T

"“}

rrgsossen— Anple [Igs GS/OS Reference

Software Version 5.0
and Later by Apple Computer, Inc.

Open
500 — pCount
$02 — refNum
pathname .
>2Time
questAccess
sourceNumber !
List
access
fileType DataBuffer —j§ pCount
500 [B
refNum
$02 access auxType
— refNum - cquestCount —]
fileType taBuff
storageType Used FESERSSE
auxType
ansferCount
questCou
createDateTime
storageType chePriority
Blocks transferCon
eof
s]

$10

cachePrior:

$14

— resourceEOF

]

®.
rrasossmen Apple 11GS® GS/OS® Reference

Software Version 5.0
and Later

A
vV

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

& APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc. Printed in the
United States of America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010 '

Apple, the Apple logo, AppleLink,
AppleShare, AppleTalk, Apple IIGS,
Disk II, DuoDisk, GS/OS, LaserWriter,
Lisa, Macintosh, MPW, ProDOS, and
SANE are registered trademarks of
Apple Computer, Inc.

APDA, Apple Desktop Bus, APW,
Finder, ProFile, QuickDraw, and
UniDisk are trademarks of

Apple Computer, Inc.

IBM is a registered trademark of
International Business Machines
Corporation.

ITC Garamond and ITC Zapf
Dingbats are registered trademarks of
International Typeface Corporation.

M@crosoft is a registered trademark of
Microsoft Corporation.

POSTSCRIPT is a registered trademark,

and Illustrator is a trademark, of
Adobe Systems Incorporated.

Sony is a registered trademark of
Sony Corporation.

Simultaneously published in the
United States and Canada.

ISBN 0-201-55020-2
ABCDEFGHIJ-MU-90
First printing, June 1990

LIMITED WARRANTY ON MEDIA AND REPLACEMENT

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESEN-
TATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO
THIS MANUAL, ITS QUALITY,
ACCURACY, MERCHANTA-
BILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“A§ IS,” AND YOU, THE
PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to
make any modification, extension,
or addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

Introduction

Contents

Figures and tables / xvii

Preface / xxi

About this book / xxii

How to use this book / xxii
Other materials you'll need / xxiii
Visual cues / xxiv
Terminology / xxiv
Language notation / xxv

Roadmap to the Apple IIGs technical manuals / xxv
Introductory Apple 1IGS manuals / xxviii
Apple IIGS machine reference manuals / xxviii
Apple IIGS toolbox manuals / xxix
Apple IIGS operating-system manuals / xxix
All-Apple manuals / xxix
The APW manuals / xxx
The MPW IIGS manuals / xxx
The AppleShare programmer’s manual / xxxi
The debugger manual / xxxi

What Is GS/0S? / 1

The components of GS/OS / 2

GS/OS features / 4
File system independence / 4
Enhanced device support / 4
Speed enhancements / 5
Elimination of ProDOS restrictions / 5
ProDOS 16 compatibility / 5

Where to find call descriptions / 5

GS/OS system requirements / 7
The development of GS/OS / 8

Part I The Application Level / 11

1 The GS/0S Abstract File System / 13

A high-level file system interface / 14
Classes of GS/OS files / 16
Directory files / 16
Standard files / 17
Extended files / 17
Filenames / 17
Pathnames / 18
Full pathnames / 18
Prefixes and partial pathnames / 19
Prefix designators / 20
Predefined prefix designators / 21
File information / 22
File access / 22
File types and auxiliary types / 22
EOF and mark / 23
Creation and modification dates and times / 24
Character devices as files / 25
Groups of GS/OS calls / 26
File access calls / 26
Volume and pathname calls / 28
System information calls / 28
System control calls / 29
Interrupt and device calls / 29

2 GS/0S and Its Environment / 31
Apple IIGS memory / 32
Entry points and fixed locations / 33
Managing application memory / 34
- Obtaining application memory / 35
Accessing data in a movable memory block / 35
Allocating stack and direct-page space / 36
Automatic allocation of stack and direct-page space / 37
Definition during program development / 37
Allocation at load time / 38
GS/OS default stack and direct-page space / 38

iv Apple TIGS GS/OS Reference

GS/OS and interrupts / 39

A new state of awareness / 40

System startup considerations / 40
Quitting and launching applications / 42

Specifying whether an application can be restarted from
memory / 42

Specifying standard prefixes / 42
Specifying the next application to launch / 43
Specifying a GS/OS application to launch / 43
Specifying a ProDOS 8 application to launch / 43
Specifying whether control should return to your application / 44
Quitting without specifying the next application to launch / 44
Launching another application without returning / 45
Launching another application and returning / 45
Machine state at application launch / 45
Machine state at GS/OS application launch / 46
Machine state at ProDOS 8 application launch / 47
Pathname prefixes at GS/OS application launch / 47
Pathname prefixes at ProDOS 8 application launch / 49

Making GS/0S Calls / 51
GS/0S call methods / 52
Calling in a high-level language / 52
Calling in assembly language / 52
Making a GS/OS call using macros / 53
Making an in-line GS/OS call / 54
Making a stack call / 54
Including the appropriate files / 55
GS/OS parameter blocks / 56
Types of parameters / 56
Parameter block format / 56
GS/OS string format / 57
GS/0S input string structures / 58
GS/OS result buffer / 58
Setting up a parameter block in memory / 59
Conditions upon return from a GS/OS call / 60
Checking for errors / 61

Contents

4 Accessing GS/OS Files / 63

An overview of simple file access / 64

Creating a file / 65

Opening a file / 65

Sharing open files in an AppleShare environment / 66
Allowing single users to open the file for reading and writing / 67
Allowing multiple users to open a file for reading / 68
Allowing multiple users to open a file for reading and writing / 69
Using the @ prefix / 69

Working on open files / 70
Reading from and writing to files / 70
Setting and reading the EOF and mark / 70
Enabling or disabling newline mode / 71
Examining directory entries / 71
Flushing open files / 71
Closing files / 71

Setting and getting file levels / 72

Working on closed files / 72
Clearing backup status / 73
Deleting files / 73

Setting and getting file characteristics / 73

Changing the creation and modification dates and times / 74

Copying files / 75

Caching files / 76

Using the write-deferral mechanism / 77

5 Working With Volumes and Pathnames / 79
Volumes / 80
Getting volume information / 80
Building a list of mounted volumes / 80
Getting the name of the boot volume / 80
Formatting a volume / 81
Pathnames / 82
Setting and getting prefixes / 82
Changing the path to a file / 82
Expanding a pathname / 82
Building your own pathnames / 83
Devices / 83
Device names / 83

vi Apple 11GS GS/OS Reference

Block devices / 84
Character devices / 84
Direct access to devices / 85
Device drivers / 85

6 Working With System Information / 87
Setting and getting system preferences / 88
Checking FST information / 88
Finding out the version of the operating system / 89
Getting the name of the current application / 89
Getting reference numbers and information / 89
Getting the current device number / 90
Working with the notification queue / 90
Using the optionList parameter / 92

7 GS/0S Call Reference / 93

The parameter block diagram and description / 94

$2034 AddNotifyProc / 95

$201D BeginSession / 96

$2031 BindInt / 97

$2004 ChangePath / 98

$200B ClearBackupBit / 100

$2014 Close / 101

$2001 Create / 102

$202E DControl / 106
ResetDevice (DControl subcall):/ 108
FormatDevice (DControl subcall) / 108
EjectMedium (DControl subcall) / 109
SetConfigParameters (DControl subcall) / 109
SetWaitStatus (DControl subcall) / 110
SetFormatOptions (DControl subcall) / 111
AssignPartitionOwner (DControl subcall) / 113
ArmSignal (DControl subcall) / 114
DisarmSignal (DControl subcall) / 114
SetPartitionMap (DControl subcall) / 115
Device-specific DControl subcalls / 115

