
Date: August S, 1985

Author: Lou Infeld

Subject: Object Module Format ERS

Document Version Number: 00:93

Revision History

00:00 (08/07/8S)
00:01 (09/0S/8S)

00:02 (09/1S/8S)

00:03 (09130/8S)
00:04 (11/1S/8S)

OO:SO (01/03l8S)

OO:SO (03l10/8S)

00 :70 (04I1S/8S)

Initial Release
Support for multi-file loading added
Ubrary Files and Run Time Ubrary Files defined
Pathname Table defined
File types changed
Segment Header format changed
Segment Jump Table format changed
VERSION in Segment Header changed to 1
Segment Jump Table is no longer Load Segment 0
References to Modules eliminated
Segment Jump Table format changed
File # added to INTERSEG record
Figure 2 renumbered
Tool Locator interface changed
Segment Number added to Segment Header
Ubrary Files redefined
Source File type changed
INTERSEG record discussion expanded
Load File Table changed to Pathname Table
ENTRY ($F4) record defined
Ubrary Segment Dictionary (KIND $04) defined
Optional Initialization Segment (KIND $OS) defined
Pathname Table format changed
KIND values changed
Load Segments start with 0 rather than 1
Position Independent Segment support added
Segment Jump Table entry changed
Binary Bit operators defined
RELOC record changed
Pathname support changed
CONST record changed
Binary Bit operators changed
Binary Bit NOT added
Default address in RELOC record changed
Relative Offset Operand given a code ($87)
Files given catalog mnemonics
Fields added to Segment Header
KIND field in Segment Header changed

-6bject Module Format ERS 00:93
Lou Infeld

1

Apple Confidential
August S, 1986

00:80 (05/07/86)

00:90 (05/27/86)

00:91 (06/05/86)

00:92 (06/24/86)

00:93 (OBl06/86)

Private Segment is defined
GLOBAL and GEQU records have new field
Optional Initialization Segment renamed Initialization
Segment and generalized

Shell Load Files defined
Load Segments start with 1 rather than 0
ORG record no longer contains an expression
INTERSEG record explanation improved
Bit NOT operator separated from binary bit operators
Pathname Table description expanded
Startup Load Files defined
System prefixes 0,1 and 2 defined
$B3 file name changed to S16
Pathname Table rename Pathname Segment and redefined
Absolute Bank Segment defined
Zero Page/Stack Segment defined
Segment Header figure enhanced
Shell Load Files are further described
File types of Load Files expanded
Segment Jump Table description changed
INTERSEG record changed
RELOC record description enhanced
CBANKSIZE changed to BANKSIZE
DBANKSIZE removed
New description of Ubrary Files
New description of Shell Load Files
Load Files can contain DS records
Ubrary Segment Dictionary renamed Ubrary Dictionary

Segment
Zero Page/Stack Segment renamed Direct Page/Stack

Segment
Segment Jump Table renamed Jump Table
Segment Jump Table Segment renamed Jump Table

Segment
Description of -loaded" state of Jump Table entry changed
ENTRY record changed
Compressed RELOC and INTERSEG records defined
Description of RELOC improved

..;bject Module Format ERS 00:93
Lou Infeld

2

Apple Confidential
August 6, 1986

History
Overview
Definitions
Object Module Format

Design Goals
General
Segment Types
Segment Header

BLKCNT
RESSPC
LENGTH
KIND
LABLEN
'NUMLEN
VERSION
BANKSIZE
ORG
ALIGN
NUMSEX
LCBANK
SEGNUM
ENTRY
DISPNAME
DISPDATA
LOADNAME
SEGNAME

Segment Body
End Record
CONST Record
ALIGN Record
ORGRecord
RELOC Record
INTERSEG
USING
STRONG
GLOBAL
GEaU
MEM
EXPR
ZEXPR
BEXPR
RELEXPR
LOCAL
EaU
OS

.Object Module Format ERS 00:93
Lou Infeld

3

($00)
($01-$DF)
($EO)
($E1)
($E2)
($E3)
($E4)
($E5)
($E6)
($E7)
($E8)
($EB)
($EC)
($ED)
($EE)
($EF)
($FO)
($F1)

Apple Confidential
August 6, 1986

4
5
6
7
7
7
8
9
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
15
16
16
16
17
17
17
17
17
18
18
18
18

, Module Format ERS 00:93
Lou Infeld

4

Apple Confidential
August 6, 1986

,
;

.. ::...:/

\
{

.

History

Under ProDOS on the Apple /I there is one loadable file format. It is the binary file
format which consists of one absolute memory image along with its destination
address. The file is pure binary data representing a contiguous block of memory.
For System files, the destination address is $2000. For binary files, the destination
address is in the directory of the file entry. This format is clearly inadequate for the
more sophisticated Development Environment planned for Cortland. The major
goal of the Cortland Development Environment is to allow software development in
any of several languages and assemblers, all producing compatible code files which
could be linked together. Therefore, we need a more general format that allows
relocation and supports the various needs of many languages and assemblers.

We investigated many existing Object Module formats and found that the ORCAIM
ProDOS Object Module format was extremely flexible and supported fairly powerful
language features. However, it didn't allow program Segmentation and of course,
the ORCAIM Unker only generated binary code files. Together with Mike
Westerfield, we have come up with an upgraded version of the ORCAIM Object
Module format that will provide the Cortland Development Environment with the
ability to support a wide variety of programming languages as well as support a
dynamic relocatable Segment Loading facility.

