
COni:OCi:_~ITU©o~
the user group newsletter tlappla computar 1nc. may 1978

~ h~~~'GROUPS
Apple is
springing up all over
Local APPLE II User Groups have begun to
spring up all over the world. In an effort to
support them, we will publish information
on the ones we know about. If you are
part of a club that isn't mentioned here,
drop us a line and we'll tell the world
about you. If there is no group in your
area and you want to start one, talk to
your APPLE dealer. Chances are he knows
most of the local APPLE II owners, and
can help bring them together for your
kickoff meeting. He might even want to
host the meetings on a continuing basis.
Ask him.

Here are the groups we know about:

APPLE USER GROUP
CARR ELECTRONICS CORP.

5811 Geary Blvd.
San Francisco, CA 94121
Bruce Tognazzini
(415) 668-4243

APPLE PUGET SOUND PROGRAM
LIBRARY EXCHANGE

6 708 39th Ave. Southwest
Seattle, Wash., 98136
Val Golding
(206) 93 7-6588 (home)
(206) 623-7966 (work)

APPLE CORE
AVIDD ELECTRONICS

2210 Bellfower Road
Long Beach, CA 90815
(213) 598-0444

APPLE USER GROUP
DATAMART INC.

3001 N. Fulton Drive
Atlanta, GA 30305
Preston Love
(404) 266-0336

In addition to the above groups
which are oriented around the
APPLE II, there is an APPLE I User
Group. For information write to:

Joe Torzewski
51625 Chestnut Road
Granger, IN 46530

I

LOOKING
AHEAD

Curing the
Apple II itch

In case you are itchy to add to your
APPLE II system (or even just to learn
more about it), here's what's coming up.

BASIC PROGRAMMING MANUAL· This is a
beginner's guide to the Apple BASIC
complete with lots of examples and illus
trations. It will be mailed to all users who
have warranty cards on file with us, start
ing late this month.

COMMUNICATIONS CARD-A card that
lets your APPLE II talk over the phone with
other computers will become available
in April. For $180, this intelligent interface
will allow the computer to control any
110 or 300 baud serial device through
an industry standard RS-232C interface
port. Look for a data sheet in the next
newsletter.

NEW APPLESOFT-It's coming, and it's
going to be great! The new APPLESOFT
fixes bugs in the existing version, and
adds features such as data save/load,
high-resolution plotting capability, ON
ERR GOTO capability, and much more.
It wil be available on cassette in May at
$20. The ROM version, on a plug-in card
(for slot #0), will be out in June at $99.
The card will have a switch to allow you

to choose between Apple BASIC and
APPLE SOFT.
FLOPPY DISK-The new mini-floppy should
be on dealers' shelves by early July, at a
price of less than $700 for the controller
card and one drive. (Each card will
handle up to two drives.) The software,
which works with either version of BASIC,
will be able to load and store named
files and provide disk directory lists. Look
for more details two issues from now.
SERIAL INTERFACE CARD-This is a high
speed (to 9600 baud), programmable
serial interface; designed to connect fast,
half-duplex devices (printers, plotters,
etc.) to the APPLE II. More details will be
available two issues from now, and the
device itself will be out in July. No price
has been set.

(~I f> EDITORIAL by Phil Roybal, Marketing Mgr.

A funny thing happened on the way here . . • •

This is the first of an irregularly published series of newsletters aimed at
filling you in on what's happening at Apple; and at soliciting the feed
back, product ideas, and people we need to service you, our customer
base. In the past, we occasionally let our enthusiasm carry us away.
It is often easy to forget how difficult it is to actually bring quality
products into production. (And that's especially true when you're dou
bling in size every few months and still can't hire people fast enough to
do everything that needs doing.) But on the way here, we've learned
a bit. And we realize success hinges upon meeting commitments. So
from now on, you'll see more conservative schedules from us; and we'll
usually beat them.

This newsletter marks the start of an official APPLE II User Group: one
that we trust will grow stong and healthy this year. But there's a lot of
work yet to do. A major portion of it has to do with classifying and
documenting all the software we have received over the past months.
It really hasn't been lost, All 200 tapes are sitting in a box, waiting for us
to look at them. While our goal was to publish a software list, descrip
tion of the Software Bank, and Contributor's Form with this newsletter,
we started too late. Instead it'll be in the next newsletter. For sure.