$2035 DelNotifyProc / 116

$2002 Destroy / 117

Contents

vii

$202C DiInfo / 119

$202F DRead / 123

$2036 DRename / 125

$202D DStatus / 126
GetDeviceStatus (DStatus subcall) / 128
GetConfigParameters (DStatus subcall) / 129
GetWaitStatus (DStatus subcall) / 130
GetFormatOptions (DStatus subcall) / 130
GetPartitionMap (DStatus subcall) / 134
Device-specific DStatus subcalls / 134

$2030 DWrite / 135

$201E EndSession / 137

$2025 EraseDisk / 138

$200E ExpandPath / 140

$2015 Flush / 142

$2024 Format / 143

$2033 FSTSpecific / 145

$2028 GetBootVol / 146

$2020 GetDevNumber / 147

$201C GetDirEntry / 148

$2019 GetEOF / 153

$2006 GetFilelnfo / 154

$202B GetFSTInfo / 158

$201B GetLevel / 161

$2017 GetMark / 161

$2027 - GetName / 162

$200A GetPrefix / 163

$2039 GetReflnfo / 164

$2038 GetRefNum / 165

$2037 GetStdRefNum / 167

$200F GetSysPrefs / 168

$202A GetVersion / 169

$2011 Newline / 170

$200D Null / 172

$2010 Open / 173

$2003 OSShutdown / 177

$2029 Quit / 178

$2012 Read / 180

$2026 ResetCache / 182

$201F SessionStatus / 183

vili Apple 1IGS GS/OS Reference

$2018 SetEOF / 184
$2005 SetFileInfo / 185
$201A SetLevel / 189
$2016 SetMark / 190
$2009 SetPrefix / 191
$200C SetSysPrefs / 192
$2032 UnbindInt / 194
$2008 Volume / 195
$2013 Write / 197

Loading Program Files / 199
How the GS/OS Loaders work / 200
Definitions / 200
Segments and the GS/OS Loaders / 201
References to dynamic segments / 202
Unmounted volume / 202
The GS/OS Loaders and the Memory Manager / 203
OMF and the GS/OS Loaders / 205
Restarting, reloading, and dormant programs / 206
The GS/OS Loaders: ExpressLoad and the System Loader / 207
Making GS/OS Loader calls / 208

$0F11 GetLoadSegInfo / 210 -

$1011 GetUserID / 211

$2111 GetUserID2 / 212

$0911 InitialLoad / 213

$2011 InitialLoad2 / 215

$1111 LGetPathname / 217

$2211 LGetPathname?2 / 218

$0111 LoaderlInitialization / 218

$0511 LoaderReset / 219

$0311 LoaderShutDown / 219

$0211 LoaderStartup / 219

$0611 LoaderStatus / 220

$0411 LoaderVersion / 221

$0D11 LoadSegName (Load Segment by Name) / 222
$0B11 LoadSegNum (Load Segment by Number) / 224
$1311 RenamePathname / 227

$0A11 Restart / 228

$0E11 UnloadSeg (Unload Segment by Address) / 230

$0C11 UnloadSegNum (Unload Segment by Number) / 231
$1211 UserShutDown / 233

Contents

ix

9 Using the Console Driver / 235
General information / 236
Console output / 236
Console input / 236
The Console Output routine / 238
Screen size / 238
The text port / 238
Character set mapping / 240
Screen control codes / 242
The Console Input routine / 246
The input port / 246
Using raw mode / 249
Using user input mode / 249
Terminators / 250
How to disable terminators / 251
Terminators and newline mode / 251
User-input editing commands / 252
Using no-wait mode / 253
Device calls to the console driver / 253
DStatus ($202D) / 253
Standard DStatus subcalls / 254
GetConfigParameters (DStatus subcall) / 254
GetTextPort (DStatus subcall) / 254
GetlnputPort (DStatus subcall) / 254
GetTerminators (DStatus subcall) / 255
SaveTextPort (DStatus subcall) / 255
GetScreenChar (DStatus subcall) / 255
GetReadMode (DStatus subcall) / 256
GetDefaultString (DStatus subcall) / 256
DControl ($202E) / 256
Standard DControl subcalls / 257
FormatDevice (DControl subcall) / 257
EjectMedia (DControl subcall) / 257
SetConfigParameters (DControl subcall) / 257
SetInputPort (DControl subcall) / 257
SetTerminators (DControl subcall) / 258
RestoreTextPort (DControl subcall) / 258
SetReadMode (DControl subcall) / 259
SetDefaultString (DControl subcall) / 259

X Apple 11GS GS/OS Reference

AbortInput (DControl subcall) / 259
AddTrap (DControl subcall) / 260
ResetTrap (DControl subcall) / 260
DRead ($202F) / 260
DWrite ($2030) / 261

10 Handling Interrupts and Signals / 263
Interrupts / 264
Interrupt sources / 264
Interrupt dispatching / 265
Interrupt handler structure and execution environment / 266
Connecting interrupt sources to interrupt handlers / 268
BindInt call / 268
UnbindInt call / 268
Interrupt handler lifetime / 269
Unclaimed interrupts / 269
Signals / 270
Signal sources / 271
Signal dispatching and the signal queue / 271
Signal handler structure and execution environment / 272
Arming and disarming signals / 274
Arming device driver signal sources / 274
Disarming device driver signal sources / 275
Arming other signal sources / 275
Disarming other signal sources / 276

Part II The File System Level / 277

11 File System Translators / 279

The FST concept / 280

Calls handled by FSTs / 282

Programming for multiple file systems / 282
Don't assume file characteristics / 283
Use GetDirEntry / 284
Don't build your own device list / 284
Handle errors properly / 284
Optimize file access / 285

Contents

xi

Present and future FSTs / 286
Disk initialization and FSTs / 286

12 The ProDOS FST / 289

The ProDOS file system / 290

GS/0S and the ProDOS FST / 290

ProDOS FST Calls / 292

GetDirEntry ($201C) for ProDOS FST / 292

GetFilelnfo ($2006) for ProDOS FST / 293

SetFileInfo ($2005) for ProDOS FST / 293

FSTSpecific ($2033) for ProDOS FST / 294
SetTimeStamp (ProDOS FSTSpecific subcall) / 295
GetTimeStamp (ProDOS FSTSpecific subcall) / 296
SetCharCase (ProDOS FSTSpecific subcall) / 296
GetCharCase (ProDOS FSTSpecific subcall) / 297

13 The High Sierra FST / 299

CD-ROM and the High Sierra/ISO 9660 formats / 300

Limitations of the High Sierra FST / 302

Apple extensions to ISO 9660 / 303

High Sierra FST calls / 304

GetFileInfo ($2006) for High Sierra FST / 306

Volume ($2008) for High Sierra FST / 307

Open ($2010) for High Sierra FST / 308

Read ($2012) for High Sierra FST / 309

GetDirEntry ($201C) for High Sierra FST / 310

FSTSpecific ($2033) for High Sierra FST / 311
What a map table is / 312
MapEnable (High Sierra FST FSTSpecific subcall) / 313
GetMapSize (High Sierra FST FSTSpecific subcall) / 314
GetMapTable (High Sierra FST FSTSpecific subcall) / 314
SetMapTable (High Sierra FST FSTSpecific subcall) / 315

14 The Character FST / 317

Character devices as files / 318
Character FST calls / 318
Open ($2010) for Character FST / 319

xii Apple 11GS GS/OS Reference

15

Read ($2012) for Character FST / 320
Write ($2013) for Character FST / 320
Close ($2014) for Character FST / 321
Flush ($2015) for Character FST / 321

The AppleShare FST / 323

Pathname syntax / 324

Macintosh and GS/OS file types / 324

Access privileges / 326
If you specify a requestAccess parameter of $0001, $0002,
or $0003 / 327
If you specify a requestAccess parameter of $0000 / 328
Constructing multi-user applications / 328