The sequential relocation format of the ORCAIM Object Module is excellent for
compilers, assemblers and linkers. However, tests have shown that this format is too
slow for use by a Relocating Loader. So the ORCAIM Object Module Format has
been extended to support a more traditional relocation dictionary that will speed up
the loading process. We therefore have one Object Module Format that supports
language, linker, library and loader requirements that is extremely flexible, easy to
generate and fast to load.

\ Jbject Module Format ERS 00:93
Lou Infeld

5

Apple Confidential
August 6, 1986

Qyeryiew

This ERS defines four kinds of files: Object Files, Library Files, Load Files and Run
Time Library Files.

Object Fiies are the output from an assembler or compiler and the input to a linker.
Object Files must be fast to process, easy to create, independent of the source
language, and be able to support libraries in a convenient way. In the Cortland
development environment, Object Files will additionally support Segmentation of
code and partial assemblies and compiles. They will also support absolute as well
as relocatable program Segments.

Library Files are files containing general program Segments that a linker can search.
Only code needed dUring the link process is extracted from the Library File.

load Files are the output of a linker and contain memory images which a loader will
load into memory. Load Files must be fast to process. In the Cortland
development environment, load Files will additionally be relocatable and support
automatic overlay handling.

Run Time Library Files are load Files that contain general utilities which can be
loaded as needed by a loader and shared between applications.

All four types of files arEr actually files consisting of individual components called
Segments in Object Module Format. However, each uses a subset of the full Object
Module Format. Additionally, different compilers and assemblers will probably use
subsets of the format depending on the requirements and richness of the language.

Object Files, Library Files, Load Files and Run Time Library Files will be
distinguished by their file types:

$81 • for Object Files
$B2 • for Library Files
$B3 • for Load Files
$84 • for Run Time Library Files
$85 • for Shell load Files

(OBJ)
(UB)
(S16)
(RTL)
(EXE)

and Source Files (SRC) will be type $80 and their auxiliary type will represent the
language under which it is to be used. File types $86-$8E are currently reserved for
other types of Load Files such as boot time startup files, desk accessories, tools, etc.

"ibject Module Format ERS 00:93
Lou Infeld

6

Apple Confidential
August 6, 1986

Definitions

The Unker is the program that combines files generated by compilers and
assemblers, resolves all symbolic references and generates a file that can be loaded
into memory and executed.

The System Loader is the part of the Operating System that reads the files generated
by the Unker and loads them into memory (performing relocation if necessary).

Object Files are the output from an assembler or compiler and the input to the linker.

Ubrary Files are files containing general program Segments that the Unker can
search.

Load Files are the output of the Unker and contain memory images which the
System loader will load into memory.

Run Time library Files are load Files that contain general program Segments which
can be loaded as needed by the System Loader and shared between applications.

Shell Load Files are load Files which can only be run from a Shell.

Startup load Files are load Files which ProDOS loads during its startup (e.g. Patch
Files).

Object Module Format is the general format used in Object Files, Ubrary Files and
load Files.

An OMF File is a file in Object Module Format (i.e. an Object File, Ubrary File or Load
File).

A segment is a individual component of an OMF file. Each file contains one or more
Segments.

A Code Segment is a Segment that contains program code that is usually
instructions.

A Data Segment is a Segment that contains program code that is usually data.

A load segment is a Segment in a Load File.

oject Module Format ERS 00:93
Lou Infeld

7

Apple Confidential
August 6, 1986

/
Qbject Module Format

peslgn Goals

o Independent of source language .
o Simple and fast to generate by language
o Simple and fast to process by linker
o Support partial assemblies and compilations
o Support libraries
o Support a wide variety of language facilities
o Support very general relocation information
o Support source debugging
o Support loadable format
o Simple and fast to process by loader
o Conform to an existing format

General

The present ORCAIM 4.0 Object Module format fulfills most of the above goals and
the Jsed Cortland Object Module Format will fulfill all these goals.

Each OMF file will contain one or more Segments. Figure 1 represents the structure
of an OMF file. Each Segment in an Object File is a separate relocatable entity that
contains all the information needed to link it with other Segments. Each Segment in
an Load File is a separate relocatable entity that contains all the information needed
to load it into memory.

.Jbject Module Format ERS 00:93
Lou Infeld

8

Apple Confidential
August 6, 1986

/

(

Segment 1 Header

Segment 1

Segment 2 Header

Segment 2

Segment n Header

Segment n

Figure 1 - OMF File

Each Segment contains a set of records which indicate relocation information or
code images. If the file is an Object File, the Unker will process each record and
generate a Load File containing Load Segments. In this case, relocation information
is embedded within the code data. If the file is in a Load File, the System Loader will
load the code image in the Segment and then process the relocation information
which follows.

Segm$nts in Object Files can be combined by the Linker into a single Segment in
the Load File. For instance, each subroutine in a program can be placed in separate
Code Segments so that each subroutine can be separately compiled. The Linker
can be told to place all the Code Segments into one Load Segment.

