corresponding style name index entry in the style
mapping table is zero. If such a font is selected, the plain face is
used instead, without modification.

The style name table is a string list containing the information
necessary to produce the font name for that style. Entry number
one in the string list contains the base font name to which zero,
one, or more suffLXes, also contained in the table, may be
appended to derive the full font name.Following the base font name
are index strings which provide access to font name suffLX strings.
The string list thus contains both index lists (in the form of strings)
and suffLX strings. Figure~ shows the format of the style name
table. 1"
Figure". The Style Name Table,--}
Style Mapping Process
Style mapping occurs by initially matching the selection from the
Madntosh font menu to a 'FOND' resource which contains the
mapping table for the given printer font family subset. The selected
style is matched with a style code.

Working With Fonts 3- 11

Style Name Table

String Count

lJ=ull Base Font name excluding suffixes

Suffix index list for suffix index 2 f--

Suffix index list for suffix index 3

lSuffix index list for suffix index 4

!etc.
Full suffix '1 f4-
Full suffix #2 ~

Full suffix #3 14-
iStc.

3-12

~

The norm.a.l Macintosh style bits are as shown in table z;;.
Tablet: '
Macintosh Style Bits

aJ.t. Meaning

0 bold

1 italic

2 underline

3 outline

4 shadow

5 condense

6 extend

Style Mapping, however, omits the bit assianment for underline. to
provide the stYle code format as shown in. -t't.i\,1e. - '} -5.
TAble)..5. 9tJe. Coot.. Fo\""'1"

The bit list ir. 'f~le .,-s{""shows the numeric order of style entries in
the style mapping table; it does not represent any actual data
quantity. Because it resembles the actual Macintosh style
assignment in table 4-4. it is important to notice the differences. It
has been modified solely to optimize storage space.

For each style code there is an entry in the mapping table to provide
the offset in the style name table of an index number. The index
number points to a numbered string in the table. This first string is
itself an ordered list of index nW11benl which point to aetua..l suffIx
strings in the same string list The actual suffix strings are appended
in the given order to the base font name to produce the full font
name.

When a style must be derived. as specified by the font class, it is
derived from the font specified in the style mapping table for that
style. Thus the entry for the outlined italic style may contain the
font name for the italic style, and the outlining will be derived (if so
specifIed in the class) from the italic face. As described
above.when there is no entry (zero entry) for a given style in the
style mapping table, that style will be derived from (or replaced by)
the plain style entry in the style mapping table. (The plain style
entry, index 0 or style 0, must, therefore, never be empty or zero;
that is. the 0 style index position must always point to some name
string). It is permissible for different style entries to point to the
same font name.

LaserWrlter Reference Manual (beta. 7/7/86)

Naming fonts
The name that a user sees when he selects a font from the font menu
in an application is the name of either the 'FONT' or 'FOND'
resource. This name is used to match the font name on the printer.
When a font is classified and named properly, it is considered to be
coordinated. Afont that is not properly classified or is not properly
named (even though it may be syntactically correct to PostScript) is
said to be non-coordinated. Whether a font should be coordinated
or not depends on how it is to be downloaded to the LaserWriter.

Release I font names
In release I of the printer driver, a font designed to be downloaded
to the printer prior to the Laser Prep dictionary cannot be
downloaded after the dictionary, and vice versa. The names for
different types of fonts are also derived differently.

If a font is to be downloaded before the Laser Prep dictionary, the
font name must not exceed 30 characters in length and must not
include any style suffiXes other than "Bold", "Italic", "Oblique" or
"Roman". All such fonts will fall into class 1.

-> Note: These fonts must also be non-coordinated

Fonts that are downloaded after the Apple dictionary must first be
coordinated. A coordinated printer font name begins with a 6
character prefiX followed by the name of the font that appears in the
Macintosh font menu, with spaces and minuses removed. The
prefiX format is '-#, where the vertical bar marks the font as
being coordinated and the # is the class number of the font. Note
that the class number is an ASCII character, not a binary code. The
four hyphens are place holders for various intrinsic style attributes
of the font The flrst hyphen is replaced by the letter B if the font is
bold. The second hyphen is replaced by I if the font is italic. The
third hyphen becomes 0 for outline and the fourth becomes S for
shadow. Outline and shadow intrinsic fonts are created
automatically in release 1.

Release II and later font names
Coordinated font names in later releases are prefiXed by the 7-
character string ' . Note that although the vertical bar

Working With Fonts 3- 13

has been retained, the hyphen characters have been changed to
underscore characters (hex 5A), and the class number has been
eliminated from the font name altogether. The underscore
character positions, though still valid for B, I, 0, and 5, are
reserved for Apple use. These characters are never changed by the
application.

The name following the preftx is the name of the font as it appears in
the style mapping table. The name is the normal name for the font
on the printer, including all suffIxes. Hyphens are considered to be
separate suffixes, and spaces are not allowed. The name does not
necessarily match the name given in the Macintosh font menu, nor
does it necessarily match other font names in the same font family.
The name in the font menu is used to access the appropriate 'FOND'
resource, which contains the style mapping table, which in turn
points to the actual font name.

Downloading fonts
If the LaserWriter driver discovers a font in a document that is not
available on the LaserWriter, it attempts to download the correct
font to the printer.

Downloading with the release I driver
Release I of the printer driver does not support temporary
(automatic) downloading. An application using release I of the
driver is therefore responsibile for downloading the font to the
printer in a form that is useable by the driver as described in the
Font Names section, above. A common method for doing this is to
use PSDump to download the font permanently. The data format
for such ftles used by PSDump is straight PostScript text The
PostScript conforms to the font deftnition as decribed in the Adobe
Font Manual and PostScript Language Reference Manual. To ensure
that the font is loaded permanently, the text must be preceded by
the PostScript string ·password serverdict begin exitserver", where
password is the password number of the intended LaserWriter,
usuallyO.

3-14 LaserWriter Reference Manual (beta. 7/7/86)

Release II and Later Downloadable Fonts
Downloadable font'S for rele:ase II and later can be loaded on either
a temporary basis (automatica.l.ly), or permanently. The fonts need
not be pre-coordinated, but if they are not, they will be
coordinated from the information contained in the 'FOND'
resource supplied with the screen font. Notice that every font which
is intended for downloading must have a corresponding 'FONT and
'FOND' resource on the Macintosh.

Downloadable Fonts for All Releases
For a font to be useable both with rele2Se I and with rele:ase II or later
drivers, the font must be initially non-coordinated and must have a
font name which does not contain any suffIXeS omer than Bold,
Italic, or Oblique. Its class must be class 1 for rele:ase I and class 95
(hex $OO5F) for rele:ase II. The font must be loaded prior to the
Laser Prep dictionary for use with rele:ase Ii for rele:ase II and later, it
can be loaded permanently before or after the dictionary, or it can
be temporarily downloaded as required.

Temporary Downloading ot Fonts
Temporary (or automatic) downloading of a printer font is
available with release II and later versions of the printer driver.
When a new font is encountered in a document, the driver cache is
sc:mned for that font. If it is found, a switch is made to that font on
me printer. If it is not found, a search is made in the 'FOND'
resource for that font. If there is no 'FOND' resource, the bitmap
version of the font is created. If the 'FOND' resource is found and it
contains an entry in its style mapping table for the appropriate
style, the root directories of all on-line volumes are searched for a
file name which corresponds to that entry. If one is· found it is
downloaded; otherwise, the bitmap version is created.

The downloadable font me is a resource file whose name is derived
from the ftrst ftve characters (excluding the ftrst four characters ,
"lTC-", if present) of the full b:ase font name in the style mapping
table of the 'FOND' resource. The first five letters are followed by
me ftrst three letters of every suffIx required for that style of the font.
The base name and sufnx positions are determined by the positions
of the capital letters appearing in the font name.

Working 'Mth Fonts 3- 15

. a. This method is
required because the me name C:l.OOot exceed more than 31
characters due to restrictions in TFS.

.. Warning: The font name must never ouse generation of a file
name which is longer than 31 characters.

The format of a temporary downloadable font resource me is
described under Downloadable-Fl18 Format., below

Permanent Downloading of Fonts
As discussed above, fonts may be downloaded permanently (Le.,
until the LaserWrirer is powered down) either before or after the
Laser Prep dictionary is loaded Both methods are described
below.

Fonts L0C2ded 8«or. OlcilonClry

Fonts c:m be downloaded on a pemwlent basis by using PSDump,
if the font deftnition is preceded by the string "password setverdict
begin exU.setver". But for the font to be used by the LaserWriter
driver there must be a 'FONT and 'FOND' Macintosh resource which
points to wt font on the printer. Then when the font is
encountered in a document, the entry in the driver oche will be
noted and the 'FOND' resource will simply provide the class for the
font. A printer font and Macintosh screen font pair without a
corresponding 'FOND' resource may still be used by the print
driver, but the Macintosh menu name must agree with the printer
name (with spaces in place of hyphens), and the downloaded font
must be pre-<:oordinated Any style for such a font will be derived
as though it were a bitmap font.

If PSDump is used to permanently download fonts, the fonts must
be in PostScript text form (as opposed to the resource me form of
temporary downloadable fonts). It is possible for users or the
application to download the resource form of the font, but some
utility Wt c:m accept the resource form must be used in place of
PSDump.

3-16 LaserWrlter Reference Manual (beta. 7/7/86)

Fonts Loaded After Dictionary

Unlike in release I, downloading a font after the Laser Prep
dictionary in subsequent releases is performed exactly as
downloading a font before the dictionary. No changes to the font
are required.

Downloadable File Format
A permanent downloadable me must be in Postscript text if
PSDump is to be used for downloading. The name and font
deftnition must conform to the specifications above. This does not
preclude the development of other methods for downloading, but if
they are to remain compatible with the LaserWriter driver, the
naming conventions and 'FOND' structure must be followed.

A temporary downloadable font me is an unbundled resource of
type 'LWFN' whose creator is LWRT. The me is made up of several
resources of type 'POST'. The ill's for these resources begin with the
number 501 (decimal) and increment by one for each resource in
the file. The number of resources is not limited. Each resource
begins with a two-byte data field which contains the data type in the
first byte and binary zero in the second. The rest of the resource is
the data to be downloaded.

The possible values for the fust byte of the two byte field are 0, 1, 2,
3, 4, and 5; their meanings are shown in table t6.

o Ignore the rest of the resource (thus, a comment).

1 The data is ASCII text.

2 The data is binary and is fIrst converted to ASCII hex characters before

being sent

3 An AppleTalk end-of-me will be sent (maintaining the AppleTalk

connection.) The rest of the resource data for this value is interpreted as

ASCII text and will be sent following the AppleTalk EOF. If there is no

additional ASCII text to be sent, the rest of the resource can be empty.

4 The data fork of the current resource me is to be opened and sent as ASCII

text. (This should be done only once.)

Working With Fonts 3- 17

5 The end of the resource me; the data in the resource itself may be

empty or ASCII text.

The second byte of all the two byte fields is reserved and should
always be set to zero.

Since resource data is always loaded into memory in its entirety, it is
recommended that the resources be kept small, certainly less than
2k. It is not necessary for the data in a resource to begin and end on
any particular boundary, but text and binary data may not be mixed
in the same resource. For RMaker users it may be helpful to set type
'POST' equal to type 'GNRL' when constructing these resources.

When the font data is downloaded, no interpretation of the data is
performed and no prefiX or SuffiX data is included in the
downloading (except that non-coordinated fonts will be
coordinated following the downloading, if so specified in the font
class). The data in the file is presumed complete and self
contained. The resource should never contain the "password
serverdict begin exitserver" string. Each resource is downloaded in
sequence beginning with resource ill 501 and proceeds in
numerical order until there are no more resources available in the
me or until a data type 5 is encountered.

If a font must be coordinated by the driver after downloading (as
specified in the class) the driver will redefine the font on the printer
using the name given in the 'FOND' resource for that style, re
encode it if required, and give it a new name prefiXed with the string
'1 ' as described under Font Names, above. Thus the
name in the 'FOND' and the normal non-coordinated name for the
font must agree. The downloading process must define the non
coordinated font on the printer with the same name that the 'FOND'
specifies. It will subsequently be assigned the coordinated name by
the driver. (Adobe built-in and downloadable fonts are examples
of non-coordinated fonts that must be coordinated before the
driver can access them.)