Interrupts and AppleTalk calls / 329

Using the option list / 330

Controlling directory and file buffers / 331

ProDOS 16 and ProDOS 8 compatibility / 332

Calls to the AppleShare FST / 332

Create ($2001) for AppleShare FST / 333

SetFilelnfo ($2005) for AppleShare FST / 333

GetFileInfo ($2006) for AppleShare FST / 334

Open ($2010) for AppleShare FST / 334

Read ($2012) for AppleShare FST / 335

Write ($2013) for AppleShare FST / 335

Close ($2014) for AppleShare FST / 336

SetEOF ($2018) for AppleShare FST / 336

GetEOF ($2019) for AppleShare FST / 336

GetDirEntry ($201C) for AppleShare FST / 337

ReadBlock ($0022) for AppleShare FST / 338

WriteBlock ($0023) for AppleShare FST / 338

Format ($2024) for AppleShare FST / 338

EraseDisk ($2025) for AppleShare FST / 339

GetBootVol ($2028) for AppleShare FST / 339

GetFSTInfo ($202B) for AppleShare FST / 339

FSTSpecific ($2033) for AppleShare FST / 340
BufferControl (AppleShare FSTSpecific subcall) / 342
ByteRangeLock (AppleShare FSTSpecific subcall) / 343
SpecialOpenFork (AppleShare FSTSpecific subcall) / 345
GetPrivileges (AppleShare FSTSpecific subcall) / 347

Contents

xiii

SetPrivileges (AppleShare FSTSpecific subcall) / 350
UserInfo (AppleShare FSTSpecific subcall) / 353
CopyFile (AppleShare FSTSpecific subcall) / 354
GetUserPath (AppleShare FSTSpecific subcall) / 355
OpenDesktop (AppleShare FSTSpecific subcall) / 356
CloseDesktop (AppleShare FSTSpecific subcall) / 357
GetComment (AppleShare FSTSpecific subcall) / 358
SetComment (AppleShare FSTSpecific subcall) / 359
GetSrviName (AppleShare FSTSpecific subcall) / 360

Appendixes / 361

A GS/0S ProDOS 16 Calls / 363
$0031 ALLOC_INTERRUPT / 364
$0004 CHANGE_PATH / 365
$000B CLEAR_BACKUP_BIT / 367
$0014 CLOSE / 368
$0001 CREATE / 369
$0032 DEALLOC_INTERRUPT / 373
$0002 DESTROY / 374
$002C D_INFO / 375
$0025 ERASE_DISK / 376
$000E EXPAND_PATH / 378
$0015 FLUSH / 379
$0024 FORMAT / 380
$0028 GET_BOOT_VOL / 382
$0020 GET DEV_NUM / 383
$001C GET _DIR_ENTRY / 384
$0019 GET_EOF / 388
$0006 GET_FILE_INFO / 389
$0021 GET_LAST DEV / 391
$001B GET_LEVEL / 392
$0017 GET_MARK / 392
$0027 GET_NAME / 393
$000A GET_PREFIX / 394
$002A GET_VERSION / 395
$0011 NEWLINE / 396
$0010 OPEN / 397

xiv Apple IIGS GS/OS Reference

$0029 QUIT / 399

$0012 READ / 400

$0022 READ_BLOCK / 402
$0018 SET_EOF / 403
$0005 SET_FILE_INFO / 404
$001A SET_LEVEL / 406
$0016 SET_MARK / 407
$0009 SET_PREFIX / 408
$0008 VOLUME / 409
$0013 WRITE / 411

$0023 WRITE_BLOCK / 412

ProDOS 16 Calls and FSTs / 413

The ProDOS FST / 414
The High Sierra FST / 414

GET_FILE_INFO ($0006) / 415

VOLUME ($0008) / 415

GET_DIR_ENTRY ($001C) / 416

The Character FST / 416
OPEN ($0010) / 417
READ ($0012) / 417
WRITE ($0013) / 417
CLOSE ($0014) / 418
FLUSH ($0015) / 418

ProDOS 16 device calls / 418

Apple Extensions to ISO 9660 / 419

What the Apple extensions do / 420
The protocol identifier / 420
The directory record SystemUse field / 422

SystemUseID / 423

The Extension to ISO 9660 / 426
Filename transformations / 427

ProDOS / 428
Macintosh HFS / 429

ISO 9660 associated files / 430

Contents

XV

xvi

D Delta Guide to GS/OS System Software Version 5.0

Changes / 431

New features for the application programmer / 432
Enhanced features for the application programmer / 434
New and enhanced features for the device driver writer / 436

GS/0S Error Codes and Constants / 437

Object Module Format / 441
What files are OMF files? / 442
General format for OMF files / 444
Segment types and attributes / 445
Segment header /. 446
Segment body / 452
Expressions / 466
Example / 469
Object files / 469
Library files / 470
Load files / 472
Memory image and relocation dictionary / 473
Jump-table segment / 473
Unloaded state / 474
Loaded state / 474
Pathname segment / 475
Initialization segment / 476
Direct-page/stack segments / 476
Run-time library files / 477
Shell applications / 478

Glossary / 481

Index / 489

Apple 11GS GS/OS Reference

Introduction

Figures and tables

Preface / xxi
Figure P-1 Roadmap to Apple IIGS technical manuals / xxvi

Table P-1 Apple IIGS technical manuals / xxvii

What Is GS/0S? / 1

Figure I-1 Interface levels in GS/OS / 2
Figure I-2 Where to find call descriptions / 7

The GS/0S Abstract File System / 13

Figure 1-1 The application level of GS/OS / 14

Figure 1-2 A hierarchical file system / 15

Figure 1-3 Directory file format / 16

Figure 1-4 Prefixes and partial pathnames / 19

Figure 1-5 How GS/OS moves the EOF and the mark / 24

Table 1-1 Prefixes used with full and partial pathnames / 21
Table 1-2 GS/OS file access calls / 27
Table 1-3 Other GS/OS call groups / 27

GS/0S and Its Environment / 31

Figure 2-1 Apple IIGS memory map / 32
Figure 2-2 Pointers and handles / 36

Table 2-1 GS/OS vector space / 34
Table 2-2 General requirements for a system disk / 41

Table 2-3 Machine state at GS/OS application launch / 46
Table 2-4 Machine state at ProDOS 8 application launch / 47

xvii

Table 2-5 Prefix values when a GS/OS application is launched
at boot time / 48

Table 2-6 Prefix values when a GS/OS application is launched after a
previous GS/OS application quits / 48

Table 2-7 Prefix values when a GS/OS application is launched after a
ProDOS 8 application quits / 49

Table 2-8 Prefix and pathname values at ProDOS 8 application
launch / 49

3 Making GS/OS Calls / 51

Figure 3-1 GS/OS and Pascal strings / 57
Figure 3-2 GS/OS input string structure / 58
Figure 3-3 GS/OS result buffer / 58

Table 3-1 Registers on return from GS/OS / 60
Table 3-2 Status and control bits on return from GS/OS / 60
Table 3-3 General GS/OS errors / 61

4 Accessing GS/OS Files / 63

Table 4-1 Access attributes and their implications / 67
Table 4-2 Date and time format / 74

6 Working With System Information / 87

Table 6-1 Notification procedure header / 91
Table 6-2 Notification procedure parameters / 91

8 Loading Program Files / 199

Table 8-1 Segment characteristics and memory-block attributes / 205
Table 8-2 GS/OS Loader calls / 209

9 Using the Console Driver / 235
Figure 9-1 Console driver I/O routines / 237

Table 9-1 Console driver character mapping—
MouseText disabled / 241

Table 9-2 Console driver character mapping—
MouseText enabled / 241

Table 9-3 Console driver character mapping—special direct
inverse mode / 242

xvili Apple IIGS GS/OS Reference

10

1

14

15

Handling Interrupts and Signals / 263

Table 10-1 VRNs and interrupt sources / 265

Table 10-2 Interrupt-handler execution environments / 267
Table 10-3 GS/OS signal-dispatching strategy / 272