Segment Types

To support languages that distinguish program code from data, the Object Module
Format defines both Code Segments and Data Segments. Additionally, since the
Object Module Format supports dynamically loadable Segments, it defines the
concept of Static Segments and Dynamic Segments. Static Segments are to be

!,
" Jbject Module Format ERS 00:93

Lou Infeld
9

Apple Confidential
August 6, 1986

(

loaded at program execution time and are not to be unloaded during execution.
Dynamic Segments are loaded and unloaded during program execution as needed.

There are also several special types of Segments: Jump Table Segment, Pathname
Segment, Library Dictionary Segment, Initialization Segment, Private Segment,
Absolute Bank Segment and Direct Page/Stack Segment.

segment Header

Each Segment in a OMF file contains a Segment Header that contains all the
general information about the Segment, such as its name and length. Segment
Headers allow the Linker to qUickly scan an Object File for the desired Segments
and allows the System Loader to load individual Load Segments. The format of the
Segment Header is illustrated in Figure 2. Following is a detailed description of
each of the fields in the Segment Header.

,bject Module Format ERS 00:93
Lou Infeld

10

Apple Confidential
August 6, 1986

$00

... $04

$08

$OC
$OE
$10

$14

$18

$1C

$20
$22
$24

........ '

$28
$2A

DISPNAME

DISPNAME+$OA

BLKbNT
I

RESSPC,
LEN'GTH

KIND LABLEN
NUMLEN VERSION

BANKSIZE

ORG
I

AdGN
I

f\U\1SEX LCBANK
SEGNUM

ENiRv
I

DISPNAME
DISPDATA..

LOADNAME

"
.l

SEGNAME

,
DISPDATA .

.. Module Format ERS OO:93Flgure
Lou Infeld

2

11

Segment Header-Apple Confidential
August 6, 1986

BLKCNT - This 4 byte field is the number of file blocks that the Segment requires
in the File where each block is 512 bytes. Note that the Segment Header is part of
the first block of the Segment and Segments in the File start on file block boundaries.

RESSPC - This 4 byte field is the number of zero bytes to add to the end of the
Segment. Using this field can significantly reduce the block size of a Segment that
ends with a OS for a large amount of memory. {This field may not be needed.}

LENGTH - This 4 byte field is the memory size that the Segment will require when
loaded. It includes the extra memory specified by RESSPC.

KIND
follows.

- This 1 byte field specifies the type and attributes of the Segment that

Bits 0-4 • type where

$00 • Code Segment
$01 • Data Segment
$02 • Jump Table Segment
$04 • Pathname Segment!
$08 • Ubrary Dictionary Segment
$10 • Initialization Segment
$11 • Absolute Bank Segment
$12 • Direct Page/Stack Segment

Bit 5 • Position Independent (1.yes)
Bit 6 • Private (1.yes)
Bit 7 • Static/Dynamic (O.Static, 1l111Dynamic)

Attributes can be combined with a specific type. For example a Dynamic
Initialization Segment has KINDa$90. A Private Code Segment is an object code
segment whose name is only available to other object code segments within the
same Object File. A Private Data Segment is a object data segment whose labels
are available only to other object code segments within the same Object File.
Absolute Bank Segments are relocatable within a specified bank. Direct Page/Stack
Segments are used to preset the Direct and Stack registers for an application.

LABLEN - This 1 byte field indicates how long each label field will be. If this field
is 0, it indicates that each label field is of variable length with the length specified in
the 1st byte. Note that this field also determines the length of the SEGNAME field of
the Segment Header. However, the LOADNAME field will always be of length 10.
Labels are always left justified and padded with blanks.

NUMLEN - This 1 byte field indicates how many bytes each number field will be.

VERSION - This 1 byte field indicates the version number of the Object Module
Format with which the Segment is compatable. This field should be 1 for the initial
specification of the Object Module Format.

\ ..--Jbject Module Format ERS 00:93
Lou Infeld

12

Apple Confidential
August 6, 1986

· .. .:....

/.'""

BANKSIZE- This 4 byte field indicates the maximum bank size for the Segment. If
this Segment is in an Object File, the Linker will assure that the Segment is not larger
than this value. If this Segment is in a Load File, the System Loader will assure that
this Segment is loaded into a memory segment that does not cross this boundary.
For a 64K bank boundary, this field should be $00010000 (this is the case for Code
Segments on Cortland). A value of 0 in this field indicates that the Segment can
cross bank boundaries.

ORG - This 4 byte field indicates the absolute address where this Segment is
to be loaded in memory. Normally, this field is 0 indicating that the Segment is
relocatable and can be loaded anywhere in memory.

AUGN - This 4 byte field indicates whether this Segment must be aligned to a
particular boundary. For example, if the Segment is to be aligned on page boundary,
this field should be $00000100. If the Segment is to be aligned on a bank boundary,
this field should be $00010000. A value of 0 indicates no alignment is needed.

NUMSEX - This 1 byte field indicates the order of the bytes in a number field. If
this field is 0, the significant byte is first (this is the case for Cortlfnd). If this
field is 1, the .rn.cm significant byte is first.
LCBANK - This 1 byte field indicates in which bank in the Language Card the
segment is to be loaded (Ollllbank 1, 11111bank 2). This field is only meaningful ff the
ORG field is an address in the Language Card area of banks 0,1 ,EO or E1. Note, the
System Loader does not support loading segments into the alternate bank of the
Language Card.