Downloadable fonts have a great potential for creating disaster.
They are essentially in control of the of the entire printed
document. The LaserWriter driver tries to shield itself from misuse,
but cannot cover every possible problem. For example, the driver
cannot determine whether or not an error has occurred as a result of
the download and simply assumes all is well. However, if an error
does occur, it will be reported in the normal status window on the
Macintosh screen. Any additional side effects that the font
definition causes will be preserved over the rest of the document, so
such fonts must be used with extreme caution.

3·18 LaserWriter Reference Manual (beta. 7/7/86)

Unfortunately, dynamic unloading of fonts (removing a specific
font at will) is not easily achieved in PostScript except on a UFO
basis-the last loaded is the fIrst unloaded, Because of this
limitation dynamic unloading is not currently supported at all by
the LaserWriter driver. Fonts downloaded permanently can be
unloaded only by powering off the printer.

Downloading fonts from non-Macintosh
hosts
Applications running on non-Macintosh hosts can download fonts
to the LaserWriter by issuing the correct PostScript code. The
method for doing so is outlined below. In this environment
responsibility for managing fonts on the LaserWriter lies solely with
the application.

Downloading fonts permanently
You can download fonts permanently by sending the PostScript
font me as a separate job. You should send the following line of
PostScript code immediately prior to the font me:

serverdict begin 0 exitserver

The 0 in this line is the default password for the printer. Your
application should be prepared to handle printers with other
passwords.

You should send the LaserWriter a control-D character sequence
immediately after the font me, as an end-of-job indicator. The font
will then remain in the printer until power-down.

Downloading fonts temporarily
You can download a font temporarily by simply sending it to the
printer with the document file. The font code must appear in the
document file before the font is required.

Working Vv1th Fonts 3- 19

Accessing downloaded fonts
Once a font has been downloaded, it can be accessed through
PostScript just as with any other LaserWriter font Your application
should be prepared to recognize a variety of fonts and to ensure that
they are available to the user as required.

Checking for downloaded fonts
If your application does not maintain a current font list, it should
check before sending each font to see .if the font is already available
in the printer. The following PostScript code will initiate a "yes"
response from the LaserWriter if the font is in the printer, or a "no"
response if it is not (TIle word fontname should be replaced with th
ename of the font you are checking for.)

/scratch 100 string def

FontDirectory /fontname

%create a scratch string

%search FontDirectory for
fontname

{ (no

((yes)) }

systemdict /filenameforall known

%if it's there put (yes) on the
stack

%else put (no) on the stack and

%check for a file system at
printer

{(fonts/fontname) {pop pop (yes)} scratch%if a file system is
present, search

filenameforall} if

ifelse

print flush

%for fontname; if found, replace

%top bf stack with (yes)

%pop stack to buffer and flush to
host

You can get a list of all fonts in the printer with the following
PostScript code:

/scratch 100 string def

FontDirectory {pop == } forall flush

systemdict /filenameforall known

((fonts/*) {dup length 5 sub 5 exch

3-20 LaserWrlter Reference Manual (beta. 7/7/86)

%create a scratch string

%send names in FontDirectory to
host

%check for file system at printer

getinterval a} scratch filenameforall %if file system present, send

flush} if %names of fonts present to host

This will cause the list of fonts to be transmitted back to the host as
ASCrr.•text. one font name per line.

DeMNmining available room for fonts
A limited number of fonts can be resident~tn the LaserWriter at a
time. Before downloading a font, your aplication should check to
be sure that there is room in RAM for it The following PostScript
code wm.retum the number:-ei'bytes available in the LaserWriter
RAM:

vrnstatus exch sub = flush pop

If the number returned is greater than the number of bytes in the
font me, ther should be enough room to download the font.

Making room for more fonts
Currently there is only one way to recover memory in the printer.
This method involves using the PostScript command save to store
the state of the virtual memory before a font is downloaded, and the
command restore to return the virtual memory to its previous
state after the font has been used. You may want to do this with each
font, especially if the application allows a large number of fonts to
be in use with a single document.

Warning Use the Postscnpt commands save and restore with caution:
restore can erase some deflnltions.

Working 'Mth Fonts 3-21

Chapter 4

Working in the printing
environment

The LaserWriter is connected to the outside world by two serial
ports: an AppleTalk RS422 connector and an RS232 connector.
The communication channel established through these ports (over
which the LaserWriter communicates with the host) is bidirectional.
The LaserWriter can send as well as receive data. Communication
over this channel is logically asynchronous. In other words, the
LaserWriter is already to receive data, even while it is sendingj it
expects the host to do the same.

How the LaserWriter processes the information it receives over the
channel is determined by its current operating mode:

II Batch mode is the LaserWriters normal operating mode. In
batch mode, a job consists of executing a single me containing a
PostScript program. When the end-of-me indicator is received,
the job is finished. The only data that the LaserWriter transmits
to the host is that generated specifically by the PostScript print
operator or by an error. If you are writing an application that
prints on the LaserWriter, it will be working in this mode.

III In interactive mode the user can communicate directly to the
LaserWriter from a Macintosh running MacTerminaFM. The
LaserWriter assumes the role of the powerful computer that it
really is, and while still serving as a printer. This mode is useful
for experimenting with PostScript and for using the LaserWriter
as a general-purpose computer. If you need to test parts of your
application, this mode can be handy.

III In emulation mode the LaserWriter is programmed to emulate
other printers. The LaserWriter has a built-in emulator for the
Diablo 630 daisywheel printer, which is widely supported by
personal computer applications. If your application expects to
print on a printer compatible with the Diablo 630 API interface,
this mode will enable the LaserWriter to accept the control codes
the application generates.

The LaserWriter has a four-position mode switch on the back.
Together with some PostScript persistent parameters (see the
PostScript Language Reference Manua!), this switch controls the
mode of operation and the communication protocol. The switch
positions are listed in table 4-1.

4-2 LaserWriter Reference Manual - Beta (7/7/86)

Table 4·1
Operational modes

SWitch sottlng Modo effected

AppleTalk

Special

9600

1200

PostScript batch mode operation: AppleTalk communication.

Diablo 630 emulation mode: serial communication using the previously set
parameters. (The default parameters are 9600 baud, parity ignored.)

PostScript batch mode operation: serial (RS-232/-422) communication using the
current communication parameters. (The default parameters are 9600 baud, parity
ignored.)

Note: Since these parameters can be reset under software control, the "9600" switch
position may select a baud rate other than 9600.

PostScript batch mode operation: serial communication via either of the two
connectors, at 1200 baud, with parity ignored.

Changing the switch setting has an immediate effect: if a print job is
in progress, it is terminated.

Using AppleTolk
AppleTalk is the network architecture that governs communication
between LaserWriters and Macintoshes. The AppleTalk Printer
Access Protocol (pAP) is a session-level protocol that allows a
workstation on the AppleTalk network (typically a Macintosh) to
communicate (through its PAP client) with the LaserWriter (through
its PAP client). PAP is a connection-oriented protocol: in
addition to managing the transfer of data, it performs the initiation,
maintenance, and termination of logical connections. PAP uses
other lower-level Appletalk protocols, notably the AppleTalk
Transaction Protocol (ATP) and the Name Binding Protocol (NBP)
to properly perform its duties. The Macintosh Printing Manager
uses PAP in a way that's transparent to the application. You will
only need to call PAP directly in order to perform supervisory or
non-standard functions on the network.

+> Note: The term workstation is used rather than host to refer to
the Macintosh in the context of the network, to avoid a host of
misleading statements.

To use the information in this chapter you should be familiar with
the AppleTalk protocols, as described in the following documents:

Worldng In the Printing Environment 4-3

II Inside AppleTalk (for introductory and background
information) .

II The uAppleTalk Manager" chapter of Inside Macintosh (for the
Macintosh interface to AppleTalk).

II The uAppleTalk Developer's Notes for the lie" (for the Apple II
interface to AppleTalk).

•:- Note: An Apple I I equipped with an AppleTalk card can also
use AppleTalk'

Connecting a laserWriter to AppleTalk
Connecting a LaserWriter to an AppleTalk network requires an
AppleTalk connector box with a DB-9 connector. A connector box
with a 25-pin plug won't work, even though the LaserWriter does
have a 25-pin socket

Caution Before you connect a LaserWriter to an AppleTalk network, nrst turn
off the LaserWriter and set the four-position mode switch to
uAppleTalk". Never operate a LaserWriter connected to AppleTalk
with the mode switch set to any other position-doing so may leave
the LaserWriter in an inoperable state or even bring down the entire
network.

A print job via AppleTalk consists of four phases-initializing the
LaserWriter's PAP client, opening a connection between a
workstation and the LaserWriter, transferring data, and closing the
connection. Figure ~-1 shows the typical job cycle.

i

InitialiZing the printer node
When the LaserWriter nrst starts up and completes its internal
initialization, it issues an SLInit call to its PAP, indicating that the
printer is ready to accept print jobs from workstations. Just after the
SLInit call, the LaserWriter's PAP client makes a GetNextJob
call to prepare the LaserWriter to accept connection requests over
the AppleTalk network.

Opening an AppleTalk Connection
A connection is a logical relationship between a PAP code entity
(called a client) in the workstation and another in the LaserWriter,

4-4 LaserWriter Reference Manual - Beta (7/7/86)

INITIALIZE PRINTER
Printer Issues SUnit to Its PAP

Printer PAP Issues GetNextJob

CLOSE CONNECTION
Macintosh PAP sends EOF
LaserWrlter PAP sends EOF

Macintosh PAP sends PAPClose

OPEN CONNECTION
Macintosh PAP Issues PAPOpen

DATA TRANSFER
Macintosh and/or LaserWrtter
Issue PAPRead and PAPWrlte

(f "c, if - ttl]
'---~

To open a connection, a PAP client in a workstation issues a
PAPOpen call (see the PAPOpen section, below), which initiates a
connection-establishment dialogue with the LaserWriter.

When the LaserWriter receives and accepts the request, it executes a
job using that connection as its standard input (only one job is
executed per connection). At any given time, the LaserWriter has at
most one open connection-while it's busy with that connection, it
refuses any further connection requests. The LaserWriter PAP
queues connection requests from the hosts in the order received :
when a job is completed, the next request processed is the one that
has waited the longest .

Error messages or output produced by the PostScript print operator
are sent back to the workstation over the same connection used for
data. (The print operator is used to transfer messages to the
host-it does not cause the LaserWriter to print on the page.) Data
is carried transparently in both directions-no character codes are
reserved for AppleTalk communication functions.

Data Transfer
Once a connection is opened, PAP's data transfer phase begins. In
this phase, PAP has two functions: to transfer data over the
connection, and to detect and terminate half-open connections.

PAP uses a "read-driven" data transfer model; before data can be
sent, the other end of the connection must send a transaction
request, thereby indicating that itls ready to read data. The PAP
client at either end can request to receive data from the other end
by issuing a PAPRead call The other end can then write data
through PAPwrite calls.

Closing the AppleTalk Connection
The AppleTalk protocols define an end-of-file indication. When
the PostScript interpreter encounters that end-of-file indication,
the LaserWriter sends a matching end-of-file indication back to the
host, terminates the current job, and, if possible, starts a new one.

Typically, after the PAP client in the host has finished sending data
to the LaserWriter and has received an EOF in return, it issues a
PAPClose call to close the connection (see the PAPClose section,
below).

Wor1<1ng in the Printing Environment 4-5

i
Table ~
PAP Call Summary

FUNCTION SLInit

FUNCTION GetNextJob

FUNCTION PAPOpen

FUNCTION PAPClose

FUNCTION PAPRead

FUNCTION PAPWrite

FUNCTION PAPStatus

FUNCTION PAPRegName

FUNCTION PAPRemName

FUNCTION PAPUnload:

Using PAP calls
Unless you are writing a remote AppleTalk-conneeted spooler, it is
unlikely that you will use the PAP calls. They are provided here for
those who need them. You should experiment with these calls only
if you are the only user on the AppleTalk network: disrupting the
normal packet exchange can terminate print jobs and even bring
down the entire network. Table,-::t lists the pascal form for each
PAP call together with the parameters the client must pass. These
calls are then described in detail.