Table 10-4 Signal-handler execution environment / 273

File System Translators / 279
Figure 11-1 The file system level in GS/OS / 281

Table 11-1 GS/OS calls handled by FSTs / 282
Table 11-2 File system IDs / 286

The ProDOS FST / 289
Table 12-1 GS/OS calls handled differently by the ProDOS FST / 292

The High Sierra FST / 299
Table 13-1 High Sierra FST calls / 305

The Character FST / 317
Table 14-1 GS/OS calls supported by the Character FST / 318

The AppleShare FST / 323

Table 15-1 ProDOS-to-Macintosh file type conversion / 325
Table 15-2 Macintosh-to-ProDOS file type conversion / 325
Table 15-3 AppleShare FSTSpecific subcalls / 341

ProDOS 16 Calls and FSTs / 413

Table B-1 High Sierra FST ProDOS 16 calls / 414
Table B-2 GS/OS ProDOS 16 calls supported by the
Character FST / 417

Apple Extensions to ISO 9660 / 419

Table C-1 Defined values for SystemUseID for Aa signature / 423

Table C-2 Defined values for systemUseID for Ba signature / 423

Table C-3 Contents of systemUse field for each value of
SystemUseID for AA signature / 424

Table C-4 Contents of systemUse field for each value of
systemUseID for BA signature / 425

Table C-5 ProDOS-to-ISO 9660 filename transformations / 429

Figures and tables

xix

D Delta Guide to GS/OS System Software Version 5.0 Changes / 431

Table D-1 New features in GS/OS version 5.0 / 432

Table D-2 Enhancements in GS/OS version 5.0 / 434

Table D-3 New and enhanced device features in GS/OS
version 5.0 / 436

E GS/0S Error Codes and Constants / 437
Table E-1 GS/OS errors / 438

F Object Module Format / 441

Figure F-1 The structure of an OMF file / 444
Figure F-2 The format of a segment header / 447
Figure F-3 The format of a library dictionary segment / 471

Table F-1 ~ GS/OS program-file types / 443

Table F-2 KIND field definition / 450
Table F-3 Segment-body record types / 452

XX Apple IIGs GS/OS Reference

Preface

The Apple IIGS GS/OS Reference describes a powerful operating system
developed specifically for the Apple 1IGS® computer. GS/OS® is
characterized by fast execution, easy configurability, multiple-file-
system access, character-file access, direct device access, device
independence, compatibility with the large GS/OS memory space, and
compatibility with standard Apple® II (ProDOS® 8-based) and early
Apple IIGS (ProDOS 16-based) applications.

The Apple IIGS GS/OS Reference describes how GS/OS gives your
application access to the full range of Apple IIGS features.

xxi

About this book

The Apple 1IGS GS/OS Reference is a manual for software developers, advanced
programmers, and others who wish to understand the technical aspects of this operating
system. In particular, this manual will be useful to you if you want to write

m any program that creates or accesses files

= a program that catalogs disks or manipulates files

» 2 stand-alone program that automatically runs when the computer starts up

m a program that loads and runs other programs

s any program using segmented, dynamic code

= an interrupt handler

m 2 cavice driver

The functions and calls in this manual are in assembly-language format. If you are
programming in assembly language, you can use the same format to access operating
system features. If you are programming in a higher-level language (or if your assembler

includes a GS/OS macro library), you can use library interface routines specific to your
language. Those library routines are not described here; consult your language manual.

The software described in this book is part of the Apple IIGS system software,
versions 5.0 and later. Apple IIGS system software is available from Apple dealers
and from the Apple Programmers and Developers Association (APDA™),

& Note: System software versions earlier than version 4.0 contain ProDOS 16 rather than
GS/0S. ProDOS 16 is described in the Apple IIGs ProDOS 16 Reference.

How to use this book

This book is primarily a reference tool that describes the application interface, the high-
level parts of GS/OS that your application calls in order to access files or to modify the
operating environment.

» The introduction describes GS/OS in general.

s Part I describes how applications interact with GS/OS and documents all application-
level GS/OS calls.

xxii Apple IIGS GS/OS Reference

m Part II documents the file system translators (FSTs), the software modules that allow
your program to access files from many different file systems. Part II lists the
application calls each FST supports and documents any differences in call handling
from the standard descriptions in Part I.

The principal descriptions of all application-level GS/OS calls (other than device calls) are
in Part I. Call descriptions elsewhere in the book document how the call differs from its
standard description. Driver calls (low-level device calls used by device drivers) are
described in the GS/OS Device Driver Reference.

If you are writing a typical application, this book is probably all you will need. If you need
to access devices directly or if you are writing a device driver, you will need the G5/0S
Device Driver Reference.

This manual does not explain 65816 assembly language. Refer to the Apple IIGS
Programmer’s Workshop Assembler Reference or the MPW 1IGS Assembler Reference for
information on Apple IIGS assembly-language programming.

This manual does not give a detailed description of ProDOS 8, the operating system for
standard Apple II computers (Apple II Plus, Apple Ile, Apple IIc). For detailed
information on ProDOS 8, see the ProDOS 8 Technical Reference Manual.

Other materials yow'll need

In order to write Apple IIGS programs that run under.GS/OS, you need an Apple IIGS
computer and development-environment software. Furthermore, you need at least some
of the reference materials listed later in the Preface under “Roadmap to the Apple IIGS
Technical Manuals.” In particular, if you intend to write desktop-style applications or
desk accessories, which make use of the Apple IIGS Toolbox, you will need the Apple IIGS
Toolbox Reference.

The GS/OS Exerciser can be useful for experimenting with GS/OS calls.

& Note: The GS/OS Exerciser is available through the Apple Programmers and Developers
Association (APDA).

Preface

xxiii

Visual cues

Certain typographical conventions in this manual provide visual cues alerting you, for
example, to the introduction of a new term or to especially important information.

When a new term is introduced, it is printed in boldface. This lets you know that the term
is defined at that place in the text and that there is an entry for it in the glossary.

Special messages are marked as follows:

@ Note: Text set off in this manner—with the word Note—presents extra information or
points to remember.

A\ Important Text set off in this manner—with the word Important—presents vital
information or instructions. a

Terminology

This manual may define certain terms, such as Apple Il and ProDOS, somewhat differently
from what you are used to. Please note the following definitions:

Apple II: A general term for the Apple II family of computers, especially those that may
use ProDOS 8 or ProDOS 16 as an operating system. It includes the 64 KB Apple II Plus,
the Apple Ilc, the Apple Ile, and the Apple IIGS.

Standard Apple II: Any Apple II computer that is not an Apple IIGS. Since earlier
members of the Apple II family share many characteristics, it is useful to distinguish
them as a group from the Apple IIGS. A standard Apple II may also be called an 8-bit
Apple II, because of the 8-bit registers in its 6502 or 65C02 microprocessor.

ProDOS: A general term describing the family of operating systems developed for Apple II
computers. It includes both ProDOS 8 and ProDOS 16; it does not include DOS 3.3 or
SOS. ProDOS is also a file system developed to operate with the ProDOS operating
systems.

ProDOS 8: The 8-bit ProDOS operating system, through version 1.8, originally developed
for standard Apple II computers but compatible with the Apple 1IGS. In previous
Apple II documentation, ProDOS 8 is called simply ProDOS.

ProDOS 16: The first 16-bit operating system developed for the Apple IIGS computer.
ProDOS 16 is based on ProDOS 8.