SEGNUM - This 2 byte field is the Segment number. It should correspond to the
relative position of this Segment in the File (starting at 1). This field is used by the
System Loader as a check while searching for a specific Load Segment in a Load
File.

ENTRY - This 4 byte field indicates the offset into the segment which
corresponds to the Entry Point of the segment.

DISPNAME - This 2 byte field indicates the displacement within this Segment
Header corresponding to the LOADNAME field. Currently the value of this field is 44.

- This 2 byte field indicates the displacement within this Segment
Header corresponding to the start of the Segment Body. Currently the value of this
field is 54+LABLEN.

LOADNAME - This field is the name of the Load Segment which will contain the
code generated by the Linker for this Segment. Note that more than one Segment in
a Object File can be merged by the Unker into a single Segment in the Load File.
The length of this field is always 10 bytes long.

\-6bject Module Format ERS 00:93
Lou Infeld

13

Apple Confidential
August 6, 1986

j

SEGNAME - This field is the name of the Segment. It's length is determined by the
LABLEN field.

OISPNAME should be used when referencing LOADNAME and SEGNAME and
DISPOATA should be used when referencing the start of the Segment Body so that
future expansion of the Segment Header will not affect existing software.
LOAONAME and SEGNAME will always be the last two fields in the Segment
Header but new fields may be added after the DISPNAME and DISPDATA fields.

StgmentBody

The body of each Segment is made up of sequential records, each of which starts
with a unique one byte operation code. These records contain either program code
or information for the Unker or System Loader. All names and labels included in
these records are LABLEN bytes long. All numbers, offsets and addresses are
NUMLEN bytes long unless otherwise specified. They also obey the NUMSEX
convention specified. Some records have an expression syntax which has to be
evaluated by the LInker. This expression facility provides an extremely flexible
Linker language. Following is a detailed description of each of the defined Segment
records.

END ($00) • This record indicates the end of the Segment.

CONST ($01-$DF) • This record contains absolute data that needs no relocation.
The operation code specifies how many bytes of data follows.

ALIGN ($EO) - This record contains a number that indicates an alignment
facror. The Unker will insert as many zero bytes as is necessary to move to the
corresponding memory boundary indicated by this factor. The value of this factor is
in the same format as the ALIGN field in the Segment Header and can not be greater.

ORG ($E1) - This record contains a number with which the present location
counter is to be incremented or decremented. If the new location counter is greater
than the old location counter, zeros have to be inserted to get to the new address. If
the new location counter is before the old location counter, but after the start of the
Segment, the location counter is changed but subsequent code overwrites the old
code.

RELOC($E2) • This is a relocation record used in the relocation dictionary of
a Load Segment. It is used to patch an address in a Load Segment with a reference
to another addreSs in the urmt. Load Segment. It contains two one byte counts
followed by two offsets. The first offset is the starting byte to patch relative to the start
of the segment. The second offset is the location of the reference relative to the start
of the segment. The first count is the number of bytes to be relocated and the second
count is a bit shift operator, telling how many times to shift the relocated address
before inserting the result into memory.

\
'--Jbject Module Format ERS 00:93
Lou Infeld

14

Apple Confidential
August 6, 1986

For example, suppose the Unker comes across an instruction like this:

LOA LABI4

where the label "LAB" is a reference to a location in the same Load Segment. If this
instruction is at relative location $100 in the Load Segment and LAB is at relative
location $200 in the Load Segment. The RELOC Load Segment record would look
like this:

$E2
$02
$04
$00000101
$00000200

• 2 bytes to be generated (address)
• address to be shifted left 4 bits
• relative location of address portion of instr
• relative location of LAB

INTERSEG($E3) •. This is an inter-segment relocation record used in the
relocation dictionary of a Load Segment. It is used to patch an address in a Load
Segment with a reference to another address in a different Load Segment. It
contains two one byte counts followed by an offset which is the relative location in the
current segment of the instruction to be patched. Next is a two byte file number, a two
byte segment number and an offset which correspond to the location of an external
reference. The first count is the number of bytes to be relocated and the second
count is a bit shift operator, telling how many times to shift the relocated address
before inserting the result into memory. This record is used for Static as well as
Dynamic Segment references. For Static Segments, the external reference

_j information is that of the Static Segment. But for Dynamic Segments, the external
reference information is for the Jump Table entry that corresponds to the Dynamic
Segment address.

For example, suppose the Unker comes across an instruction like this:

JSl EXT

where the label "EXT" is a reference to a location in a S1atic. Segment. If this
instruction is at relative address $100 within its segment and "EXT" is at relative
address $200 in segment $0005 in file $0002. The INTERSEG Load Segment
record would look like this:

Ubjeet Module Format ERS 00:93
Lou Infeld

15

Apple Confidential
August 6, 1986

$E3
$03
$00
$00000101
$0002
$0005
$00000200

If the external reference is in a Dynamic Segment, the inter-segment reference is to
the Jump Table entry instead of the actual Dynamic Segment. Using the same
example as above, suppose "EXT" is in a Dynamic Segment. The Jump Table entry
that corresponds to the global location "EXT" would look like this:

$0000
$0002
$0005
$00000200
Call to System loader

If the Jump Table segment is in File 1, Segment 1 and the above Call to the System
loader is at relative location $1100 in the Jump Table segment, the INTERSEG
record would look like this:

$E3
$03
$00
$00000101
$0001
$0001
$00001100

.....
INTERSEG records are used with any long address reference to a Static Segment,
but are restricted to JSL instructions to Dynamic Segments.