Apple Computer has grown from two men in a garage to 40 people
in a modern 20,000 square foot building, in less than two years. You
made that possible, and we thank you. In the coming year we will
continue to earn your support; and to actively solicit your inputs so
that our efforts stay on target. It is important to us. We learned that on
the way here.

PATCHES
AND
PROGRESS

Too many gosubs
From time to time, we turn up a pro

gram bug. Although the fixes are incor
porated into future versions of the pro
gram, often they are simple enough that
users can "patch" their present programs
to get improved performance. Here are
patches for two popular programs:
CHECKBOOK and APPLESOFT.

CHECKBOOK CHANGES· These changes
will make the CHECKBOOK program more
efficient, as well as eliminating the "TOO
MANY GOSUBS" error message that oc
casionally crops up. Changed sections
are underlined.

APPLESOFT CHANGES-The following
patches to APPLESOFT will fix problems
associated with the FRE, END, and DIM
statements; and will allow the language
to handle long program lines. The
changes are made with a series of
POKEs. They can be done from the com-

CHECKBOOK Program Changes

LINE# FROM
LIST O, 32767

1111 PRINT A

1221 C=S1 · VTAB L CALL -958 : IF
C< Z THEN~ IF C>9999 THEN
1225 D<O>=C E=4 . GOSUB 7 . GOTO
1230

1360 PRINT "FROM CHEO\ It" ; D < 5 >, " TO C
HECK !t" ; D<6> GOSUB 9 CALL
Z BALI=D(O) . BALF=D<2 >: RBI =D<
3) RBF D<4> RETURN

1629 IF RBF <-99 THEN RBI-RBI-0 . IF
RBF > Z THEN RBI=RBI.:;,O RBF=<RBF-
100> MOD 100

1810 GOSUB 6 :,.._T=12 T1=32 · FOR L=3
TO 17 IF P >=CM THEN 1840

18 15 GOSUB 30
1860 -IF L$='"' THEN 1810 : IF L$="R"

THEN ~· IF L$="M" THEN
2440 . IF L$="L" THEN 1870 VTAB
L TAB 0 GOSUB 22 . GOTO 1842

d250 T=12 T1=32 VTAB L . TAB 0 GOSUB
2 GOSUB 11 SL=B . B~T GOSUB
5 · PRINT " " ; C$; L=L+O : P=P
S-S . BALI=BALI+R <10> : BALF=BALF+
R(11> GOSUB 1427 RETURN

2296 GOTO 1100
2620 D<O>-BALI : D<2>=BALF D<3>=RBI :

D<4>=RBF P=LM GOSUB 2 INPUT
"START RECORDING, THEN HIT RETUR
N", L$

mand mode, or incorporated right into
your program.

CHANGES
ARRAY INDEXING PROBLEM FIX:
POKE 6331,32: POKE 6332,150: POKE
6333,41: POKE 6334,234
POKE 10646,133:POKE 10647,177: POKE
10648,162: POKE 10649,5: POKE
10650, 165: POKE 1 0651,132: POKE
10652,96

LONG LINE FIX:
POKE 3050,234
POKE 3054,136
POKE 3055,145
POKE 3056, 158
POKE 3057,208
POKE 3052,251

'END' STATEMENT FIX:
POKE 2048,21 0

FRE () FUNCTION FIX:
POKE 6143,5

APPLESOFT MANUAL CORRECTION-a
small typesetting disaster left us with an
incomprehensible example on page 22
of the APPLESOFT Manual. The example
should read as shown on page 4.