GS/08: A native-mode, 16-bit operating system developed for the Apple IIGS computer.
GS/OS replaces ProDOS 16 as the preferred Apple 1IGS operating system. GS/OS is the

system described in this manual.

xxiv Apple IIGS GS/OS Reference

Language notation

This manual uses certain conventions in common with Apple IIGS language manuals. Words
and symbols that are computer code appear in a monospaced font:
_CallName_Cl parmblock ;Name of call

bcs error ;handle error if carry set on return
error ;code to handle error return
parmblock ;parameter block

Assembly-language labels, entry points, and filenames that appear in text passages are also
printed in a monospaced font. System software functions, except standard GS/OS call
names, are printed in a monospaced font in uppercase and lowercase letters (for
example, buf fTooSmall). The subclass of GS/OS calls that are compatible with ProDOS
16 are printed in all uppercase letters and often include underscore characters (for
example, GET_DIR_ENTRY).

Roadmap to the Apple IIGS technical manuals

The Apple IIGS personal computer has many advanced features, making it more complex
than earlier models of the Apple II computer. To describe the Apple IIGS fully, Apple has
produced a suite of technical manuals. Depending on the way you intend to use the
Apple IIGS, you may need to refer to a select few of the manuals, or you may need to refer
to most of them.

The Apple IIGS technical manuals document Apple IIGS hardware, Apple IIGS system
software, and two development environments for writing Apple IIGS programs. Figure P-1
is a diagram showing the relationships among the principal manuals; Table P-1 is a
complete list of all manuals. Individual descriptions of the manuals follow.

Preface

XXV

s Figure P-1 Roadmap to Apple IIGS technical manuals

To start finding out
about the Apple Ilcs

Technical Introduction

To learn how the
Apple Ilcs works

To leamn Apple Ilcs
programming

Programmer’s
Introduction
~ tothe Apple Ilos

To use the toolbox

to the Apple Iles
Apple s
Hardware
Reference
Val.1 Vol. 2
e

To operate on files
and devices

To write Apple Ilcs
programs with APW

GS/ 65 Refererice

. GS/OS Device

To write Apple Ilcs
programs with the
cross-development
system

XXVi

MPW 'I_Ids:-'['oolsb Refeyence

Apple flos Program
| Workshop Rel

Apple lcs
Firmware
Reference

Vol. 3 3

” Apple las

Toolbox Reference

Driver Reference

Apple 1IGS GS/OS Reference

ProDOS 8 Technical
erence Maoual

s Table P-1 Apple IIGS technical manuals

Title

Subject

Technical Introduction to the Apple 1IGS
Apple IIGS Hardware Reference

Apple IIGS Firmware Reference
Programmer’s Introduction to the Apple IIGS
Apple IIGS Toolbox Reference, Volume 1

Apple IIGS Toolbox Reference, Volume 2
Apple IIGs Toolbox Reference, Volume 3

ProDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference

GS/0OS Device Driver Reference

Human Interface Guidelines:
The Apple Desktop Interface
Apple Numerics Manual

Apple 1IGS Programmer’s Workshop Reference
Apple IIGS Programmer’s Workshop
Assembler Reference

Apple 1IGS Programmer’s Workshop
C Reference

MPW IIGS Tools Reference
MPW IIGS Assembler Reference
MPW IIGS C Reference

MPW IIGS Pascal Reference

AppleShare Programmer’s Guide
for the Apple IT

Apple IIGS Debugger Reference

What the Apple IIGS is

Machine internals—hardware
Machine internals—firmware
Concepts and a sample program

How tools work, some specifications
More toolbox specifications

More toolbox specifications, and
corrections and clarifications to the
first two volumes

Standard Apple II operating system
ProDOS 16 operating system and loader

Device drivers and GS/OS

Apple’s standards for the desktop interface
Standard Apple Numerics Environment

Using APW™

Using the APW Assembler
Using the APW C Compiler

Using-the cross-development system
Using the MPW® IIGS Assembler
Using the MPW 1IGS C Compiler
Using the MPW IIGS Pascal Compiler

Developing network-specific applications
for the Apple IIGS
Debugger for all Apple IIGS programs

Preface

XXvii

Introductory Apple IIGS manuals

The introductory Apple 1IGS manuals are for developers, computer enthusiasts, and other
Apple IIGS owners who need basic technical information. Their purpose is to help the
technical reader understand the features and programming techniques that make the
Apple IIGs different from other computers.

The Technical Introduction to the Apple IIGS is the first book in the suite of technical
manuals about the Apple IIGS. It describes all aspects of the Apple IIGs, including its
features and general design, the program environments, the toolbox, and the
development environment.

You should read the Technical Introduction no matter what kind of programming you
intend to do, because it will help you understand the powers and limitations of the
machine.

When you start writing programs that use the Apple IIGS user interface (with windows,
menus, and the mouse), the Programmer’s Introduction to the Apple IIGS provides the
concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple IIGs.

The Programmer’s Introduction gives an overview of the routines in the Apple IIGS
Toolbox and the operating environment they run under. It includes a sample event-
driven program that demonstrates how a program uses the toolbox and the operating
system.

Apple IIGS machine reference manuals

The machine itself has two reference manuals. They contain detailed specifications for
people who want to know exactly what’s inside the machine.

The Apple IIGS Hardware Reference is required reading for hardware developers and
anyone else who wants to know how the machine works. Information of special
interest to developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes
descriptions of the internal hardware and how it affects the machine’s features.

The Apple IIGS Firmware Reference describes the programs and subroutines stored in
the machine’s read-only memory (ROM). The Firmware Reference includes information
about interrupt routines and low-level input/output (1/O) subroutines for the serial
ports, the disk port, and the Apple Desktop Bus™ interface, which controls the
keyboard and the mouse. The Firmware Reference also describes the Monitor program,
a low-level programming and debugging aid for assembly-language programs.

xxvili Apple IIGS GS/OS Reference

Apple IIGS toolbox manuals

Like the Macintosh®, the Apple IIGS has a built-in toolbox. Volume 1 of the Apple IIGS
Toolbox Reference introduces concepts and terminology and explains how to use some of
the tools. Volume 2 contains information about more tools and explains how to write and
install your own tool set. Volume 3 adds more tools and includes corrections and

clarifications to the other two volumes.

If you are developing an application that uses the desktop interface, or if you want to
use the Super Hi-Res graphics display, you'll find the Toolbox Reference indispensable.

Apple IIGS operating-system manuals

The Apple IIGS has two operating systems: GS/OS and ProDOS 8. GS/OS uses the full
power of the Apple IIGS and can access files in multiple file systems. This book describes
GS/0S and includes information about the Sy.tem Loader, which works closely with

GS/OS to load programs into memory.

& Note: GS/OS is compatible with and replaces ProDOS 16, the first operating system
developed for the Apple IIGS computer. ProDOS 16 is described in the Apple IIGs

ProDOS 16 Reference.

ProDOS 8, previously called simply ProDOS, is the standard operating system for most
Apple II computers with 8-bit CPUs. As a developer of Apple IIGS programs, you need to
use ProDOS 8 only if you are developing programs to run on standard (8-bit) Apple II
computers as well as on the Apple IIGS. ProDOS 8 is deseribed in the ProDOS 8 Technical

Reference Manual.

All-Apple manuals

Two manuals apply to all Apple computers: Human Interface Guidelines: The Apple Desktop
Interface and the Apple Numerics Manual. If you develop programs for any Apple
computer, you should know about these manuals.

The Human Interface Guidelines manual describes Apple’s standards for the desktop
interface to any program that runs on an Apple computer. If you are writing a commercial
application for the Apple IIGS, you should be fully familiar with the contents of this

manual.

Preface

XXxix

The Apple Numerics Manual, second edition, is the reference for the Standard Apple
Numerics Environment (SANE®), a full implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE Std 754-1985). If your application requires floating-point
or robust arithmetic, you'll probably want it to use the SANE routines in the Apple IIGS.