See the discussion of the Jump Table segment later in this document.

USING ($E4) • This record contains the name of a Data Segment. After this
record is encountered, local labels from that Data Segment can be used in this
Segment.

.
STRONG ($E5) _- This record contains the name of a Segment which needs to
be included during linking even if no external references have been made to it.

GLOBAL ($E6) • This record contains the name of a global label followed by
three 1 byte attribute fields. The label is assigned the value of the current location
counter. The first attribute byte is the number of bytes generated by the line that
defined the label. The second attribute byte is the type of operation in the line that

I

\ __..Jbjeot Module Format ERS 00:93
Lou Inield

16

Apple Confidential
August 6, 1986

("

defined the label. The third attribute byte is the private flag (1 I1111private). The ORCA
Assembler generates the following type attributes:

A Address Type DC Statement
B Boolean Type DC Statement
C Character Type DC Statement
o Double Precision Floating Point Type DC Statement
F Floating Point Type DC Statement
G EaU or GEaU Statement
H Hexadecimal Type DC Statement
I Integer Type DC Statement
K Reference Address Type DC Statement
L Soft Reference Type DC Statement
M Instruction
N Assembler Directiveo ORG Statement
P AUGN Statement
S OS Statement
X Arithmetic Symbolic Parameter
Y Boolean Symbolic Parameter
Z Character Symbolic Parameter

GEaU ($E7) • This record contains the name of a global label followed by
three 1 byte attribute fields and an expression. The label is given the value of the
expression. The three atribute fields are defined in the GLOBAL record description
above.

MEM ($E8) • This record contains two numbers which represent the
starting and ending addresses of a range of memory that must be reserved.

EXPR ($EB) • This record contains a 1 byte count followed by an
expression. The expression is to be evaluated and its value Is truncated to the
number of bytes specified in the count. The order of the truncation is mam significant
to least significant.

ZEXPR ($EC) • This record is the same as EXPR except that if any bytes are
truncated, the Linker must check and make sure they are O.

BEXPR ($ED) • This record is the same as EXPR except that any bytes
truncated must match the corresponding bytes of the location counter. This allows
the Unker to make sure an expression evaluates to ail address in the current bank.

..>bject Module Format ERS 00:93
Lou Infeld

17

Apple Confidential
August 6, 1986

RELEXPR ($EE) • This record is used to generate relative branch values that
involve extemal locations. For example. a "BNE LOC" instruction where LOC is
external will generate this record. The record contains the following components:

Length • 1 byte
Offset· NUMLEN bytes
Expression • variable length

The "Length" indicates how many bytes to generate for the instruction. The "Offset"
indicates where the origin of the branch is relative to the current location counter (1
for Cortland). The "Expression" indicates the destination of the branch.

LOCAL ($EF) • This record is similar to the GLOBAL record except the label
in the record is local. The Unkef ignores local labels in Code Segments and only
recognizes local labels in Data Segments if a USING record has been processed for
that Segment. However, a symbolic debugger would use all of these records.

EQU ($FO) • This record is similar to the GEQU record except the label in
the record is local.

OS ($F1) • This record contains a number indicating how many bytes of
zero to insert at this location counter.

LCONST ($F2) • This record contains absolute data. It is similar to the CONST
records except allows for a much greater number of bytes. The data bytes are
preceded by a number indicating the number of bytes.

LEXPR ($F3) • This record is similar to the EXPR record except that:

1) if the expression evaluates to a single label with a fixed, constant offset AND
2) that label is in another Segment AND
3) that Segment is a dynamic Code Segment

then the Unker must create an entry for that label in the Jump Table Segment. The
Jump Table Segment is defined in the description of Load Files. It provides a
mechanism to allow dynamic loading of Segments as they are needed. Only a JSL

. Instruction should generate this record.

ENTRY ($F4) • This record is used in the Run Time Library Entry Dictionary.
It consists of a 2 byte number and an offset followed by a label. The label is a code
segment name or entry. The number is the Segment Number and1he offset is the
relative location withing the segment of the label.

cRELOC ($F5) • This is the compressed version of the RELOC record. It
contains 2 byte offsets rather than 4 byte. It can only be used if both offsets are less
than $FFFF (65535).

clNTERSEG ($F6) • This is the compressed version of the INTERSEG record. It
contains 2 byte offsets rather than 4 byte and also does not have the 2 byte File

, ..Jbjeet Module Format ERS 00:93
Lou lnfeld

18

Apple Confidential
August 6, 1986

(+)
(-)
(*)
(I)
(MOO)

Number. It can only be used if both offsets are less than $FFFF (65535) and the File
Number associated with the reference is 1 (i.e. Initial Load File). References to Run
Time Library Segments must use the normal INTERSEG records.

\"'-'"

expressions

Several of the Object Module Format records contain expressions. Expressions form
a reverse-polish stack language which can be used to specify extremely flexible
classes of data generation.

Each expression is made up of a series of operators and operands. The operands
represent some form of value, like a constant or label, which must be loaded onto an
evaluation stack.