TO
LIST 0, 32767

1111 PRINT :J:EQ_

1221 C=S1 . VTAB L . CALL -958 : IF
C<Z THEN RETURN IF C) 9999

THEN 1225 · D<O>=C E=4 GOSUB
7 . GOTO 1230

1360 PRINT "FROM CHECK It" ; D<5);" TO C
HECK #";D(6) GOSUB 9 CALL
Z RETURN

1629 IF RBF <-99 THEN RBI=RBI-0 IF
RBF>Z THEN RBI=RBI+O RBF=<RBF-
100) MOD 100 ==

1810 GOSUB 6 . GOSUB 30 T=12 T1=32
FOR L=3 TO 17 IF P>•CM THEN

1840
1815 REM DELETE THIS LINE ENTIRELY
1860 IF L$-"" THEN 1810 . IF L$-"R"

THEN RETURN IF L$="M" THEN
2440 . IF L$-"L" THEN 1870 : VTAB
L TAB 0 : GOSUB 22 GOTO 1842

2250 T=12 T1=32 VTAB L TAB 0 GOSUB
2 GOSUB 11 : SL=B . B=T · GOSUB
5 PRINT" ";C$; : L=L+O : P=P-
S-S BALI=BALI+R<10> : BALF=BALF+
R (11) : GOSUB 1427

2251 IF L<23 THEN RETURN
2252 INPUT "TYPE 'R' TO RETURN TO THE

MENU, ' RTN' TO CONTINUE SEARCH I
NG", C$ IF__.C_!_'-"R" THEN RETURN

GOTO 2235
2296 RETURN
2620 P-LM : GOSUB 2 INPUT "START RECO

RDING, THEN HIT RETURN", L$

APPLESOFT Manual Correction

100 DIM A$<15>
110 FOR I=1 TO 15:READ A$<I>:NEXT I
120 F=O : I=1
130 IFA$<I><=A$<I+1) THEN 180
140 T$=A$(I+1)
150 A$(I+1>=AS<I>
160 A$<I>=T$
170 F=l
180 I= I+ 1 : IF I<: 15 GOTO 130
190 IF F=l THEN 120.
200 FOR I=1 TO 15:PRINT AS<I> : NEXT I
220 DATA APPLE, DOG, CAT,RANDOM,COMPUTER,BASIC
230 DATA MONDAY, "***ANSWER***"• "FOO: II

240 DATA COMPUTER,FOO,ELP,MILWAUKEE,SEATTLE,ALBUGUERGUE
]

~HOW
~TO

Problems
and solutions

Part of a personal computer's charm
lies in the fact that it is a creative tool. "
Each person uses it differently, to accom
plish different goals. Unfortunately, this
makes it difficult to write a manual that
adequately covers everything a person
might want to do with his system. The
HOW TO section is therefore devoted to
answering questions the manuals missed.

LOADING MACHINE LANGUAGE AS PART
OF A BASIC PROGRAM

Often we want to include machine
language data inside a BASIC program.
A great many Apple tapes are made up
this way to simplify the loading process.
Here's a recipe for doing it yourself with
programs written in Apple BASIC.

Apple BASIC loads programs into
memory with the highest program line
at the highest RAM location (HIMEM).
Preceeding lines are located lower and
lower in RAM. The beginning of the pro
gram is at PP, an address which is held
in memory locations CA and CB (hexa
decimal), or 202 and 203, decimal. When
you type SAVE, the computer transfers to
tape everything between PP and HIMEM.
Thus, to tuck machine language into your
program so that it can later be loaded

like BASIC. it is merely necessary to move
the PP pointer down below the beginning
of the extra code, put in two POKES to
reset the pointer before running the pro
gram, and type SAVE. Later, you will be
able to LOAD the whole thing just as if it
were all BASIC. Just follow these steps:
1. Get the BASIC program into memory,

just the way you want it. If you make
any changes, you must re-do steps 2
and 6.

2.1n the command mode, type:
PRINT PEEK (202), PEEK (203) and write
down the results. Let's call them m and
n, respectively.

3. Load your machine language code
into memory using the monitor
load capability (xxxx.wwR). This will put
the machine language program into
memory below the beginning of the
BASIC program, starting at hexa
decimal address xxxx.

4. Take the starting address of the
machine language program and
divide it into two parts: xx/xx. Convert
each pair of digits from hex to decimal
values: a & b; corresponding to the
left and right xx pairs, respectively.
Write them down.