(PrinterName: Ptr; FlowQuantum: INTEGER): INTEGER;

(VAR RefNum, CompState: INTEGER): INTEGER;

(VAR RefNum: INTEGER; PrinterName: Ptr; FlowQuantum:
INTEGER; StatusBuff: Ptr; VAR CompState: INTEGER):
INTEGER;

(RefNum: INTEGER): INTEGER;

(RefNum: INTEGER; ReadBuff: Ptr; VAR DataSize:
INTEGER; VAR EOF: INTEGER; VAR CompState: INTEGER
) : INTEGER;

(RefNum: INTEGER; DataBuff: Ptr; DataSize: INTEGER;
EOF: INTEGER; VAR CompState: INTEGER) : INTEGER;

(PrinterName: Ptr; StatusBuff: Ptr): INTEGER;

(PrinterName: Ptr): INTEGER;

(PrinterName: Ptr): INTEGER;

INTEGER

SLlnit

When the LaserWriter is first started, it goes through its internal
initialization and then issues an SLInit call to its PAP client.
SLInit is used only bythe LaserWriter. Its form is as follows:

4-6 LaserWriter Reference Manual - Beta (7/7/86)

FUNCTION SLInit (PrinterName: Ptr; FlowQuantum: INTEGER): INTEGER;

where:

PrinterName

FlowQuantum

is the name of the LaserWriter (see Naming the LaserWriter, below);

is an integer specifying the flow quantum equal to the number of 512 byte
buffers (e.g., if FlowQuantum = Nt then the flow quantum = 512·N bytes; the
LaserWriter uses N = 8).

This call causes the PAP to do the following:

1. Open a service listener (SL) socket in the LaserWriter (by calling
ATP to open a responding socket)

2. Register the LaserWriters name(s) in the LaserWriter's names
table and bind them to the SL socket (by calling NBP).

3. Issue an ATPGetRequest call on this socket (so that the
LaserWriter can respond to PAPOpen or PAPStatus request
packets).

SLInit is executed synchronously.

As mentioned above, PAP uses both NBP and ATP. The use of NBP
is strictly for the purpose of registering the LaserWriter's 5L socket
and for determining the address of a LaserWriter's 5L socket when
given its name.

GetNextJob

Just after the SLInit call completes, the PAP client in the
LaserWriter makes a GetNextJob call to indicate that the
LaserWriter is ready to accept jobs. GetNextJob is used only by
the LaserWriter, not by the host. Its form is as follows:

FUNCTION GetNextJob (VAR RefNum, CornpState: INTEGER): INTEGER;

where:

RefNum is a variable in which a reference number is returned when a connection has
been opened.

This call puts the LaserWriter in the IDLE state, ready to accept
connection requests. GetNextJob is also called after a printing
job has been completed and the LaserWriter is again ready to
accept another connection.

Working In the Prlntlng Environment 4-7

PAPOpen
1bis call is issued by a PAP client in a host to open a connection to a
specified LaserWriter. The form of this call is as follows:

FUNCTION PAPOpen (VAR Re£Num: INTEGER; PrinterName: Ptr; FlowQuantum:
INTEGER; StatusBu££: Ptr; VAR CompState: INTEGER): INTEGER;

where:

RefNum

PrinterName

FlowQuantum

StatusBuff

CompState

is the connection reference number returned after the connection has been
opened.

is a pointer to the LaserWriters entity name. An entity name consists of: the
object name length byte, the object name, the type length byte, the type, the
zone length byte and the zone. (For more information, see "Calling the
AppleTalk Manager from Assembly Language" in the IIAppleTalk Manager"
chapter of Inside MacIntosh)

is an integer spedfying the flow quantum equal to the number of 512 byte
buffers (e.g. if FlowQuantum '" N, then the flow quantum'" 512·N bytes; the
LaserWriter uses N '" 8);

is a pointer to the buffer structure (given below) in which the printer status is
returned to the caller during the opening process;

is an integer that can be monitored by the caller for call completion and
error reporting. While the call is executing, this variable will have a value
greater than zero. When the call has completed, it will assume either a value
of zero (no error) or a negative value which is an error code.

PAPOpen causes the workstation's PAP code to do the following:

l1li Obtain the complete internet address of the LaserWriter's 5L
socket by issuing an NBP Lookup call.

l1li Open an ATP responding socket Rw

l1li Generate an 8-bit connection identifier (ConnID)

l1li Send a transaction request (TReq) to the LaserWriter's 5L socket.
1bis TReq has a PAP-type of OpenConn (see "PAP Packet
Formats" in this chapter). 1bis packet contains the ConnID, the
address of socket Rw, the flow quantum for the workstation, and a
wait time used by the LaserWriter for arbitration.

All packets related to a connection (sent by either end) must
contain the correct connection identifier.

4-8 LaserWriter Reference Manual - Beta (7/7/86)

Since PAP uses ATP to transfer data, each of the two communicating
PAP clients must discover the address of the ATP responding socket
of the other connection end. Also, the amount of data transferred
in an ATP transaction cannot exceed the size of the available
receiving buffers at the end that issues the read requests. This
maximum size (called the flow quantum) is sent by each end to the
other when the connection is opened.

The structure of the StatusRec pointed to by StatusBuff is
given by the Pascal type declaration:

TYPE StatusRec = PACKED RECORD
SystemStuff: LongInt;
StatusStr: STR255
END;

{PAP internal use}
(status s·tring}

The caller must clear StatusStr before making the call. While the
call is being processed, the caller can monitor StatusSt r, in
which PAP will continuously insert the status information being
returned from the LaserWriter in PAP OpenConnReply
packets.(see PAP packet formars, below). The possible result codes
are 0, for connection accepted, and $FFFF, for printer busy. The
PAP client in the host might wish to display this string to provide
appropriate feedback to the user.

PAPOpen is executed asynchronously. As soon as control returns to
the caller (if the function's returned value equals NoErr) then the
caller can monitor for call completion by examining the variable
CompState.

Processing OpenConn requests: When the LaserWriter receives
an ATP TReq of PAP-type OpenConn, its PAP client does the
following:

If the LaserWriter is BUSY (processing a job), then it responds to
the OpenConn with an ATP response of PAP-type OpenConnReply
(2) indicating a server busy state ($FFFF). (There is also a separate
status request packet that yields the same information.) The status
response packet travels over a path that's logically separate from the
one through which the server is receiving irs current job.

At the workstation end, if an OpenConnReply of BUSY ($FFFF) is
received, then the workstation's PAP waits approximately two
seconds and issues another connection request Each time it
repears this request, it updates its Wait Time (the o.ment value of
this wait time is sent with each openConn). Each of these
OpenConn requests is issued with a retry count of 5 and retry interval
of about 2 seconds. If the LaserWr!ter is inoperative, or in its 6-

Worl<Jng In the Printing Environment 4-9

second imaging loop, it won't be able to respond; then the
transaction will terminate without receiving a reply at all. The
workstation's PAP updates the wait time and tries again.

If the LaserWriter is IDLE, then it reacts to the OpenConn by going
into an arbitration (ARB) state for approximately two seconds. In
the ARB state, the PAP receives all incoming OpenConn requests
and selects the one from the workstation that has waited the longest.
The time, in seconds, that a workstation has been trying to open a
connection (the WaitTime) is sent with the OpenConn. After
becoming IDLE, the LaserWriter loads the WaitTime of the first
OpenConn that it receives into a variable called OldestReq. It
then compares the WaitTime of each subsequent OpenConn
request with OldestReq. If the LaserWriter receives a request that
has been waiting longer than the pending request, it makes that
request the pending request, and saves its WaitT irne in
OldestReq. Otherwise, it responds to the new request with an
OpenConnReply, indicating BUSY ($FFFF). At the end of the ARB
interval, PAP opens an ATP responding socket Rs, and sends an
ATP tesponse of PAP-type OpenConnReply indicating
"Connection accepted" (0) to the selected request. This carries the
ConnID received in the OpenConn, the address of socket Rs and the
flow quantum of the LaserWriter end (set by the SLInit call-it is
currently 8 for the LaserWriter). The connection is then open; the
workstation's job is processed, and the LaserWriter is in the BUSY
state.

PAPRead

This call is issued by the PAP client at either end of the channel to
read data from the other end over the connection specified by the
reference number.

FUNCTION PAPRead (RefNurn: INTEGER; ReadBuff: Ptr; VAR DataSize: INTEGER; VAR
EOF: INTEGER; VAR CornpState: INTEGER) : INTEGER;

where:

RefNum

ReadBuff

DataSize

is the connection reference number (see PAPOpen)j

is a pointer to the buffer into which the data is to be readj

is an integer in which the number of bytes of data read into the buffer is
returned when the call completesj

4-10 LaserWriter Reference Manual - Beta (7/7/86)

EOF

CompState

is an integer in which the end-of-file indication received from the other end
is returned to the caller (a non-zero value indicates an end of file; otherwise a
value of 0 is returned);

is an integer that can be monitored by the caller for call completion and
error reporting (see PAPOpen).

PAPRead does the following:

1. Provides PAP with a read buffer into which the data will be read.
(Note that PAP assumes that the buffer to which ReadBuff points
is no smaller than this end's flow quantum specified in the
PAPOpen call.)

2. CalIs ATP to send an ATP transaction request with PAP-type
SendData and an ATP bitmap reflecting the size of the call's
read buffer. 'This transaction has a retry count of "infinite" (255)
and a retry interval of 15 seconds. To prevent duplicate delivery
of data to PAP's clients, these ATP transactions use ATP's exactly
once mode.

The receipt of an ATP TReq packet with PAP-type SendData means
that a PAPRead is pending at the other end. 'This "send credit" is
remembered by the PAP code, and used to service any pending or
future PAPWrite calls issued by its client.

PAPRead is executed asynchronously. As soon as control returns to
the caller (if the function's returned value equals NoErr) then the
caller can monitor for call completion by examining the variable
CornpState .

When the call has completed without error, then the variable
DataSize is equal to the number of bytes of data received into the
buffer. (If the call completes with an error, the value of this variable
is unpredictable.)

PAPWrite

'This call is issued by the PAP client to write data to the other end of
the connection specified by the reference number.

FUNCTION PAPWrite (RefNurn: INTEGER; DataBuff: Ptr; DataSize: INTEGER; EOF:
INTEGER; VAR CornpState: INTEGER) :INTEGERi

where:

Wor1<lng In the Printing Environment 4- 11

DataBuff

DataSize

EOF

is a pointer to the data to be written;

is equal to the number of bytes of data to be written; if the data size exceeds
the flow quantum of the other end (specified in the PAPOpen call) PAPwrite
will return with an error;

is the end-of-me indication to be sent to the other end (a non-zero value
indicates end of file; otherwise a value of zero should be sent).

When a PAP client (at either end) issues a PAPwrite call, PAP
examines its internal data structures to see if it has received a "send
credit", If it has, then it takes the data from the PAPWrite and
sends it in ATP Response packets with PAP-type Data. The EOM bit
is set in the last of these ATP response packets. If no send credit has
been received, then PAP queues the PAPwrite call and awaits a
SendData from the other end

When a PAP client issues the last PAPWrite call for a job, it must
send an End-of-File indication with that call's data. The EOF
indication is delivered to the PAP client at the other end, For this
purpose the client can issue a PAPWrite call with no data; in this
case, just an EOF indication is conveyed to the client at the other
end.

PAPWrite is executed asynchronously, As soon as control returns
to the caller (if the function's returned value equals NoErr) then the
caller can monitor for call completion by examining CompState,

PAPClose

When the PAP client at either end issues a PAPClose call, PAP
closes the connection. The form of this call is as follows:

FUNCTION PAPClose (RefNum: INTEGER): --INTEGER;

PAPClose closes the connection specified by RefNum. It cancels
any pending PAPRead and PAPWrite calls for the indicated
connection.