The APW manuals

Apple provides two development environments for writing Apple IIGS programs. One is
the Apple IIGS Programmer’s Workshop (APW). APW is a native Apple 1IGS development
system—it runs on the Apple IIGS and produces Apple IIGS programs. There are three
principal APW manuals:

m The Apple IIGS Programmer’s Workshop Reference describes the APW Shell, Editor,
Linker, and utility programs; these are the parts of the workshop that all developers
need, regardless of which programming language they use. The APW reference manual
includes a sample program and describes object module format (OMF), the file format
used by all APW compilers to produce files loadable by the Apple IIGS System Loader.

m The Apple IIGS Programmer’s Workshop Assembler Reference includes the specifications
of the 65816 language and of the Apple IIGs libraries, and describes how to use the
assembler.

m The Apple IIGS Programmer’s Workshop C Reference includes the specifications of the
APW C implementation and of the Apple IIGS interface libraries, and describes how to
use the compiler.

Other compilers can be used with the workshop, provided they follow the standards
defined in the Apple IIGS Programmer’s Workshop Reference. Several such compilers, for
languages such as Pascal, are now available.

¢ Note: The APW manuals, along with APW itself, are available through APDA.

The MPW IIGS manuals

The Macintosh Programmer’s Workshop (MPW) is the other development environment
Apple provides for writing Apple IIGS programs (see Figure P-1). MPW is principally a
sophisticated, powerful development environment for the Macintosh computer. It
includes assemblers and compilers, linkers, and a variety of diagnostic and debugging
tools. When used to write Apple IIGS programs, MPW is a cross-development system—it
runs on the Macintosh, but produces executable programs for the Apple IIGS.

XXX Apple IIGS GS/OS Reference

MPW is documented in several manuals, but the parts needed for cross-development—the
editor and the build tools—are described in the Macintosh Programmer’s Workshop
Reference.

Four manuals describe the cross-development system. Each programming language has its
own manual. Whichever language you program in, you also need the MPW IIGS Tools

Reference.
m Tools: The MPW IIGS Tools Reference describes the tools needed to create Apple IIGS

applications under MPW. It describes the linker, the file-conversion tool, and several
other conversion and diagnostic programs.

m Assembler: The MPW IIGS Assembler Reference describes how to write Apple IIGS
assembly-language programs under MPW. It also documents a utility program that
converts source files written for the APW assembler to files compatible with the
MPW IIGS assembler.

m C compiler: The MPW IIGS C Reference describes how to write Apple IIGS programs
in C under MPW.

& Note: The MPW IIGS manuals are available through APDA.

The AppleShare programmer’s manual

The AppleShare Programmer’s Guide for the Apple II describes in detail how to develop
new network-specific applications for the Apple IIGS and the Apple Ile computer. If you
need more help about writing such applications, see that manual.

The debugger manual

Neither MPW IIGS nor APW includes a debugger as part of the development environment.
However, the Apple IIGS Debugger, an independent product, is a machine-language
debugger that runs on the Apple IIGS and can be used to debug programs produced by
either MPW IIGS or APW.

The Apple 1IGS Debugger is described in the Apple IIGS Debugger Reference.

Preface

Xxxi

Introduction What Is GS/QS?

GS/0S® is the first completely new operating system designed for the
Apple 1IGS® computer. It is similar in interface and call style to the
ProDOS® operating systems, but it has far greater capabilities because it
has many new calls, and it has much faster execution because it is written
entirely in 65816 assembly language.

Even more important, GS/OS is file system-independent: by making
GS/OS calls, your application can read and write files transparently
among many different and normally incompatible file systems. GS/OS
accomplishes this by defining a generic GS/OS file interface, the abstract
file system. Your application makes calls to that interface, and then
GS/OS uses file system translators to convert those calls and data into
formats consistent with individual file systems.

This introduction gives an overview of the structure and capabilities
of GS/OS, followed by a brief history of the evolution in Apple® II
operating systems from DOS to GS/OS.

The components of GS/0S

GS/OS is more complex and integrated than previous Apple II operating systems. As
Figure I-1 shows, you can think of it in terms of three levels of interface: the application
level, the file system level, and the device level. A typical GS/OS call passes through the
three levels in order, from the application at the top to the device hardware at the

bottom.

m Figure I-1 Interface levels in GS/OS

Application program

GS/OS Call Manager

Device
Manager

AppleShare

FST 1 Other FST

Block

device
driver

Block
device

Block
device
driver

Block
device

2 Apple 1IGS GS/OS Reference

Character
device
driver

Character
device

Character
device
driver

Character
device

Application
level

File system
level

Device
level

m Application level: At this level, the GS/OS Call Manager processes GS/OS calls that
allow an application to access files or devices, or to get or set specific system
information.

In handling a typical GS/OS call, the Call Manager mediates between an individual
application and the file system level. The application-interface level is described in
Part I of this book.

m File system level: The file system level consists of file system translators (FSTs),
which receive application calls, convert them to a specific file system format, and
send them on to device drivers. FSTs allow applications to use the same calls to read
and write files for any number of file systems. FSTs also allow applications to access
character devices (like display screens or printers) as if they were files.

The file system level is completely internal to GS/OS. Although your applications don't
interact with the file system level directly, you may want to know how calls are
translated by different file system translators. For example, CD-ROM files are read-
only, so write calls cannot be translated meaningfully by an FST that accesses files on
compact discs.

In handling a typical GS/OS call, the file system translators mediate between the
application level and the device level. The file system~interface level is described in
Part II of this book.

m Device level: The device level consists of the Device Manager, the Device Dispatcher,
and all device drivers connected to the system. In handling a typical GS/OS call, the
Device Manager and the Device Dispatcher mediate between the file system level and
an individual device driver.

The device level of GS/OS has two other types of communication. Your application
can bypass the file system level entirely by making device calls, which are calls that
directly access devices. Finally, device drivers communicate with the device level by
accepting driver calls, which are mostly low-level translations of device calls.

Devices are normally accessed through application-level file calls, described in Part I of
this book. The lower-level device calls are described in the GS/OS Device Driver
Reference; if you want to give your application direct access to devices, look there to
find out how to do it. Driver calls are also described in the GS/OS Device Driver
Reference; if you are writing a device driver, look there for details.

Another part of system software that is described in this manual is the Apple IIGS System
Loader. The System Loader loads programs into memory and prepares them for
execution. Although not strictly part of GS/OS, the System Loader occupies the same disk
file as GS/OS, and works very closely with GS/OS. For most applications, however, its
functioning is totally automatic; in special situations, some applications need to make
loader calls.

Introduction

GS/0S features

This section describes some of the principal GS/OS features of interest to application
writers.

File system independence

Because it uses file system translators, GS/OS accesses non-ProDOS file systems as easily
as it accesses the more familiar (to Apple II applications) ProDOS files. It is possible to
gain access to any file system for which an FST has been written. Several FSTs currently
exist; as Apple Computer creates new FSTs, they can be added very easily to existing
systems.

The GS/OS abstract file system supports both flat and hierarchical file systems and
systems with specific file types and access permissions. GS/OS recognizes standard files,
directory files, and extended files (two-fork files such as those used by the Macintosh®).
Certain GS/OS calls make it easy to retrieve and use directory information for any file
system.

The abstract file system is described in Chapter 1 of this book. FSTs are described in
Part II of this book.

Enhanced device support

All GS/OS device drivers provide a uniform interface to character and block devices.
GS/0S supports both ROM-based and RAM-based device drivers, making it easier to
integrate new peripheral devices into GS/OS.

GS/0S provides a uniform input/output model for both block and character devices.
Devices such as printers and the console are accessed in the same way as sequential files
on block devices. This can greatly simplify I/O for your application.

Unlike ProDOS 8 and ProDOS 16, GS/OS recognizes disk-switched and duplicate-volume
situations, to help your application avoid writing data to the wrong disk.

Devices are normally accessed through application-level file calls, described in Part I of
this book. Device drivers are described in the GS/OS Device Driver Reference.

4 Apple I1IGS GS/OS Reference

Speed enhancements

GS/0S transfers data much faster than ProDOS 8 or ProDOS 16 because it uses caching,
allows multiple-block reads and writes, eliminates the duplicate levels of buffering used by
ProDOS 16, and is written entirely in 65816 native-mode assembly language.