5. Now enter the BASIC command mode
and type:
POKE 202, b-1 (value b from step 4,
above)
POKE 203, a (value a from
step 4, above
POKE 204, 00
POKE 205, 8

6. You have now moved the pointers
down below your machine language
program, and must insert code to move
them back again when the program

is run. To do that, type:
0 POKE 202.m: POKE 203.n: GOTO q
where m and n are the values
from Step 2, and q is the first line
number in your BASIC program.
That line number can be 0-it will not
be erased by the above entry.

7. Now you're done! Don't try to list your
program before running it, because all
you'll see is a meaningless set of num
bers and symbols. Just type SAVE (be
fore running the program), and it will
all go onto tape. Late a LOAD com
mand will bring it all back in.

CAUTION!
Once you have RUN such a program,

you cannot SAVE it, for the pointers will
have been moved. You can only save or
copy a program like this before it has
been RUN.

PRINTING LOWER-CASE LETTERS WITH
APPLE II

APPLE II cannot presently display lower
case characters on the screen, but it has

Lower Case Character Generating Program

I_IST

no trouble printing them on most printers.
To create a string of lower-case charac
ters, simply generate the string in upper
case at a known memory location; and
then go through and add 32 to the ASCII
value of each upper-case letter. That will
produce the lower-case ASCII equivalent.
If you then shove the modified code
back into the string variable in place of
the old value and print the string, you will
print lower case characters.

As you convert the string, you must test
each character to see that it is not a
numeral, punctuation, etc. Obviously, only
alphabetic characters can be converted
to lower-case. Here's a sample program
that does the job.

This program works because, by de
fining AS first, we know its absolute
address in memory. Its first letter is stored
in address 2053. (If this program were to
be converted to APPLESOFl we would
have to manipulate our characters
entirely through the string routines, since
we cannot accurately locate the string
in memory.)

10 DIM A$(80> : REM BUFFER .. . MUST BE FIRST VARIABLE DEFINED IN PROGRAM
20 INPUT "ENTER DATA",A$

:>

30 FOR I=l TO LEN<A$l
40 C= PEEK <2052 +1) : REM SET C=ASCII VALUE OF "I TH" CHARACTER OF A$
50 IF C< 193 THEN 7 0 REM TEST FOR A NON-ALPHABETIC CHAR . IF FOUND, DO NOTHING.
60 POKE 2052+I,C+32 . REM CONVERT LETTER TO LOWER CASE AND INSERT BACK INTO A$.
70 NEXT I
80 CALL -936: REM CLEAR SCREEN
90 PR#l REM TURN ON PRINTER

100 PRINT"": REM CTRLII 80 N SETS LINE LENGTH TO 80 CHAR.
110 PRINT A$
120 PRINT "" : REM CTRL/I 40 N RESET

5 LINE LENGTH TO 40 .
130 PR#O REM TURNS OFF PRINTER .
140 END

RUN
ENTER DATATHIS IS AN EXAMPLE OF HOW TO PRINT LOWER -CASE LETTERS

this is an example of how to print lower-case letters .

Making sense out of
wonderful features
that no one understands

Occasionally we document some won
derful feature in such a way that nobody
understands it. As we identify those areas
(recognizable by the stack of associated
phone messages), this column will
attempt to clarify them.
24K SYSTEM PROGRAM LOADING

Normally, entering BASIC with the Be
command resets the pointers to high and
low memory (HIMEM & LOMEM), so that
the monitor knows where to begin
loading programs. However, 24K systems
need a little human help to set the
HIMEM pointer. Therefore, before loading
or keying in programs, enter BASIC in
the command mode and type:
HIMEM:245 76

When this step is omitted, the system
believes it has a 32K memory to work in.
Since BASIC programs are loaded starting
from the top of memory, they tend to fall
into the bit bucket and disappear
forever
PROGRAM LISTING WITH THE TTY
PRINTER ROUTINE

The hardware/software nY interface
described on page 114 of the APPLE II
REFERENCE MANUAL provides an inexpen
sive method of printing on a nv (output
only). The example on page 116 shows
how commands can be incorporated
into a BASIC program to produce hard
copy output.