PAPClose is executed synchronously. It sends an ATP transaction
request of PAP-type CloseConn to the other end, The end
receiving the CloseConn should immediately send back, as a
courtesy, an ATP transaction response of PAP-type
CloseConnReply. To close a connection's end, it is important to
cancel any pending ATP transactions issued by that end, including

4-12 LaserWriter Reference Manual - Beta (7/7/86)

the Tickle transaction. Note that the end receiving the
CloseConn might not cancel these pending transactions
immediately, as it will probably be at interrupt level.

At the LaserWriter end, receipt of the CloseConn causes the
connection to be closed, but the LaserWriter will continue in the
BUSY state until it actually fInishes processing the data for the job.
When it fInishes, the PAP client in the LaserWriter issues a
GetNextJob call. This call puts the LaserWriter back in the IDLE
state, ready to accept further connection requests.

PAPUnload

PAPUnload completely closes down PAP.

FUNCTION PAPUnload: INTEGER

This call can be used at either end to cause the PAP data structures to
be unloaded and currently open connection(s) to be closed. It
could be used on the LaserWriter, for instance, if the mode switch is
moved from AppleTalk to one of the serial communication settings.
In the workstation, the client would use this before exiting to the
Finder.

PAPStatus

The PAP client in the workstation can issue a PAPStatu5 call to Hnd
out the status of the LaserWriter at any time-even if the PAP client
hasn't opened a connection to the LaserWriter.

FUNCTION PAPStatus (PrinterName: Ptr; StatusBuff: Ptr): INTEGER;

where:

PrinterName

StatusBuff

is a pointer to the entity name (see PAPOpen) of the LaserWriter whose status
is to be determined;

points to a structure of type StatusRec (see PAPOpen).

PAPStatus is executed synchronously, and upon completion
returns a string with the status message sent by the LaserWriter.

Working in the Printing Environment 4- 13

PAPRegName

This call is used by the LaserWriter only. It registers a name (as the
entity name for the print server) on the LaserWriter's listening
socket.

FUNCTION PAPRegName (PrinterName: Ptr): INTEGER;

where:

PrinterName points to a structure of type EntityName.

PAPRemName

This call is used by the LaserWriter only. It deregisters a name from
the LaserWriter's listening socket.

FUNCTION PAPRemName (PrinterName: Ptr): INTEGER;

Naming a LaserWriter

A LaserWriter is identified by a three-part name constructed
according to the Name Binding Protocol. The first (or object) part
(the printets individual name) is initially "LaserWriter" but may be
set to any other value by means of PostScript's setprintername
operator. The second (or type) part is always "LaserWriter", and
the third (or zone) part is unspecified You can connect more than
one LaserWriter to the same AppleTalk network-if you add a
LaserWriter with the same name as an existing one, it will
automatically choose a new name ("LaserWriterl", "LaserWriterZ",
etc.). The PAP client in the LaserWriter can use the calls
PAPRegName and PAPRemName to register and remove
(deregister), respectively, a LaserWriter's name.

PAP Packet Formats
Packets sent by ATP in response to PAP calls include a PAP header.
This is built using the user bytes of the ATP header, and in some
cases by sending four or more bytes of PAP header in the data part
of the ATP packet In all cases, the first of the ATP user bytes is the
ConnID, and the second the PAP-type of the packet:

4-14 LaserWriter Reference Manual - Beta (7/7/86)

The permissible PAP-type field v~ues are:

1 OpenConn

2 OpenConnReply

3 SendData

4 Data

5 Tickle

6 CloseConn

7 CloseConnReply

8 SendStatus

9 StatusReply

For data packets, the third ATP user byte is the EOF indication.
Figure \2:rhOWS the PAP header fonnat for different PAP packers.

Detecting Half-open Connections
A half-open connection exisrs when one of the connection ends
terminates the connection without informing the other end. Half
open connections must be detected and closed to ensure the
integrity of the network.

For this purpose, PAP maintains a connection timeout of
approximately two minutes at each end. This timer is started as
soon as the connection is opened. Whenever a packet of any sort is
reCeived from the other end of the connection, the timer is reset. If
the timer expires, the connection is tom down-it's assumed that
the other end has "died" or closed irs connection.

For this mechanism to work properly, PAP exchanges control
packets to signal that the connection ends are alive, even though no
data is being exchanged on the connection. This process is called
tickling and the control packets are called tickling packets. As soon
as a connection is opened, each end starts an ATP transaction of
PAP-type Tickle. This Tickle transaction has a retry count of
infinity (ATP uses a value of 255 to signify inflnite retries), and a
retry interval of half the connection timeout. Tickle packets are
sent to the other end's ATP responding socket (Rs or Rw). The
receiver of a Tickle packet must reset its connection timer but
must not send a transaction response. Each end cancels Tickle
transactions when the connection is closed.

Wot1<1ng In the Prtn1ing Environment 4- 15

~bits1 OpenConn OpenConnReply Data Slatus
(TRaq) (TResp) (TResp) (TResp)

T ConnlD COnnlD ConnlD ConnID~O ~....

PAPType OpenConn - .. OpenConnReply .. Data - '" Status~
ATP
User
Bytes ""-0 0 EOF 0-

o

'.... ATP Responding _ ATP Responding --- data bytes - <unused> -
Sid Number Skt Number

ATP '~'h Flow quantum _._.. Flow quantum _ data bytes · on <unused> ..

Data +-----10

1----.+ 0+- Wait TIme---- Result---- data bytes - <unused> ,~

I
~4!-------- Status---- data bytes _ Status .-

String Siring

I

..............._1

SendData
(TReq)

SendStatus

(TReq)

CloseConnReply

(TResp)

CloseConn

(TRaq)

Tickle

(TReq)

o

r-a bits1Tt----_co_n_nl_D......,f ConnlO - ConnlO--- ConnlO ---- 0 --- ConnIO·-

PAPType 4 TICkle CloseConn ... '" CloseConnReply SendStatus SendDala
ATP
User
Bytes1·t--0---l

(·~c •... '"':" l',o<'tJer .-'.'., I

In interactive mode, a job consisrs of a dialog in which you issue a
PostScript corrunand and the LaserWriter generates a response and
promprs for the next command. This is useful for learning about
PostScript and testing corrunands on the LaserWriter.

Accessing the LaserWriter directly
You can connect a Macintosh running MacTerminal directly to the
port on the back of the LaserWriter. You can also connect an ASCII
terminal or another computer running terminal emulation
software. This approach enables you to access the LaserWriter
without having to go through several levels of software. You can do
your programming either in interactive mode or in batch mode. In
interactive mode, you can hold a dialog with the LaserWriter,
instructing it to execute PostScript code that you send to it This can
be a convenient way to test pieces of your PostScript programs. In
batch mode, you send an entire me at a time for the LaserWriter to
execute.

You connect a Macintosh (or an Apple II running Access II> to the
LaserWriter's 9-pin connector using an Apple Modem cable or
ImageWriter cable. (These cables must have the 9-pin connector;
the 8-pin connector will not work.) You can also connect any
terminal (or computer running terminal emulation software) with a
standard RS232C interface directly to the LaserWriter, usually via
the 25-pin connector. When making this connection, you generally
need to use a "null modem" or "modem eliminator" device that
reverses the Transmit Data and Receive Data signals. (See
Appendix A for serial interface signals.)

Working interactively
There are two ways to put the LaserWriter into interactive mode.
The first is to select one of the batch mode switch positions (1200 or
9600), make sure the attached terminal is set to the correct baud rate
and parity, and invoke the PostScript procedure executive (type
"executive" followed by return or new-line). The other way is to
redefine the meaning of the ·Special" switch position (by changing
some PostScript parameters in the LaserWriter's RAM) so that
selecting the Special setting invokes interactive mode instead of
emulation mode.

4-16 LaserWriter Reference Manual - Beta (7/7/86)

In interactive mode, the state of PostScript's virtual memory persists
until the job is ended by your explicit request While you're typing,
the LaserWriter echoes the characters you type back to your
terminal (so you can see them). You can use the following special
characters for editing while you type:

III Backspace (Control-H) erases one character

III Delete (Rubout) same as backspace.

III Control-U Erases the current line.

III Control-R Re-displays the current line.

III Control-C Aborts the entire statement and starts over.

Interactive mode continues until you type Control-D (the serial
end-of-me character), execute a PostScript quit command, or
change the mode switch setting.

.,. Note: On a Macintosh the Command key is the equivalent of
the control key on other computers.

Below a short series of exercises is presented for interacting with the
PostScript interpreter directly, using MacTerminal as an ASCII
terminal interface. Although this example uses a Macintosh
running MacTerminal, it applies, with slight modifications, to any
ASCII terminal or computer running terminal emulation software.

1. Start out with the printer OFF, with nothing attached to any of the
connector ports, and with the mode switch on the back of the
Laserwriter in the1200 baud position.

2. Cable the Macintosh to the LaserWriter using either a 9-pin to 9
pin cable or a 9-pin to 25-pin cable (a standard IrnageWriter
cable will work). Connect one end of the cable to the
appropriate port on the printer (9- or 25-pin) and the other end
to the Macintosh's 9-pin MODEM port

3. Turn lhe printer ON. Several things will happen. First, the green
light will blink. This is the printers normal warm-up indicator.
Next, the yellow light will blink. This is the printers signal that
data is being processed. In this case the printer is processing the
start-up page. Within two minutes the test page should be
printed.

4. Start up a disk with MacTerminal on it For these examples you
should also have MacWrite handy.

5. Check to see that the following settings are correct in the
"Settings· menu:

RectoFooter 17

Terminal: VT100; ANSI; Underline; U.S.; 80
column; On-wne; Auto Repeat; Auto
Wraparound

Compatibility: Baud Rate OR 1200; 8 bits, Parity .. none;
Handshake .. none; connection .. another
computer; connection port os modem

File Transfer: Transfer Method os text

6. Now press Command-To ('The Command key is the one
immediately to the left of the space bar.) This causes printer
status to be displayed on the screen. It should look something
like this:

%% [status: waiting; source serial 9] %%

7. Press Command-D (this will stabilize the printer). If you now
press Command-T again you should get

%%[status: idle]%%

8. At this point you're ready to 'talk' to PostScript To enter
interactive PostScript mode, type the word executive followed
by a carriage retum (Since the LaserWriter is still in batch
mode, the characters you type aren't echoed back to you.).

9. The following should appear:
PostScript (tm) version 23.0
Copyright (c) 1984 Adobe Systems Incorporated.
PS>

PS> is the PostScript prompt This means that you're now
'talking' directly to the PostScript interpreter. Each time the
LaserWriter displays the ·PS>>> prompt, it is waiting for you to
type in a PostScript statement followed by return or new-line
character. It then executes that statement and displays another
·PS>>> prompt

10. Test to see if the connection is working by typing showpage and
pressing return. This should eject a blank piece of paper.

11. Now try printing something simple. In response to the PS>
prompt, type the following commands, following each with a
carriage return.

/Times-BoldItalic findfont
72 scalefont setfont
100 100 moveto
30 rotate
(Put your name here) show
showpage

Note that you don't get a prompt right away after the show
statement. This is because the Postscript interpreter is busy
creating a scaled and rotated font.

4-18 LaserWrlter Reference Manual· Beta (7/7/86)

This exercise should have created a page with your name printed at,
an angle.

Working in batch mode
To enter batch mode, type Command-D. Batch mode lets you
stream many lines of PostScript to the printer at once. (This can be
done in interactive mode as well.) MacTerminal echoes all lines of
text back to the screen in Interactive mode. In batch mode, the file
is simply sent to the printer and executed To test out this mode
follow these steps:

1. Create a PostScript file using MacWrite or another text editor.
Make sure you save the me using the SAVE AS command and
selecting the TEXT (ASCII) format for saving the file.