Elimination of ProDOS restrictions

GS/0S allows any number of open files (rather than only 8) up to the amount of available
RAM, any number of devices on line (rather than only 14), and any number of devices per slot
(rather than only 2). GS/OS allows volumes and files to be as large as 4096 megabytes (MB),
rather than only 16 MB for files and 32 MB for volumes.

The GS/OS file interface is described in Chapter 1 of this book.

ProDOS 16 compatibility

GS/0S includes a complete set of ProDOS 16 calls and implements them just as ProDOS 16
does. All well-designed ProDOS 16 applications can run without modification under
GS/OS. Further, existing ProDOS 16 applications running under GS/OS can now automati-
cally access files on non-ProDOS disks, and can also access character devices as files.

Where to find call descriptions

As already noted, a program can make several types of calls to GS/OS. Broadly, calls can
be divided into application-level calls (made from application programs to GS/OS) and
low-level calls (made between GS/OS and low-level software such as device drivers). Most
application-level calls are described in this book; most low-level calls are described in the
GS/OS Device Driver Reference. Within these broad divisions, there are several
subcategories of calls and call-related descriptions; each subcategory is described in one
of the two books.

Introduction

5

The following call descriptions are found in this book:

Standard GS/OS calls: Also called class 1 calls or just GS/OS calls, these are the primary
calls an application makes to access files or system information. They are application-

level calls. This category covers all operating-system calls that a typical GS/0S
application makes.

System Loader calls: These are calls a program makes to load other programs or
program segments into memory. Although you usually don't make System Loader calls,
they are described in this book in case you need them.

FST-specific information on GS/0S calls: Because different file systems have
different characteristics, they do not all respond identically to GS/OS calls. In
addition, each FST can support the GS/OS call FsTspecific, an application-level call
whose function is defined individually for each FST. Therefore, this book includes
descriptions of how each FST handles certain GS/OS calls, including FsTSpecific.

ProDOS 16 calls: Also called class 0 calls, these are application-level calls that are

identical to the calls described in the Apple IIGS ProDOS 16 Reference. GS/OS supports

these calls so that existing ProDOS 16 applications can run without modification under
GS/0S.

FST-specific information on ProDOS 16 calls: Because different file systems have
different characteristics, they do not all respond identically to ProDOS 16 calls.
Therefore, this book includes descriptions of how each FST handles ProDOS 16 calls.
There is no FSTSpecific ProDOS 16 call as there is for GS/OS calls.

The following call descriptions are found in the GS/OS Device Driver Reference::

6

GS/0S device calls: These are a subset of the standard, application-level GS/OS
device calls described in the GS/OS Reference. The lower-level device calls are special
because they bypass the file system level altogether and access devices directly.

Driver-specific information on GS/0S device calls: Because different devices have
different characteristics, device drivers do not all respond identically to GS/OS calls.

Therefore, this book includes descriptions of how each GS/OS driver handles certain
GS/0S device calls.

Driver calls: These are calls that GS/OS makes to individual device drivers. They are
low-level calls, of interest mainly to device-driver writers.

System service calls: System service calls give low-level components of GS/OS (such
as FSTs and device drivers) a uniform method for accessing system information and

executing standard routines. This book describes the system service calls that GS/OS
device drivers can make.

Apple 11GS GS/OS Reference

Figure I-2 shows you where to look in each book for the principal descriptions of each call
category. For example, the descriptions of all standard GS/OS calls (except those that
access devices) are in Chapter 7, Part I, of this book. Most applications make only the
calls described in Part I (shaded area).

& Note: Figure -2 is reproduced in each part opening in this book, highlighted to show

the calls described in that part.

» Figure I-2 Where to find call descriptions

Part | Part Il

" Y —————}_ Appendixes
~‘(except device calls) . . . ProDOS 16 calls
i tepT) FST-specific .
e information on (Appendix A)
GS/0S calls —
(Chapters 11-15)
FST-specific
information on
ProDOS 16 calls
L(Appendix B)
e I R S R N R ‘6 —)

GS/0S system requirements

GS/0S will not run on a standard Apple II computer. It requires an Apple IIGS with a ROM
version of 01 or greater, at least 512 KB of RAM, and a disk drive with at least 800 KB
capacity. A second 800 KB drive or a hard disk is strongly recommended.

Introduction 7

The development of GS/OS

The material in this section is a brief discussion of how GS/OS evolved from previous
Apple II operating systems.

Apple Computer has created several operating systems for the Apple II family of
computers. GS/OS is the latest in that line; it is related to several earlier systems, but has

far greater capabilities than any of them. Here are thumbnail sketches of the other
systems:

8

DOS: DOS (for Disk Operating System) was Apple’s first operating system. It provided
the Apple II computer with its first capability to store and retrieve disk files. DOS has
relatively slow data transfer rates by modern standards, supports a flat (rather than
hierarchical) file system, can read 140 KB disks only, has no uniform interrupt support,
includes no memory management, and is not extensible.

Pascal: Apple II Pascal is Apple Computer’s implementation and enhancement of the
University of California, San Diego Pascal System. Its lineage is completely separate
from the other Apple operating systems. Apple II Pascal supports only a flat file
system, is characterized by slow, interpretive execution, provides no uniform support
for interrupts, has no memory management, and is difficult to extend.

SOS: SOS (for Sophisticated Operating System) was developed for the Apple III, but its
most important feature, the file system, is the heart of the ProDOS family of operating
systems (described next). SOS gives much faster data transfer than DOS, represents
Apple Computer’s first hierarchical file system, supports block devices up to 32 MB,
provides a uniform sequential I/O model for both block devices and character
devices, and includes interrupt handling, memory management, device handling, and
extensibility via device drivers and interrupt handlers. The major deficiency of SOS is
that it requires at least 256 KB of RAM for effective operation.

ProDOS 8: ProDOS 8 (originally called ProDOS, for Professional Disk Operating System)
brought some of the advanced features of SOS to 8-bit Apple II computers (Apple II
Plus, Apple Ile, Apple Ilc). It requires no more than 64 KB of RAM, and in fact can
directly access only 64 KB of memory space. ProDOS supports exactly the same
hierarchical file system as SOS, but it does not have the uniform I/O model for

character devices and files, memory management, or uniform treatment of device
drivers and interrupt handlers.

ProDOS 16: ProDOS 16 (ProDOS for the 16-bit Apple 1IGS) is the first step toward an
operating system designed specifically for the Apple 1IGS computer. It is an extension
of ProDOS 8; with a few important additions, it has essentially the same features as

ProDOS 8 and supports exactly the same hierarchical file system. The main advantage

of ProDOS 16 is that it allows applications to interact with the operating system from
anywhere in the 16 MB Apple IIGS address space.

Apple 1IGS GS/OS Reference

m GS/0S: GS/OS fully exploits the capabilities of the Apple IIGS. It is a fast, modular,
and extensible operating system that provides a file system-independent and device-
independent environment for applications. While upwardly compatible from ProDOS
16, it corrects deficiencies in the 1/0 performance of ProDOS 16 and eliminates its
restrictions on the number and size of open files, volumes, and devices. GS/OS
supports character devices as files, handles devices uniformly, and supports RAM-
based device drivers. GS/OS can create, read, and write files among a potentially
unlimited number of different file systems (including ProDOS).

Although it is an extension of the ProDOS line, GS/OS is really a completely new operating
system. As its name suggests, it is designed specifically for the Apple IIGS computer, and
it is intended to be the principal Apple IIGS operating system.