Unfortunately, we left out an example
of how to LIST a program on the nv.
Here's how. Just enter the command
mode of BASIC and type:

CALL 880
LIST
PR #0

That sequence will enable the nY, list
the program, and then return output to
theN screen.
USING THE HI-RES ROUTINES

A section of the new REFERENCE
MANUAL describes the HI-RES plotting
routines and mentions that they are

available in ROM and on tape. Although
the ROM's aren't available yet, many
people don't know that they have the
routines on tape already. These programs
are the machine language load at the
start of the HI-RES DEMO tape. If you load
the machine language part and then
skip loading the BASIC demo program,
you will have the routines in memory
to work with.

While use of most of the programs is
straightforward, the SHAPE routine gives
some people problems because they
don't see how to build and use a shape
table. Here's an explanation.

The SHAPE routine reproduces a figure
from a set of instructions (the shape
table) stored somewhere in memory. But
it has to know where to find that table.
It has been written to assume that the
shape table begins at an address which
is pointed to by memory locations 804
and 805. What you insert in those loca
tions depends upon where you built your
shape table.

Let's use the table example given in
the REFERENCE MANUAL (page 53) to
illustrate how to build and use the table.
Here are the steps to follow:
1. Load the HI-RES routines into memory

(COO.FFFR).
2. Build the shape table in memory, using

the monitor. Let's arbitrarily start at
address 900 hex, and fill in the data
sequentially, just as shown in the
manual : *900:12 3F 20 64 2D 15
36 1 E 07 00
This will put the table above BASIC's
variable space and below the bottom
of a BASIC program.

3. Insert the shape table starting address
into memory locations 804 and 805, as
shown in line 10 of the sample program
that follows. (For more details, see the
explanation in the HOW TO section
under LOADING MACHINE LANGUAGE
PROGRAMS). Then insert informa
tion on color, scale, rotation, etc. , into
the other memory locations specified
in the REFERENCE MANUAL.

A BASIC Program Using a Shape Table

L I STS CALL 3072 REM INI TI AL IZE HI - RES ROUTINES
10 POKE 804 , 0 POKE 8 0 5 , 9 REM SHAPE TABLE POINTERS
20 POKE 28 , 170 REM COL OR CHOICE
30 POKE 806 , 1 · REM SCALE FACTOR
40 POKE 807,0 REM ROTAT IO N FACTOR
50 POKE 800, 100 POKE 8 0 1. 0 REM SET X LOCATION
6 0 POKE 802, 100 REM SET Y LOCATI ON
70 CALL 3761 REM POS ITI ON CENTER OF PLOT
8 0 CALL 3805 REM CALL SHAPE ROUTINE
90 END

BITS
AND PIECES

New modulator means
no more wavy lines

Some APPLE II users have noticed wavy
lines or color patches on their 1V screens
caused by radiation from airplanes,
motors, or the computer itself. A UHF
modulator which operates at Ch. 33 in
stead of Ch. 3 seems to solve these
problems neatly. The new device, called
the Sup-R-Mod II, will be available in
April at $29.95, from

M&R ENTERPRISES
P.O. Box 1011
Sunnyvale, CA 94088
The new modulator comes completely

assembled, ready to plug into the
APPLE II.

Calling all
interface card designers

Now that several other companies
have begun to market interfaces for the
APPLE II, a word on our design philosophy
is in order.

We are very interested in any devices
that plug into APPLE II, and are generally
happy to provide information to pros
pective manufacturers. (Just write and
ask for our Prototyping Board Write-up).
Our own philosophy is to build devices
that are intelligent (have all control
routines in on-board ROM) and are slot
independent. However, we must some
times compromise because of design
considerations in the system.

Therefore, we have made the following
restrictions on slot assignments:
SLOT # ASSIGNMENT
0 APPLESOFT BASIC ROM Card
6 Second Disk Controller Card
7 First Disk Controller Card

In addition, slots 4 and 5 are tentatively
reserved for products that may have to
be slot-dependent. Therefore, other
manufacturers should design peripherals
which are either completely independent
of slot number, or will work in slots 1-3. In
this way they will avoid possible conflicts
with existing or proposed Apple
Computer products.

tlappk! computc!r 1nc:
10260 Band ley Dnve

Cupert1no. Cal1forn1a 95014
(408) 996-1010

•