22 scale
rrimes-BoldItalic find font 27 scalefont setfont
frays
{O 1.5 179
{gsave
rotate
o 0 moveto 108 0 lineto
stroke
grestore
} for
} def
125 200 translate
.25 setlinewidth
newpath
o Omoveto
(StarLines) true
charpath clip
newpath
54 -15 translate
rays
showpage

2. Write the above text (in TEXT format) to your disk as "PSTEST".

RectoFooter 19

3. Go back to MacTerminal (make sure your settings are correct, as
given in step 5 of the previous example). Select "Send File" from
the File menu, and then open the PSTEST me you just created.
1hi.s procedure should send the entire me to the printer. If you
are still in interactive mode you will see the ASCII playback on the
screen, if you entered Control-D (to return to batch mode), you
will not This me may take a little while to execute, but it's worth
the wait In about two or three minutes the page should print

4. You can now experiment with the switch settings. Tum the
printer off and switch it to 9600 baud Tum it back on and set the
communication settings in MacTerminal to 9600 and try these
exercises again.

-> Note: Normal Macintosh applications that are supported by
the LaserWriter Print Manager use the AppleTalk connector.
This should not be used with any other communication link to
the printer (don't try to hook up AppleTalk and RS232 at the
same time). The AppleTalk cable connects to the 9-pin port on
the printer and the PRINTER port on the back of the Mac. For
further information, see Appendix A.

Using the Diablo 630 emulator
In Diablo 630 emulation mode, the LaserWriter interprets
incoming data as text and Diablo 630 control codes rather than as a
PostScript program. This capability is intended for printing simple
text files in this popular format, primarily output from software
packages that don't support PostScript.

Invoking the Diablo emulator
To invoke the Diablo emulator, set the server mode switch to the
·Special" position and connect one of the LaserWriter's serial ports
to the host's RS232C interface. Text to be printed can then be sent
at 9600 baud with any parity.

Most of the information about serial communication in Appendix: A
applies for Diablo emulation. However, different meanings are
given to control characters-all characters are treated according to
the Diablo 630 protocol as shownin~The LaserWriter still
sends XON and XOFF characters to control the/flow of data from the
host.

Ft~CA(e- If -3

4-20 LaserWriter Reference Manual - Beta (7/7/86)

Margins de Formatting
Set Top Page Margin (at current position), ESC T
Set tAft MlII'fin (at current position). ESC 9
Set Hori:l:ontal Tab (HT) Stop (at current position), ESC 1
Set Right Margin (at current position). .J.i ESC 0
Set Vertieal Tab (VT) Stop (at current position). ESC
Set Lines Per Page to (n). •• ESC FP (n)
Set Bottom Page MlIII'gin (at current position), .- ESC r-
ClelU' Top and Bottom Mvgtns ESC C
Clelll' HOI'izontaJ Tab (Iff) S top (lit current position), ESC 8
Clelll' all HT and VT Stopa ESC 2
Set HorizontaJ Motion IndInr (HMO" to (n - 1), •• ESC US (n)
Set Vertical Motion IndInr (VMO. to (n - 1), •• ESC 1m" (n)
Retum HM) Control to~ Switen. ESC r

Ca.rrige Movement
Absolute HT to pcint C!Owmn (n), eo ESC HT (n)
Enable Auto Backward Prlntlnr ESC r
Dl3able Auto B_ward Prlntlnr ESC ,
Revena Prlntlnr Mode ESC
NOl'me1 Printilll Mode ESC
.Forward PrInt Mode ON ESC '5
B_ward Print Mode ON - Ponrard Mode Ol'l' (elelll' with Ca) ESC 8!!2!t Movement
Absolute VT to Une (n), ... ESC VT (n)
Pet'form Neptive Line PHd ESC IT
Pet'form HlIll-Llne FaecI ESC lJ
Perform Neptive Hall-Line PHd ESC 0

pring!!I
rapltlCil Mode ON (clelll' with CR) ESC 3

Grephios Mode OPP ESC 4
HyPlot ON - Abaolute Move (clelll' with CR) ESC G
HyPlot ON - Abaolute Plot (clear with CR) ESC G ill.
HyPlot ON - Rellltive Move (clelll' with CR) ESC V
HyPlot ON - Rellltlve Plot (cl_ with CR) ESC V BEL
Chance Plot Cllaractev to (C!hlU'actev) ESC (new eharaeterl
Set Plot PNeillion • ESC , hv
Print in Secondary CoiOl' (recI) ESC A
Print in Pl'imlJ'y Color (black) ESC B
Print Suppreslon ON (clear witfl CR) ESC 7

Word Proce~ Commands
---,rfOporU S9&ee 0N (clear "ith ESC S) ESC P

Proportional Space OPP ESC Q
Ollset selection • ESC DCl (n)
AUlD Underscolre ON ESC yo-
Auto Und_ OPP ESC R
Bold Print ON (cll!lll' with CR) ESC 0
Shadow Print ON (cl_ with CR) ESC w
Bold/Slladow Print OPP ESC de
Inc_ Carriap Settunr Tillie to 201l\ll (el_ w/ESC N) ESC 91>
B~ 1/120" ESC as
PfOt'I'lllll Mode 0 N ESC SO M
Cancel all WP modell ucetJt Prop~ &: Car 5ettunr Tillie ESC r
Auto Centar ON (clear with CIl) ESC =
Auto Justify ON ESC M
Martin ControA ON (overri_ MARa CONT key) ESC $
Margin Control Mode controUed by MARa CONT key ESC •
Clear IncNUed Cam. SettUnr Time ESC N

MlsceilllNloua Commllftl!ll
Inlt14te Remote RESIrr ESC CR P
Print Print Whee.l che.rIIIetar HIX 20 ESC Y
Print Print Wheel el1.IIrlIC_ HIX 7P ESC Z
Entar Pl'O(I'Wft "HeN III •••" Mode ESC (
EJdt Procralll "Hare III , , ." Mode ESC)

~ Note: Not all print drivers in microcomputer operating
systems support the XON/xOFF protocol j it may be necessary
to obtain a separate software package to support this protocol.

Changing print parameters
All the parameter settings that can be changed with Diablo software
commands are initialized in the emulator as they are in the Diablo
630 printer. Other parameters require setting hardware switches or
changing print wheels in the Diablo; in the LaserWriter these are
system parameters that can be changed via PostScript commands.
The complete set of persistent parameters pertaining to Diablo
emulation is given in table 4-~

'7 .,
Table 4.~
Persistent parameters for Diablo emulaf10n mode

Paramet... Initial setttng

pitch 10

font Courier

font for bold Courier-Bold

auto-linefeed off

The Diablo emulator supports all the standard LaserWriter
typefaces. The default font is Courier, which is the flXed-pitch font
most commonly used on daisywheel printers, and which is most
likely to give correct results for typical microcomputer application
programs. Note that the plain and bold fonts are specified
separately. Thus, one could use Courier for regular printing and
Courier-Oblique for bold; then the "bold" text would print as italic
instead

New persistent parameters that control Diablo emulation and mode
selection via the "Special" switchhave been assigned using the cells
accessed by the PostScript commands eescratch and
seteescratch . y 'I
The eescratch locations shown in table 4-ihave been assigned.
Thus, for example, to change the meaning of the ·Special" switch
position from Diablo emulation to PostScript interactive mode,
issue the command:

RectoFooter 21

if
Table 4.;-
eescratch locatlon assignments

Location Assignment

58 1 seteescratch

The default value of every eescratch cell is zero.

58 selects the function of the "Special- switch setting: 0 means Diablo 630 emulation mode; 1
means PostScript interactive modej and other values are reserved for future capabilities.

59 the value 1 enables the Diablo auto-linefeed feature.

60 selects the Diablo pitch number of characters per inch. Reasonable values are 10, 12, and 15; 0
selects 10.

61 a font number that forthe "bold- font to be used for Diablo emulation. If the number is 0
(selecting Courier) then 1 (selecting Courier-Bold) is used instead To actually select Courier as
the "boldn font, use some illegal font number such as 255.

62 selects the plain font used for Diablo emulation. This is a font number taken from. The default
value (0) selects Courier.

63 used internally

The EEROM in which the persistent parameters are stored can be
written only a limited number of times before wearing out Each
location in the EEROM is capable of approximately 10,000 writes.
For this reason, the EEROM is used only for parameters that are
expected to change infrequently. The copy count is an exception', it
is implemented in such a Way that the wear is distributed over·a large
number of locations.

At power-on time, the contents of the EEROM are checked for
consistency, and an entry named eerom in statusdict is used to
report the result Normally, eerom contains true. If an
inconsistency is detected, eerom is redefined to be a 512-character
PostScript string into which are read the entire contents of the
EEROMj then the page count is set to zero and all parameters are
reset to default values. If the EEROM fails altogether, eerom is set to
false and the software shifts to a simulation of the EEROM
parameters in RAM; all the operations for setting and reading
parameters continue to work, but the values no longer survive across
power-off.

4-22 LaserWriter Reference Manual - Beta (7/7/86)

Deviation From Diablo Protocol
The LaserWriter emulates the Diablo as closely as possible;
however, there ar some differences of which you should be aware:

Detecting the End of a Document

The LaserWriter can only detect the end of a document by noticing
that data has stopped arriving. After the last page is processed, all
Diablo settings such as margins, tabs, and spacing stay in effect for
about 30 seconds (or another period to which the default wait
timeout has been changed). Then a Diablo -reset" operation is
automatically performed to restore all settings to standard values;
Le., the margins are cleared, spacing is put back to standard, and
tab settings and any special word processing modes are cleared.
The LaserWriter actually prints a page when it either reaches the
bottom of the page or receives a form-feed (Command-L)
character. If the last page of a document isn't full and doesn't end
with a form-feed, it won't be printed immediately. Instead, it will
be printed when the LaserWriter resets approximately 30 seconds
later, or as part of the next document (at the top of the fJ.rst page).
When documents are. being printed in close succession, make sure
that each one has a fInal form-feed so that they are not run together.

Bold and Double-strike
Some text processors produce a bold style by double-striking a
character. That will not appear as bold in the LaserWriter. Only the
bold produced by issuing the proper Diablo command sequence
(escape-Q) will result in bold characters.

Proportional Fonts

Times-Roman and Helvetica are narrow fonts that may look
squeezed if no adjustment of page width is made by the word
processor. Few non-Macintosh text processing programs are
capable of producing correctly formatted output using
proportionally spaced fonts such as these.

RectoFooter 23

Paper Positioning

The emulator uses exact positioning on the paper. Output from a
word processor that has attempted to compensate for slippage on
vertical movement may appear slightly uneven.

Unsupported Commands

The following Diablo 630 commands are not supported by the
LaserWriter:

• print suppression

• HY-Plot
• extended character set
• the ability to download information for print wheels,

including program mode
• the ability to override printwheel spacing (for proportional

spacing), although the offset for proportional spacing can be
changed

• page lengths other than 11 inches
• paper feeder control
• hammer energy control

• remote diagnostic
• backward printing control (note, however, that "reverse

printing" is supported)

MS-DOS Communication Parameters

If you are using an IBM-PC or compatible computer, you can issue
the following MS-DOS commands to set up serial port 1 for
communication with the LaserWriter:

MODE COM1:9600,n,8,1

MODE LPT1:=COM1:

These commands set the baud rate to 9600 and map printer output
to the serial port. This by itself is not sufficient to support
XON/xOFF flow control-some applications may handle this
protocol themselves; otherwise a different printer driver should be

4-24 LaserWriter Reference Manual- Beta (7/7/86)

installed to avoid communication problems while printing large
documents.

RectoFooter 25

Appendix A

Serial Data Communication

Using the serial communication chan'nels
The LaserWriter has two serial channels, one wired to a DB-9
(RS422) connector and the other to a DB-25 (RS232C) connector
(see figure A-I). Either channel can be used for conventional
asynchronous serial communication. (The 9-pin connector is also
used (in conjunction with the mode switch) for connecting to
AppleTalk, but serial and AppleTalk communication are
incompatible and will never occur at the same time.)

When the LaserWriter is in any of the serial I/O modes, it uses one
of the two channels to send and receive serial data encoded in
ASCII. Certain character codes serve special purposes, such as
Command-D to mark end-of-me. At the beginning of a job, both
channels are enabled with independent baud rate and parity. The
first channel to receive a character is chosen to execute the job.
(The other channel is not disabled; if characters start to arrive on it,
they are buffered and that channel is selected when the current job
is finished.) When the end-of-me character is received and the
program terminates, the LaserWriter sends an end-of-file
character, ends the job, and (if possible) starts a new one.