Operators take one or two values from the evaluation stack, perform some
mathematical or logical operation on them, and place a new value onto the
evaluation stack. The final value on the evaluation stack is used as if it were a single
value in the record. Note that the evaluation stack mentioned above is purely a
programming concept and does not relate to any hardware stack on the computer.

Termination Operator

All expressions end with the termination operator O.

Binary Math Operators

,r Binary math operators take two numbers as signed integers from the top of the
evaluation stack, perform the operation using the two numbers and place the single
integer result back on to the evaJuation stack.

$01 • Addition
$02 • Subtraction
$03 • Multiplication
$04 • Division
$05 • Integer Remainder
$07 • Bit Shifting

The bit shift operator shifts the first number by the number of bit positions specified by
the second number. If the second number is positive, the first number is shifted to the
left, filling with zeros in the vacated bit positions (logical shift). If the second number
is negative, the first number is shifted right, preserving the sign bit as it does so
(arithmetic shift). '

Unary Math Operators

, ---Jbject Module Format ERS 00:93
Lou Infeld

19

Apple Confidential
August 6, 1986

«-)
(>-)
(<> or 1-)
«)
(»
(u or-)

\

/
I
\,

.j

Unary math operators take the number as a signed integer from the top of the
evaluation stack, perform the operation on it and place the integer result back on the
evaluation stack.

$06 - Negation

Comparison Operators

Comparison operators take two numbers from the top of the evaluation stack,
perform the comparison using the two numbers and place the single integer result
back on to the evaluation stack. Each operator compares the number at the Top Of
Stack (TOS) -1 with the number at TOS. If the comparison is true, a 1 is placed on
the stack; otherwise, a zero is placed on the stack.

$OC - Less than or equal
$00 • Greater than or equal
$OE • Not equal
$OF • Less than
$10 - Greater than
$11 • EqUal to

Binary logical Operators

Binary logical operators take two numbers as boolean values from the top of the
evaluation stack, perform the operation using the two numbers and place the single
boolean result back on to the evaluation stack. Boolean are defined as numbers
having the value 0 for FALSE or any non-zero value for TRUE. Logical operators
always return 1 for TRUE.

$08 • AND
$09 - OR
$OA - EOR

(Logical AND)
(InClusive OR)
(EXClusive OR)

Unary logical Operators

Unary logical operators take the number as a boolean from the top of the evaluation
stack, perform the operation on it and place the boolean result back on the
evaluation stack.

$OB • NOT (Complement)

Binary Bit

Binary bit operators take two numbers as binary values from the top of the evaluation
stack, perform the operation using the two numbers and place the single binary result
back on to the evaluation stack. The operations are performed on a bit by bit basis.

$12 - Bit AND
$13 - Bit OR

" \))jeet Module Format ERS 00:93
'-(ou Infeld

20

Apple Confidential
August 6, 1986

.. f

$14· Bit EOR

Unary Bft Operators

Unary bit operators take the number as a binary value from the top of the evaluation
stack, perform the operation on it and place the binary result back on the evaluation
stack.

$15· Bit NOT

l.ocatlon CQunter Operand

The location counter operand ($80) loads the value of the current location counter
onto the top of the stack. Note that the location counter is loaded before the bytes
from the expression are placed into the code stream, so this is the value of the
location counter before the expression is evaluated.

Constant Operand

The constant operand ($81) is followed by a number which is loaded on the top of
the stack.

.Label Reference Operanda

Operand codes $82 to $86 are all followed by the name of a label.

For operand code $83, the value assigned to that label is placed on the top of the
stack.

For operand code $84, the length attribute of the label is placed on the top of the
stack.

For operand code $85, the type attribute of the label is placed on the top of the stack.

See the discussion of label attributes in the description of the GLOBAL Segment
record:
For operand code $86, the count attribute is placed on the top of the stack. The
count attribute is 1 if the label is defined and 0 if it is not.

The operand cOde $82 is the "weak'" reference. The weal(reference is an instruction
to the Linker that asks far the value of a label if nexists. It is not an error if the Linker
cannot find the label. However, the Unker will not load a segment from a library if
only weak references to it exist. If a label does not exist, a 0 is loaded onto the top of
the stack instead of the label's value. This capability is generally used for creating
jump tables to library routines that mayor may not be needed in a particular
program.

Relative Offset Operand

Jbject Module Format ERS 00:93
Lou Infeld

21

Apple Confidential
August 6, 1986

The segment relative operand ($87) is followed by a number which is treated as a
displacement from the start of the segment. Its value is added to the value of the
location counter when the segment started, and the result is loaded on the top of the
stack.

.. ..,.)bject Module Format ERS 00:93
Lou Infeld

22

Apple Confidential
August 6. 1986

1bl1a length
$00 4
$04 2

($06 2

$08 4

/
Ubrary Ales.

Ubrary Files contain Object Segments which the Unker can search for external
references. Any Object Segment, which contains a global definition which was
referenced during the link process, will normally be extracted from the Ubrary File
and added to the output Load Segment that the Unker is currently creating.

Ubrary Files are of type $82 and consist of a Ubrary Dictionary Segment
(KIND=$08) followed by one or more object segments. The body of the Ubrary
Dictionary Segment consists of three LCONST records followed by an END record.
The three LCONST records contain:

1. File names
2. Symbol table
3. Names for symbol table

The File names record is broken up into one or more sub-records each consisting of
a two byte file number followed by a file name in ProDOS format: a length byte
followed by the ASCII characters.