Using the RS422 port

The pins for the serial RS422 port are assigned as shown in table A
I.

Table A-l
RS422 port pin assignments

Pin Signal

I, 3 Signal Ground

4 Transmit Data +

5 Transmit Data -

8 Receive Data +

A-2 LaserWrlter Reference Manual - Beta (7/7/86)

.,, . .. ,

. " ..- . . ,.

FJ fr-:2.1

~:""J
003>-1'

9 Receive Data -

This pin assignment ls compatible with the Macintosh. You can
connect a Macintosh directly to a LaserWriter using an Apple
Modem cable and communicate with it using MacTerminal.

Using the RS232C port
The pin assignments for the 25-pin RS232C port are shown in table
A-2.

Tabl. A·2
RS232C Pin Assignments

Pin Signal

2 Transmit Data

3 Receive Data

4 Request To Send (optional; needed only if host requires it)

7 Signal Ground

20 Data Terminal Ready (optional; needed only if host
requires it)

The other signals are not used

Technically, the LaserWriter is configured as a DTE. This means
you can directly connect it to a modem or to a host computer
configured as a DeE device without any signal reversals.
Connecting to another DTE device requires interposing a "null
modem", which, at a minimum, involves reversing the Transmit
Data and Receive Data signals.

Changing communication parameters
On the LaserWriter, serial communication is always asynchronous,
start-stop, with 8 data bits per character (the high-order bit mayor
may not be used for parity), one start bit, and two stop bits. There
are three programmable parameters: channel (9- or 25-pin
connector), baud rate, and parity. Switch setting "1200"
establishes communication with standard parameters (1200 baud,
parity ignored). The "9600" and "Special" switch settings use

Serial Data Communication A·3

whatever parameters have been set previously-if no parameters
have been set, the defaults are 9600 baud, parity ignored. If you're
trying to make contact with a LaserWriter for the first time, and you
don't know which parameters may have been set previously, you
should start with the "1200" setting.

You can change the channel, baud rate and parity with the
PostScript statusdict operators setsccbatch (for the "9600"
setting) and setsccinteractive (for "Special"). (SCC stands
for Serial Communications Controller, which is the device that
operates the two I/O connectors.)

setsc~batch operator
The PostScript setsccbatch operator determines how serial
communication is performed on the specified channel for
subsequent batch jobs when the switch is in the "9600" position. As
arguments, it takes three integers designating channel, baud rate,
and parity:

channel baud parity setsccbatch

In a PostScript program, these parameters are specified as follows:

channel

baud rate

parity

The 9- and 25-pin connectors are designated by
the integers 9 and 25.

Given as an integer, such as 1200 or 9600. (The
maximum baud rate supported by the software is
9600.)

Specified by an integer from 0 to 3:

o Ignore- the high-order bit of each 8-bit
character received is ignored, and the high-order
bit of each character transmitted is zero.

1 Odd- the high-order bit of each 8-bit
character received is checked for odd parity (a
PostScript ioerror occurs if it is incorrect), and
each character transmitted has odd parity.

2 Even-- like odd, but for even parity.

3 None- all 8 bits of each character are treated
as data, and no checking is performed.

A-4 LaserWrlter Reference Manual . Beta (7/7/86)

Control-C ($03)

Control-D ($04)

Control-Q ($11)

Control-S ($13)

Note that the baud rate and parity may be set independently for
each of the two channels. The new baud rate and parity do not take
effect until the end of the current job. Setting the baud rate to zero
disables the channel, but disabling both channels is not permitted.

sccinteractive is identical to setsccbateh, but sets serial
communication parameters to be used when the switch is in the
·Spedal" position (which selects either interactive or emulation
mode).

To determine the currently selected values for these parameters, use
the operators sccbatch and sccinteraetive:

sccbatch takes a channel number C9 or 25) and returns the ·9600"
(batch) baud rate and parity previously set for that channel:

channel sccbatch baud parity

The default is 9600 baud, parity ignored (0).

setsccinteractive Qperator
The sccinteractive operator is identical to sccbatch, except
that it returns the ·Spedal" (interactive or emulation mode) baud
rate and parity for the specified channel (the default settings are 300
and 0).

Controlling communication
The serial communication protocol is quite minimal. There are
several character codes reserved for communication functions and
not passed through to PostScript:

Interrupt-causes a PostScript interrupt operator to
be executed. (See the PostScript Language Manual.)

End-of-file

XON-start output

XOFF-stop output

serlol Doto Communlcotton A-5

Control-T ($14)

Return ($OD)

Line-feed ($OA)

Status query-when received over either channel,
Control-T elicits a one-line status message over the
sarne channel. This channel need not be the one through
which the LaserWriter is receiving its current job.
(Status messages are described in Chapter 1) .

End-of-line

End-of-line (ignored if it immediately follows a
Return)

The LaserWriter uses XON!XOFF flow control and expects the host
to do likewise. For batch mode operation, XON!XOFF flow control
is required-note in particular that the RS232C Data Terminal
Ready (OTR) signal for flow control isn't supported Failure to
conform to XON!XOFF flow control will result in an ieereor when
transferring mes longer than about 5000 characters.

There is no way to delimit the reserved control characters in order
to pass them through as data to PostScript; nor is there any way to
transmit characters in the high ASCII range (128 to 255) when the
high-order bit is being ignored or used for parity. Thus, the serial
link is not a fully transparent channel. However, this causes no
difficulty in normal use because the PostScript language consists
entirely of printable characters. The language itself provides a
means for encoding arbitrary characters in strings (the"\ non"
escape sequence). True binary data, such as images and encrypted
programs, is transmitted in hexadecimal.

When a job terminates, the LaserWriter sends a Control-D end-of
me character over the serial channel. This allows the host
application program to synchronize with the LaserWriter (if
desired) and to correlate a given batch of output with the job that
generated it Note that the application program need not wait for
one job to finish before beginning to send the input for the next
job.

A-6 LaserWrlter Reference Manual - Beta (7/7/86)

Appendix B

Apple Laser Prep dictionary

Apple Laser Prep Dictionary B-1

A LaserWriter dictionary is a PostScript data structure that links
names to objects. A font is one example of a dictionary: it links the
names of the fonts to the routines that are actually used to draw the
fonts. The Laser Prep header file is also a PostScript dictionary. It
contains the codeto translate Madntosh operations into PostScript,
and the keys by which those operations can be accessed.

Using the Laser Prep dictionary
The LaserWriter driver downloads the Laser Prep dictionary to the
printer on a permanent basis whenever a document is to be printed
and the dictionary is not available on the printer. Such functions as
selecting fonrs, drawing polygons, and managing document
information are performed by the procedures defined in this
dictionary. All characters in PostScript are printable characters.
The full text of the dictionary procedures is printed here; some of
the comments have been changed for readability.

Most of these procedures are defined into a global dictionary as
they are encountered, while others are executed immediately and
serve to set global state for later print jobs.

The names used herein are defined as PostScript names and should
not be redefmed or reused for other purposes by clients who are
defining their own PostScript code. In most cases name conflicts
are avoided by using names which are two and three characters in
length; it is therefore usually safe to use names that are more than
three characters.

Printer password

The LaserWriter password constant constitutes the first string in the
LaserPrep string list resource. Clients who wish to change their
password on the LaserWriter printer may make the header
compatible by changing this string appropriately. Its length is 7
characters so that it may accommodate passwords up to 7
characters without need to change the length of the string or
resource.

0000000

B-2 LaserWnter Reference Manual Beta (7/786)

Prrinter initialization
The initialization process involves establishing the current
dictionary, specifying the parameter settings for the
communication port (9, for 9-pin), the baud rate (0, for the default
9600), and parity C3, for none). The wait timeout is set for 300
seconds.

serverdiet begin exitserver
systemdiet Istatusdiet known{statusdiet begin 9 0 3 setseeinteraetive
Iwaittimeout 300 de! end}i!
Imd 200 diet de! md begin

Dictionary version number
The dictionary version number must match the version number
expected by the driver. The dictionary version number
documented here is 13. That version number is specified here in
PostScript.

lav 13 de!

Leveltwohead
text

Imtx matrix eurrentmatrix de!
Is30 30 string de!
Is1 () de!
Ipys 1 def
Ipxs 1 de!
Ipyt 760 de!
Ipxt 29.52 de!
Ipor true de!
Ixl(translatelde!
Ifp{pnsh 0 ne· pnsv 0 ne andldef

Leveltwohead
The following array defm.es the QuickDraw graNerbs in PostScript.
In Pascal these correspond to:
GrafVerb = (frame, paint, erase, invert, fill);

RectoFooter 3

The verbs are defmed in the above order with a few additional verbs
that are used internally.

+ Note: The verb invert is not legal in PostScript; it is non
functional.

/vrb [
{fp{gsave 1 setlinewidth pnsh pnsv scale stroke grestore}if newpath}
{eofill}
dup
{newpath}
2 index
dup
{initclip eoclip newpath}
{ }

dup
2 copy
] def

/xdf{exch def}def
currentscreen /spf xdf /rot xdf /freq xdf

Execute specified QuickDraw verb
This procedure, called with the ordinal value of the QuickDraw verb
on the PostScript stack, executes the appropriate verb procedure
from the /vrb array above.

/doop {vrb exch get exec} def

Accept global values
This procedure accepts a portrait landscape flag, x and y translation
coordinates, x and y scale factors, and x and y resolution
parameters. It doesn't alter the current PostScript state yet

/psu{2 index .72 mul exch div /pys xdf div .72 mul /pxs xdf /pyt xdf /pxt
xdf /por xdf}def

Alter PostScript state
Here the actual PostScript state is altered according to global values
set previously.

B-4 LaserWrlter Reference Manual Beta (7/786)

Itxpose{dup 1680 eq userdict Inote known{{legal} {note}ifelse} {pop}ifelse
dup 1212 eq{54 32.4 xl}if 1321 eq{8.64 -.6 xl}if
pxs pys scale pxt pyt xl por not{270 rotate}if 1 -1 scale}def

Provide oblique font
The procedure below is used to provide the slanted or obliqued
style (derived italic fonO of a font A point size and a flag are
required.

lobl {{O.212557 mul} {pop O} ifelse} def

Establish font
This routine establishes the font to be used in a subsequent
operation. It requires three parameters: a font size, an oblique
flag, and a font dictionary.

Isfd {Cps 0 ps 6 -1 roll obl ps neg 0 0] makefont dup setfont} def

Leveltwohead
set font: obliqueflag Ifontname

Ifnt{findfont sfd}def

Leveltwohead
text

% test bit in an integer: integer bit-to-test
% returns flag and the original integer

%---
Ibt{l index and 0 ne exch}def

%---
% set style flags from the ordinal value of style

RectoFooter 5

% style array contains flags for Bold, Italic, Underline, Outline, Shadow.
% The ordinal value of style is also saved

%---
/sa 6 array def
/fs{l bt

2 bt
4 bt
8 bt

16 bt
sa astore pop

}def

/mx1 matrix def
/mx2 matrix def
/gf{currentfont}def

%----------------------------------~--

% Text munging procedures.
% These have to do with string merging and text scaling and rotation.

%---
%---
% set relative center of rotation:
% yintegerpart yfractionpart xintegerpart xfractionpart

%--t
/tc{32768 div add 3 1 roll 32768 div add 2t astore pop}def

%---
% set additional rotation parameters: justify flip rotation
% justify is:
% 1 left
% 2 center
% 3 right
% else full
% flip is: .
% 0 none
% 1 flip around y axis
% 2 flip around x axis
% rotation is in degrees counterclockwise

%---
/3a [0 0 0] def
/2t 2 array def
/tp{3a astore pop}def

B-6 LaserWrlter Reference Manual Beta (7/786)

lee {}def

%---
% start rotated text at current penlocation:

%---
Itt{gsave currentpoint 2 copy 2t aload pop qa 2 copy xl 3a aload pop exch
dup 0 eq
(pop}{l eq{-l 1}{1 -l}ifelse scale}ifelse rotate pop neg exch neg exch xl
moveto}def

Ite{currentpoint currentfont grestore setfont moveto}def
Itb{/tg currentgray def 3 -1 roll 3 eq{l setgray}if Iml 0 def lal 0 def}def
lam{ml add Iml xdf}def
laa{[currentgray Isetgray cvx]cvx exch dup wi pop dup al add lal xdf
exch}def

%---
% scale coordinate system by numerator denominator pairs:
% denominator (vertical, horizontal) numerator (vertical, horizontal)

%---
Ith(3 -1 roll div 3 1 roll exch div 2 copy mx1 scale pop scale Iscaleflag
true def}def
Itu{l 1 mx1 itransform scale Iscaleflag false def}def
Its{l 1 mx1 transform scale Iscaleflag true def}def

%---
% fontsize: pointsize

%---
Ifz {Ips xdf }def

%---
% execute a procedure but leave procedure on stack
% {proc}fx

%---
Ifx{dup exec}def

1st {show pop pop}def

%---

RectoFooter 7

% These procedures constitute string merging.

%---
Itm{

{

dup type dup lintegertype eq exch Irealtype eq or
{

dup ~ mul
)
{

dup type I stringtype eq
{
rs
I
(

dup type Idicttype eq
{

setfont
I
(

dup type larraytype eq
{
exec
I
{
pop
lifelse

) ifelse
lifelse

lifelse
Iforall

Idef

%---
% textFace textmode justification-type [array-of-strings-and-font-changes]
es

%---
les{

3 -1 roll dUp sa 5 get dup type Inulltype eq
{pop4 pop}
{

sa 1 get {/~ ~ .2 ps mul sub def}if %Italic Hack Hack Hack
ne{fs} (pop}ifelse exch
dup 1 eq

%left justification
(pop

al ml gt(/tv(ll)/ml ml al dup 0 ne{div} (pop}ifelse def) (/tv(st)/ml
1 def}ifelse def

B-8 LaserWrlter Reference Manual Beta (7/786)

tm
}

{
dup 3 eq

%riqht justification
{pop
al ml qt{/tv{ll}/ml ml al dup 0 ne{div} {pop}ifelse def}{ml al sub 0

rmoveto /tv{st}/ml 1 def}ifelse def
tm

}
{

2 eq
%center justification

{

al ml qt{/tv{ll}/ml ml al dup 0 ne{div} {pop}ifelse def}{ml al sub 2
div 0 rmoveto /tv{st}/ml 1 def}ifelse def

tm
}
{

%full justification
/tv{ll}def
/ml ml al dup 0 ne{div} {pop}ifelse def

tm
}ifelse}ifelse}ifelse
}ifelse

tq setqray
}def

/pop4 {pop pop pop pop} def

%---
% The QuickDraw Procedures

%--------------------------~--

%---
% moveto: x y

%---
/qm{scaleflaq{rnxl itransform}if moveto}def
%local ymove: x y ly
/ly{exch pop currentpoint exch pop sub 0 exch rmoveto}def

%---
% print n copies of page (ensures 8 pages/minute for multiple copies)

%---

RectoFooter 9

Ipage{l add Itcopies xdf showpage}def

Isk{systemdict Istatusdict known}def

%---
% set jobname (string)

%---
Ijn{sk{statusdict Ijobname 3 -1 roll put} {pop}ifelse}def

%---
% set pen size: h v pen

%---
Ipen {/pnsv xdf Ipnsh xdf pnsh setlinewidth} def

%---
% lineto procedures: x y
% (uses current pen location, pen size and graylevel)
% This really emulates the ugly QuickDraw pen on the LaserWriter but
preserves the same
% endpoint and linewidth anomalies that some applications rely on.

%---
Idlin{currentpoint newpath moveto lineto currentpoint stroke grestore
moveto}def
Ilin {currentpoint Ipnlv xdf Ipnlh xdf gsave newpath I@y xdf I@x xdf fp{pnlh
@x It {pnlv @y ge
{pnlh pnlv moveto @x @y lineto pnsh 0 rlineto
o pnsv rlineto pnlh pnsh add pnlv pnsv add lineto pnsh neg 0 rlineto}
{pnlh pnlv moveto pnsh 0 rlineto @x pnsh add @y lineto 0 pnsv rlineto
pnsh neg 0 rlineto pnlh pnlv pnsv add lineto} ifelse} {pnlv @y gt
{ex @y moveto pnsh 0 rlineto pnlh pnsh add pnlv lineto 0 pnsv rlineto
pnsh neg 0 rlineto @x @y pnsv add lineto} {pnlh pnlv moveto pnsh 0 rlineto
o pnsv rlineto @x pnsh add @y pnsv add lineto pnsh neg 0 rlineto
o pnsv neg rlineto} ifelse} ifelse
closepath fill}if @x @y grestore moveto} def
I dl {gsave .0 setlinewidth 0 setgray} def

%---
% Arc: top left bottom right startangle stopangle verb flag
% flag means to exclude the center of curvature in the arc
%---
Ibarc l/@f xdf I@op xdf I@e xdf I@s xdf I@r xdf

B-10 LaserWrlter Reference Manual Beta (7/786)

I@b xdf I@l xdf I@t xdf gsave
@r @l add 2 div @b @t add 2 div xl 0 0 moveto
@r @l sub @b @t sub mtx currentmatrix pop scale @f {newpath} if
o 0 0.5 @s @e arc
mtx setmatrix Gop doop grestore} def
Idoare {dup 0 eq bare} def

%---
% oval: top left bottom right verb

%---
Idoval {O exch 360 exch true bare} def

%---
% rectangle: top left bottom right verb
Idorect {/@op xdf eurrentpoint 6 2 roll newpath 4 copy
4 2 roll exeh moveto 6 -1 roll lineto lineto lineto elosepath
Gop doop moveto} def
Imup{dup pnsh 2 div le exch pnsv 2 div le or}def

%---
% roundrect: top left bottom right ovalwidth ovalheight operation
% Caveat: ovalwidth is currently assumed equal to ovalheight
%---
Idorrect {/@op xdf 2. div I@h xdf 2. div I@w xdf
I@r xdf I@b xdf I@l xdf I@t xdf
@t @b eq @l @r eq @w mup or or{@t @l @b @r Gop dorect}

{
@r @l sub 2. div dup @w It{/@w xdf} {pop}ifelse
@b @t sub 2. div dup @w It{/@w xdf} {pop}ifelse
Gop 0 eq{/@w @w pnsh 2 div sub def}if %this helps solve overlap gap

for wide line widths
currentpoint
newpath
@r @l add 2. div @t moveto
@r @t @r @b @w arcto pop4
@r @b @l @b @w areto pop4
@l @b @l @t @w areto pop4
@l @t @r @t @w arcto pop4
elosepath @op doop
moveto
}ifelse

def

RectoFooter 11

%---
% Polygon utility procedure5

%---~---

/pr{gsave newpath /pl{moveto /pl{lineto}def}def}def
/pl{lineto}def
/ep{dup 0 eq

{

{moveto}{lin}{} {}pathforall %nothing but movetos and linetos should be
called

pop grestore
}

{

doop grestore
}ifelse

}def
/bs 8 string def
/bd{/bs xdf}def

%---
% These following procedures are used in defining QuickDraw patterns.
% Pattern definition goes into halftone screen of PostScript
%---
% procedure to find black bits in QuickDraw pattern (pattern in hex string
bs)
/bit (be exch get exch 7 sub bitshift 1 and) def
/bix (1 add 4 mul cvi} def
/pp{exch bix exch bix bit}def
/grlevel {64. div setgray} def

%---
% procedure to set a pattern: ratio hexstring
% ratio is the total number of white bits in the QuickDraw pattern
represented in hexstring
%-----------~---

/setpat {/bs xdf 9.375 O{pp}setscreen grlevel} def
/setgry {freq rot {spf} setscreen grIevel} def

%---
% standard copybits routine: xscale yscale xloc yloc rowbytes xwidth ywidth
fsmooth bitmode
% This procedure is the basis for all QuickDraw bit operations.
% xscale and yscale tell how much to scale the bit image in 72nds of an inch

B-12 LaserWrlter Reference Manual Beta (7/786)

% xloc and yloc are the location of the top left corner of the bitmap
% rowbytes is the total number of bytes in each scanline of hex data in the
image
% Note that rowbytes must be even
% xwidth and ywidth are the actual number of bits in the x andy coordinates
of the image
% fsmooth is a flag to tell whether or not to use bit smoothing. Bit
smoothing is a
% proprietary algorithm ,that provides smoothing of the data around a 5 by
5 local area of each
% data pixel.
% bitmode can be any of the QuickDraw source transfer modes excluding srcXor
and notSrcXor
% Note that this is the only QuickDraw procedure which can implement more
than the simple
% srcCopy transfer mode.

%--
--------------1
/x4 {2 bitshift} def
/d4 {-2 bitshift} def
/xf {.96 mul exch 2 sub .96 mul exch} def
/dobits
{
/bmode xdf
save 9 1 roll
% 2 sub fixes dxsrc offset number required for bitsmoothing, but applies to
both
%Bit Smooth mode

{

x4 /@dy xdf 2 sub x4 /@dx xdf /@idx xdf
.96 mul exch 3 index 2 sub @dx div 7.68 mul dup 6 1 roll sub exch xl 0 0

moveto xf
o 4 -1 roll 2 index 4 index 1.759 add 10 dorect clip newpath 0 0 moveto

scale
bmode 0 eq bmode 4 eq or{l setgray 1 @dy div 1 @dx div 1 1 2 dorect}if
bmode 3 eq bmode 7 eq or{l}{O}ifelse setgray
@idx 5 bitshift @dy bmode 0 eq bmode 1 eq bmode 3 eq or or [@dx 0 0 @dy 0

0]
{ (%stdin) (r) file @dy d4 4 add @idx mul string readhexstring pop
dUp length @idx x4 sub 4 bitshift string
dup 3 1 roll @dx 8 add d4 smooth} imagemask

}
%Non Bit Smooth mode

{
/@dy xdf 2 sub /@dx xdf /@idx xdf
/@xs @idx string def
/@f (%stdin) (r) file def
/@p{@f @xs readhexstring pop}def
.96 mul xl 0 0 moveto xf scale

RectoFooter 13

o 0 1 1 10 dorect clip newpath 0 0 rnoveto
brnode 0 eq brnode 4 eq or{l setgray .25 @dy div .25 @dx div 1 1 2

dorect}if
brnode 3 eq brnode 7 eq or{l}{O}ifelse setgray
@p @p
@idx 3 bitshift @dy brnode 0 eq bmode 1 eq bmode 3 eq or or [@dx 0 0 @dy 0

0]
{@p } irnagemask
@p @p pop4
lifelse

restore
I def

%---
% Making Mac compatible Fonts

%---

/rnfont 14 dict def
fwd 14 dict def
/mdef {rnfont wcheck not{/rnfont 14 dict def}if rnfont begin xdf end} def
/dc {transfor.m round .5 sub exch round .5 sub exch itransfor.m} def

%---
% Copy a font dictionary: fontdictionary
% copies a font dictionary into tmp so it may be used to define a new font
%---
% tmp must be set before cf is called
/cf{{l index /FID ne {tmp 3 1 roll put} {pop pop}ifelse}forall}def

%---
% Procedures used in defining a bit map font

%---
/mv{trnp /Encoding macvec put}def
/bf { .
rnfont begin
/FontType 3 def
/FontMatrix [1 0 0 1 0 0] def
/FontBBox [0 0 1 1] def
/Encoding macvec def
/BuildChar

(

wd begin
/cr xdf

B-14 LaserWrlter Reference Manual Beta (7/786)

Ifd xdf
fd Ilow get cr get 2 get -1 ne
{
fd begin

low cr get aload pop
sd
low cr 1 add get 0 get
sh
sw

end
Isw xdf
Ish xdf
sw div Iclocn xdf
dup 0 ne {O exch sh div neg dc xl} {pop}ifelse
exch sw div Icoff xdf
exch sw div Icloc xdf
Ibitw clocn cloc sub def
sw sh div 1 scale
sw div 0 coff 0 bitw coff add 1 setcachedevice
coff cloc sub 0 dc xl
cloc .5 sw div add 0 dc newpath moveto
bitw 0 ne