The Symbol table record consists of a sub-record for each global symbol:

Description
Disp into name record to start of symbol name
File number of the file that the name occurred in
Private flag. If true, the name is valid only in the file where
it occurred

Disp to the first byte of the object segment in which the
symbol occurs

Note that the Symbol table record contains no actual symbols but offsets into the
Names record that follows.

The Names record consists of a series of symbol names each with a length byte
followed by up to 255 ASCII characters.

All global symbols that appear in an object segment are placed in the dictionary.
This includes entry points and global equates. Duplicate symbols are not allowed.
Even if the symbol appears inside the segment, the displacement is to the start of the
segment. The information needed is a segment for the linker to link· exact locations
within the segment are resolved by the linker.

The structure of a Ubrary File is slightly different than an object file. In a library file
Segments are not aligned to 512 byte boundaries. Instead of a 8LKCNT, Segment
Headers in a Ubrary File contain a 8YTECNT. .

Ubrary Ales are created from corresponding Object Files by a utility program called
"MakeUb"

, Jbject Module Format ERS 00:93
Lou Infeld

23

Apple Confidential
August 6, 1986

(

(

load FIles

Load Files contain the Load Segments which are moved by the System Loader into
memory. Although they conform to the Object Module Format, they are restricted to a
small subset of that format. This is due to the need to quickly relocate and load the
Load Segments. They can not contain any unresolved symbolic information.

The Segment of KINDa$02 in a Load File is the Jump Table Segment. It contains
the actual calls to the System Loader to load Dynamic Segments. Each time the
Unker comes across a JSL to a label in a Dynamic Segment, it generates an entry in
the Jump Table Segment for this label and replaces the label information with the
corresponding segment information.

The Segment of KINDa$04 in a Load File is the Pathname Segment. It contains a
cross reference between File Numbers and Pathnames which the System Loader
will need to reference Load Segments.

The Segment of KIND:a$10 in a Load File is an Initialization Segment. During the
initial loading of static segments, the System Loader will not only load Initialization
Segments, but will transfer control to them to perform any initialization required by
the Applications program. After an Initialization Segment returns control back to the
System Loader, the System Loader continues the normallnital Load of all the other
Static Segments in the Load File. Note that if a program is ReStarted by the System
Loader, the Initialization Segment will !lQ1 be executed again.

One use of an Initialization Segment is to initialize the graphics environment used
by an Application and to display a nSplash Screen" for the duration of the complete
program load. This type of segment must obey several rules:

1. it must not reference any other segments (no INTERSEG records)
2. it must exit with a "RTLIt.

The format of each Load Segment is basically a loadable binary image followed
optionally by a relocation dictionary. The loadable binary image is a Long Constant
(LCONST) record. The relocation dictionary will contain Relocation (RELOC)

and Intersegment (INTERSEG) records only. DS records to zero fill memory
are also supported.

Load Segments are numbered by their relative location in the Load File where the
first Load Segment is number 1. They also contain a Segment Number in their
headers. These are included as a check for the Loader.

"-.,..Ioject Module Format ERS 00:93
Lou Infeld

24

Apple Confidential
August 6, 1986

(

Jump Table segment

The Jump Table Segment is the Load Segment of type (KIND) $02 in a Load File.
This table is created by the Unker to allow dynamic loading of Code Segments as

\ .. __) they are needed during program execution. The System Loader maintains a list of
Jump Table segments in memory. This list is cafled the Jump Table Ust or Jump
Table for short.

Each entry in the Jump Table corresponds to a JSL call to an external Qnter-
segment) routine in a Dynamic Segment. The Jump Table initially contains entries in
the unloaded state. When the JSL instruction is encountered during program
execution, a jump to the Jump Table occurs. The code in the Jump Table entry in
tum jumps to the System loader. The System Loader figures out which segment is
referenced and loads It. After the System Loader loads the referenced segment, it
changes the entry in the Jump Table to the loaded state. The entry stays in the
loaded state as long as the corresponding segment is in memory. If the System
Loader unloads a segment, all Jump Table entries that reference that segment are
changed to their ynloadf'.J:[states.

The unloaded state of a Jump Table entry contains the actual code to call the System
Loader to load the needed Segment. A typical entry will look like this:

UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
jsl Jump Table Load Function

where the Load File Number, Segment Number and Offset refer to the location of the
extemal reference. The rest of the entry is a call to the System Loader Jump Table
Load function. The UserlD and the actual address of the System Loader function
will be patched by the System Loader during Initial Load. A Load File Number of 0
indicates that there are no more entries in 1JJia Jump Table Segment.
The loaded state of a Jump Table entry Is very similar to the unloaded state except
that the JSL to the System Loader Jump Table Load function is replaced by a JML to
the external reference. A typical Joaded entry would look like this:

UserlD (2 bytes)
Load File Number (2 bytes)
Load Segment Number (2 bytes)
Load Segment Offset (4 bytes)
jml external reference

. }bjeet Module Format ERS 00:93
'-(ou Infeld

25

Apple Confidential
August 6, 1986

\- /...._.

flthname segment

The Pathname Segment is the Load Segment of type (KIND) $04 in a Load File.
This table is created by the Unker to help the System Loader find the Load
Segments of Run Time Libaries that need to be loaded dynamically. It provides a
cross reference between File Numbers and File Pathnames.

The Pathname Segment contains one entry for each Run Time Library File
referenced by the rest of the Load Segments. The format of each entry is:

File Number ·(2 bytes)
File Date (2 bytes)
File Time (2 bytes)
Pathname (Pascal string)

where:

eif1le Number" is a number assigned by the Linker for a specific Load File. File
number 1 is reserved for the Load File in which the Pathname Segment resides
(usually the application Load File). A File Number of 0 indicates that there are no
more entries in this segment.

The "File Date" and "File Time" are ProDOS directory items that the Linker retrieved
during the link process. The System Loader will compare these values with the
ProDOS directory of the Run Time Library File at run time. If they donlt compare, the
System Loader will not load the requested Load Segment. This facility guarantees
that the Run Time Library File used crt link time is the Run Time Library File
loaded at execution time.

The Pathname may be a partial pathname. ProDOS 16 supports 8 prefixes, three of
which have fixed definitions:

01 • System prefix (initially Boot volume)
11 • Application subdirectory (out of which the application is running)
2J • System Library Subdirectory- (initially IBOOT/SYSTEMILIBS)

-- --Dbject Module Format ERS 00:93
Lou Infeld

26

Apple Confidential
August 6, 1986

BunDme Ubl'lry BIn
Run Time library Files ($84) contain dynamic Load Segments which the System
Loader can load as they are referenced through the Jump Table. Usually, these
files contain general routines that can be shared by more than one application.

Run Time library Files are also scanned by the Linker during the link process. When
the Wnker finds a segment referenced in the Run Time library File, it does .QQ1 extract
the segment out of the File as is the case with library Files. Instead, the Unker
generates an INTERSEG reference to the segment for the Loader to resolve and
adds an entry to the Jump Table segment This is the same thing the Unker does
when it encounters a reference to a Dynamic Segment in any Load File.

The information that the linker needs to find referenced segments is contained in the
Jast Load Segment. This segment contains a table of ENTRY ($F4) records
corresponding to each Segment Name and global Entry included in the whole Run
Time library File.

Run Time Ubrary Files at load time must reside in the subdirectory that was specified
during link time. The pathname of the Run Time library File is actually stored in the
Pathname Segment in the Load File of the application program.

Run Time Ubrary Files are created by the Linker from the corresponding Object Files.

(,

'\bject Module Format ERS 00:93
...ou Infeld

27

Apple Confidential
August 6, 1986

Shell LOld FIles

Shell files are Load Files with the file type $85. They are intended for execution by
a shell that supports standard input and output, and can be launched alternatively by
ProDOS (via the QUIT command) or manually loaded by the shell.

Shell files expect that the launching program has established some form of TTY input
and output, accessible via the global i/o hooks. ProDOS should do this for $85 file
types by pointing to the Pascal drivers for the 80-eolumn screen and keyboard. If
they require any support other than TIY i/o and Text tools calls, they need to check
the shell identifier string to see if the appropriate environment is in place. If the shell
environment does not support the application, it should exit with an error message
displayed on the standard error output.

The identifier string (and the input line) is pointed to by the X (high word) and Y (low
word) registers on entry. ProOOS, which does not support the identifier string or
input line, will pass zeroes in X and Y when it launches a program. The area
.pointed to by these registers consists of an eight-eharacter shell identifier, followed
by a null terminated string, which should be the complete input line as the shell
program is supposed to see it. It would be permissible, for example, for the calling
shell to remove input and output redirection and pipeline symbols, but the command
name and all parameters must be passed on. The User 10 is passed in the
accumulator.

(

If the program gets its own User 10 for any reason, it is responsible for intercepting
the RESET vector and interrupts to insure that control can never pass back to the
shell before it gets a chance to dispose of resources associated with that User 10.
The practice of asl<ing for a second User 10 is highly discouraged.

On exit from the program, the accumulator must be set to an error code. A zero
indicates that no· error occurred, While any other value signals an error. Some shells
may specify what the various error numbers mean. The error $FFFF is reserved as a
non-specific error for all shells, and should be recognized as such if error-trapping is
supported.

Programs should exit via the ProDOS QUIT call. If the shell has manually launched
the program, it is responsible for intercepting the QUIT call (Which means checking
aU ProOOS calls) so that ProDOS does not process the QUIT. (CPW is an example
of a program which does this.)

Shells should observe ProDOS conventions for register initialization and bank zero
allocation for applications without Direct Page/Stack Segments. (i. e., initialize 1K
bank zero region.)

.......Jbject Module Format ERS 00:93
-Lou Infeld

28

Apple Confidential
August 6, 1986

(

ReferenceS

"System Loader ERS" by Lou Infeld - Apple Computer
"ProDOS ORCAIM User's Guide" - The Byte Works
"Cortland Programmer's Workshop Core" - The Byte Works
"The Tool Locator ERS", by Steve Glass - Apple Computer

--.Jbject Module Format ERS 00:93
Lou Infeld

29

Apple Confidential
August 6, 1986

	v1_04_01
	v1_04_02
	v1_04_03