{O 1 rlineto bitw .5 sw div sub 0 rlineto 0 -1 rlineto
closepath clip

sw sh false [sw 0 0 sh neg 0 sh] {fd Ihm get}imagernask}if
}if

end
} def

end
mfont definefont pop
} def

%---~-------

% stringwidth procedure which does not allow a show to occur: (string)

%---
Iwi{save exch Ishow{pop}def
stringwidth 3 -1 roll restore}def

laps {O get 124 eq}def
lapn {s30 cvs aps} def

%---
%set style in a PostScript name: AppleFontName
% e.g.
% II----name sos II---Oname
% II----name sis II-I--name

RactoFootar 15

%---
Ixe{s30 eva dup}def
Ixp{put evn}def
Ises{xe 3 67 put dup 0 95 xp}def
Isos{xe 3 79 xp}def
Isbs{xe 1 66 xp}def
Isis{xe 2 73 xp}def
Isob{xe 2 79 xp}def
Isss{xe 4 83 xp}def

Idd{exeh 1 index add 3 1 roll add exeh} def
Isme{moveto dup show} def
Ikwn{dup FontDireetory exeh known{findfont exeh pop}}def
Ifb{/ps ps 1 add def}def
1mb
{dup sbs kwn

{
exeh {pop} {bbe} {} rom
}ifelse

sfd
}def
Imo
{dup sos kwn

{
exeh{pop}{boe}{} rom
}ifelse

sfd
}def
Ims
{dup sss kwn

{

exeh {pop I {bse} {} rom
}ifelse

sfd
}def
lao
{dup sos kwn

{ .
exeh dup ae pop
{ses findfont Idf2 xdf}{aoe}{} rom
lifelse

sfd
}def
las
{dup sss kwn

{

exeh dup ae p'op
(ses findfont Idf2 xdf}{asel{l rom

B·16 LaserWrlter Reference Manual Beta (7/786)

lifelse
sfd
ldef
lac

{

dup ses kwn
{exeh lofd exeh findfont def
Itmp ofd rnaxlength 1 add diet def
ofd ef mv
tmp IPaintType 1 put
tmp definefontlifelse

ldef
Imm{
Imfont 10 diet def
mfont begin
IFontMatrix (1 0 0 1 0 0] def
IFontType 3 def
IEneoding rnaevee def
Idf 4 index findfont def
IFontBBox (0 0 1 1] def
Ixda xdf
Imbe xdf
IBuildChar { wd begin

ler xdf
Ifd xdf
les sl dup 0 er put def
fd Imbe get exec
end
def

exec
'end
mfont definefontl def
Ibbe
{

Ida .03 def
fd Idf get set font
gsave

es wi exeh da add exehd
grestore .
seteharwidth
os 0 0 sme

da 0 sme
da da sme
o da moveto show

I def
Iboc
{

Ida 1 ps div def
fd Idf get set font

RectoFooter 17

gsave
e5 wi
exeh da add exeh

grestore
seteharwidth
es 0 0 sme

cia 0 sme
da da sme
o da sme

1 setgray
da 2. div dup moveto show

} def
Ibse
{

Ida 1 ps div def
Ids .05 def %da dup .03 It {pop .03}if def
Ida2 cia 2. div def
fd Idf get setfont
gsave

es wi
exeh ds add da2 add exeh

grestore
seteharwidth
es ds da2 add .01 add 0 sme

o ds da2 sub xl
o 0 sme

da 0 sme
da da sme
o da sme

1 setgray
da 2. div dup moveto show

} def
laoe
{

fd Idf get set font
gsave

es wi
grestore
seteharwidth
1 setgray
es 0 0 sme
fd Idf2 get setfont
o setgray
o 0 moveto show

Idef
lase
{

Ida .05 def
fd Idf get setfont

B-18 LaserWrtter Reference Manual Beta (7/786)

gsave
cs wi
exch cia add exch

grestore
setcharwidth
cs cia • 01 add 0 srne

o da xl
1 setgray

o 0 smc
o setgray
£d /d£2 get setfont

o 0 moveto show
}def

%---
% Procedure to print instruction sheet and set up manual feed

%---
/mf{gsave
32 760 xl 1 -1 scale
1 1 pen
128 152 moveto
27.5 27.5 693.5 522.5 0 dorect
6 6 pen
63. 63. 657. 486. 0 dorect
48 fz F /IB---1Times fnt pop
(Manual Feed)show
118 275 moveto
14 £z F /1----1Times fnt pop
(document:)show
sk{statusdict /jobname get dup null ne(show} {pop}ifelse}if
%(It) show
118 362 moveto
(Manual Feed Instructions) show
127 398 moveto
(1. Wait until the yellow light on the front of your) show
145 416 moveto
(LaserWriter .comes on steadily \5C(not flashing\5C) .)show
127 458 moveto
(2. Insert your paper or envelope in the manual feed)show
145 478 moveto
(guide on the right side of the LaserWriter.) show
127 517 moveto
(3. Repeat steps 1 and 2 until your document is)show
145 537 moveto
(completed.) show
o page
sklstatusdict /manualfeed true put 5 dly}if

RectoFooter 19

grestore}def
Idly{
usertime exch 1000 mul add

{

dup usertime le{exit}if
}loop

pop
}def

%---
% List all Apple compatible fonts one name per line

%---
11sf {FontDirectory (pop dup apn{- flush} {pop}ifelse}fora1l 1* - f1ush}def

IT true def
IF false def

%---
% More Polygon stuff used in polygon comment

%---

qA 1 qn qB 3 qn add
qB 3 qn qA 5 qn add
qC 3 qn qC 5 qn add

add
add
add

astore pop
a qn qB 2 qn
2 qn qA 4 qn
2qn~4qn

16a 6 array def
12a 2 array def
ISa 5 array def
%subtract points, first from second (reverse order): pta ptl qs newpt
Iqs{3 -1 roll sub exch 3 -1 roll sub exch}def
Iqa{3 -1 roll add exch 3 -1 roll add exch}def
%multiply point: pt factor qm newpt
Iqm{3 -1 roll 1 index mul 3 1 roll mul}def
Iqn{6a exch get mul}def
IqA .166667 def IqB .833333 def IqC .5 def
Iqx{

6a
qA
qB
qC

}def
Iqp{6 copy 12 -2 roll pop pop}def
Iqc{qp qx curveto}def
Iqi{{4 copy 2a astore aload pop qa .5 qm newpath moveto}{2 copy 6 -2 roll 2
qm qs 4 2 roll}ifelse}def
Iqq{{qc 2a aload pop qx curveto}{4 copy qs qa qx curveto}ifelse}def
%start polygon comment
Ipt{gsave currentpoint newpath movetoldef
%fill smoothed poly
Iqf(gsave eofill grestoreldef

B-20 LaserWrlter Reference Manual Beta (7/786)

Itr{currentgray currentscreen bs Sa astore pop Ifillflag 1 defldef
Ibc{/fillflag 0 def}def
%polyverb ec
lec{currentpoint 3 -1 roll

1 and 0 ne
{currentgray currentscreen bs Sa aload pop bd setscreen setgray 0 doop bd

setscreen setgray}
{newpath}i!else
moveto

}def
Ibp{currentpoint newpath 2 copy moveto currentgray currentscreen bs Sa
astore pop}def
leu{

fillflag 0 ne
{

gsave currentgray currentscreen bs
Sa aload pop bd setscreen setgray
4 ep
bd setscreen setgray
Ii!
fp{O ep}{grestore newpath}ifelse

Idef

%---
% Line Layout stuff used by string merging algorithm

%---
% counts spaces in string: (...) sm (...) n
% returns string and number of spaces in string

%---
Ism
{
dup 0 exch
{32 eq{l add}if}forall
}

def

%---
% layout a string to length specified by desiredlength: printerlength
desiredlength (...) 11
% printerlength is length of string in printer space
%---
/11
(
3 1 roll exch dup .0001 It 1 index -.0001 gt and

RectoFooter 21

{pop pop pop}
{sub dup 0 eq

{
pop show
}

{

1 index sm dup 0 eq 3 index 0 le or
{
pop length div
o 3 -1 roll ashow
}

{

% This piece does 10 percent stretching in characters and 90 percent in
spaces

10 mul exch length add div
dup 10 mul 0 32 4 -1 roll 0 6 -1 roll awidthshow

% This piece does straight stretching in spaces only
% exch pop div
% 0 32 4 -1 roll widthshow

}ifelse
}ifelse

}ifelse
}def

%---
%set font to symbol and show the string: (...) ss
%---
Iss
{ Ipft currentfont def sa aload pop pop 11----2Symbol 4 1 roll

{pop{as}}
{{{ao}}{{fnt}}ifelse}ifelse
exch pop exec exch pop

}def
Ipf{pft dup setfont}def

%--------~--

% regular show does underline if ulf is true: printerlength desiredlength
string rs
%---
Irs
{

sa 2 get
{

gsave
1 index 0

B·22 LaserWrlter Reference Manual Beta (7/786)

%15 makes line closer to text
%20 makes slightly narrower line

currentfont
dup /FontInfo known

{
/FontInfo get
dup /UnderlinePosition known

{

dup /UnderlinePosition get 1000 div ps mul
}

{

ps 10 div neg %15 makes line closer to text
}ifelse

exch
dup /UnderlineThickness known

{
/UnderlineThickness get 1000 div ps mul
}

{

pop
ps 15 div %20 makes slightly narrower line
}ifelse

}

{
pop
ps 10 div neg
ps 15 div
}ifelse

setlinewidth
o setgray
currentpoint 3 -1 roll sub moveto
sa 4 get{gsave currentlinewidth 2. div dup rmoveto currentpoint xl 2 copy

rlineto
stroke grestore}if
sa 3 get sa 4 get or 3 1 roll 2 index{gsave 1 setgray 2 copy rlineto

stroke grestore}if
rlineto{strokepath 0 setlinewidth}if stroke
grestore
}if
tv

}
def

%---
% More Font building stuff, specifically the Apple Encoding Vector
%---
% Font encoding vector for PostScript fonts to match Mac
/macvec 256 array def
macvec 0

RectoFooter 23

(Bold) search {/@b true def} if (Roman) search pop (-) search pop /@s
xdf cleartomark

@s cvn dup /Symbol eq{pop SO} {/Courier eq{S1} {49}ifelse}ifelse
s30 0 @s length 6 add getinterval dup 6 @s putinterval dup 0 (1-----)

putinterval
@b {dup 1 66 put} if @i @o or {dup 2 73 put} if % @o {dup 2 79 put} if
dup S 4 -1 roll put
cvn tmp definefont pop

}ifelse
}forall

%---
%Make any other special fonts here, i.e. Seattle

%---
/_--C-2Symbol /Symbol findfont /tmp 1 index maxlength 1 add dict def cf tmp
/PaintType 1 put tmp definefont
/\----4Seattle /Helvetica findfont dup length 1 add dict /tmp xdf cf mv
/rnxv [/zero lone /two /three /four /five /six /seven /eight /nine /comma
/period /dollar /numbersign
/percent /plU9 /hyphen /E /parenleft /parenright /spaceJ def
tmp /Metrics 21 dict dup begin rnxv(600 def}forall end put
tmp begin /FontBBox FontBBox [0 0 0 0] astore def end
tmp definefont pop .

%---
% open document, open page and close page procedures
% close document doesn't do anything currently
%---
% txpose takes the vertical page size as a parameter
/od(txpose 10 fz 0 fs F /1----3Courier fnt pop}def
/op{/scaleflag false def /pm save def}def
/cp{pm restore}def

end

Rectofooter 25

To be provided: .

Glossary

Glossary

	v3_08_01
	v3_08_02
	v3_08_03
	v3_08_04
	v3_08_05
	v3_08_06
	v3_08_07
	v3_08_08
	v3_08_09