Introduction

9

Part] The Application Level

Part 1 Part Il

4____,//’__\/__/‘ _ Appendixes

GS/OSC“HS
- (except device calls) . - ProDOS 16 calls

LR - e FST-specific .
. (Chapter'7) e information on (ppendix A)

T GS/0s calls
System Loader calls (Chapters 11-15)
- (Chapter8) . -

I

—
FST-specific
information on
ProDOS 16 calls
| (Appendix B)

11

Chapter 1 The GS/0OS Abstract File System

A key feature of GS/OS is its ability to insulate applications from the
details of the hardware devices connected to the system and the file
systems used to store applications and their data. This chapter shows
how GS/0OS implements this feature. It also lists, by category, the GS/OS
calls that an application can make.

A high-level file system interface

GS/OS has been designed to insulate you, the application programmer, from the details of

file systems and hardware devices. Normally, you simply make a GS/OS call, and GS/OS
routes the call to the correct file system and device. You can think of GS/OS as looking
like the illustration shown in Figure 1-1.

GS/0S can keep your application from dealing with FSTs and devices at all, and thus allow

you to take a higher-level approach, by supporting files in a hierarchical file system. A
hierarchical file system contains both normal files that contain data or applications, and

m Figure 1-1 The application level of GS/OS

14

Application program

GS/OS Call Manager

Device
Manager

v

ProDOS
FST

High
Sierra FST

Character
FST

AppleShare

FST

Other FST

it

it

it

I

]

al

Device Dispatcher

i

J

Block
device
driver

&

Block
device

<2

Block
device
driver

&

Block
device

Apple IIGs GS/OS Reference

U

Character
device
driver

Character
device

J

Character
device
driver

g

Character
device

Application
level

special files called directories. A directory file can contain the names of either normal
files or other directories. Figure 1-2 shows the relationships among files in a hierarchical
file system.

In GS/OS, the highest-level directory is called a volume directory. A volume is a logical
entity that allows you to access the files contained on a physical storage medium such as a
diskette, hard disk, or CD-ROM. Only block devices can be identified by volume name,
and then only if the named volume is mounted. For example, an entire disk is identified by
its volume name, which is the filename of its volume directory. GS/OS also makes certain
assumptions about what each file in this hierarchical file system looks like. The
assumptions are as follows:

Each file can be classified as a directory, standard, or extended file (defined in the
next section).

Each file has a filename in a certain format.

The logical location of each file can be uniquely identified by a pathname, which is an
ordered collection of the filenames that lead to it.

Each file has access privileges.
Each file has a file type and an auxiliary type.

Each file has a creation and modification date and time.

The following sections define these assumptions.

Figure 1-2 A hierarchical file system

Volume
directory

| T
I 15 1)

I e N
File
Subdirectory Subdirectory
File File File File File

Chapter 1 The GS/OS Abstract File System

15

Classes of GS/OS files

Every GS/OS file is a collection of bytes on a device. The classes of files are as follows:
» Directory files store information about other files.

= Standard files contain a single sequence of data.

s Extended files contain two sequences of data.

& Note: These classes of files are for block devices. GS/OS also allows you to treat
character devices as if they contained files. See Chapter 14, “The Character FST.”

Directory files

A directory file contains informational entries about other directories and files. Each

entry in the directory file describes and points to another directory file, standard file, or
extended file, as shown in Figure 1-3.

Directory files can be read from, but not written to (except by GS/OS).

s Figure 1-3 Directory file format

Directory file Standard file
File en :
(file A[;y > File A Extended file
File entry File B
(file B) > (data fork)
File entry
(file ©) FileB
(resource fork) Directory file (C)
File entry
(file X) -
More entries File entry
(file) :
. | Standard file : Moreentries
File entry .
(file ») o File n Ftl:d er;.;y -
(4

16 Apple 1IGs GS/OS Reference

A directory can, but need not, have associated file information, such as access controls,
file type, creation and modification times and dates, and so on.

Usually, you need to examine directory files only when you are creating an application that
catalogs files; more information about directory files is given in the section “Examining
Directory Entries” in Chapter 4.

Standard files

Standard files are named collections of data consisting of a sequence of bytes and
associated file information, such as access controls, file type, creation and modification
times and dates, and so on. They can be read from and written to, and have no predefined
internal format, because the arrangement of the data depends on the specific file type
and auxiliary type.

Extended files

Extended files are named collections of data consisting of two sequences of bytes and a
single set of file information, such as access controls, file type, creation and modification
times and dates, and so on. The two different byte sequences of an extended file are
called the data fork and the resource fork. They can be read from and written to, and
have no predefined internal format; the formats depend on the specific file types.

Filenames

Every GS/OS file is identified by a filename. A GS/OS filename can be any number of
characters long and can include spaces. Your application must encode filenames as
sequences of 8-bit ASCII codes. All 256 extended ASCII values are legal except the colon
(ASCII $3A), although most file system translators (FSTs) support much smaller legal
character sets.

A Important Because the colon is the pathname separator character, it must never
appear in a filename. See the next section, “Pathnames,” for more
details about separators and pathnames. a

Chapter 1 The GS/OS Abstract File System

17

If an FST does not support a character that the user attempts to use in a filename, GS/OS
returns error $40 (badPathSyntax). FSTs are also responsible for indicating whether
filenames should be case-sensitive, and whether the high-order bit of each character is
turned off. See Part II of this book for more information about FSTs.

A filename must be unique within its directory. Some examples of legal filenames are the
following:

file-1

January Sales

long file name with spaces and special characters !'@#S$%

Pathnames

In a hierarchical file system, a file is identified by its pathname, a sequence of filenames
starting with the name of the volume directory and ending with the name of the file.
Pathnames specify the access paths to devices, volumes, directories, subdirectories, and
files within flat or hierarchical file systems.

A GS/OS pathname is either a full pathname or a partial pathname, as described in the
following sections. All calls that require you to name a file will accept either a full
pathname or a partial pathname.

Full pathnames

A full pathname is one of the following names:

» a volume name followed by a series of zero or more filenames, each preceded by
the same separator, and ending with the name of a directory file, standard file, or
extended file

» a device name followed by a series of zero or more filenames, each preceded by
the same separator, and ending with the name of a directory file, standard file, or
extended file

A separator is a character that separates filenames in a pathname. Both of the following
separators are valid:
m a colon : (ASCII code $3A).

m a slash character / (ASCII code $2F)

18 Apple 1IGS GS/OS Reference

The first separator in the input string determines which separator will be used throughout.
When the colon is the separator, the constituent filenames must not contain colons, but
they may contain slashes. When the slash is the separator, the constituent filenames must
not contain slashes or colons. Thus, colons are never allowed in filenames. These are
examples of legal full pathnames:

:aloysius:beelzebub:cat

tab:c

/%

X

Examples of illegal full pathnames are as follows:

/:::/::/: A : mustnotappear in a filename.
ta:b:c: A separator must not appear after the last filename.
a:b:c: A full pathname must start with a volume or device name.

Prefixes and partial pathnames

A full pathname can be broken down into a prefix and a partial pathname. The prefix
starts at the volume or device name and can continue down the path through the last
directory name, that is, down to but not including the filename. In contrast, the partial
pathname always contains the filename and can trace back up the path to, but cannot
include, the volume name or device name. Thus, when the prefix and partial pathname are
combined, they yield the full pathname. Figure 1-4 illustrates the possible divisions of a
single full pathname into a prefix and a partial pathname.

m Figure 1-4 Prefixes and partial pathnames

EEE3 Prefix
1 Partial pathname

Chapter 1 The GS/OS Abstract File System

19

Prefixes are convenient when you want to access many files in the same subdirectory,

because you can use a prefix designator as a substitute for the prefix, thus shortening the
pathname references.

Prefix designators

A prefix designator takes the place of a prefix, and can be one of the following:

= A digit or sequence of digits followed by a pathname separator. The digits specify the
prefix number. Thus, the prefix designators 002 : and 2/ both specify prefix number 2.

m The asterisk character * followed by a pathname separator. This special prefix

designator is one of the predefined prefix designators, as described later in this
section.

n The at character @ followed by a pathname separator. This special prefix designator is
one of the predefined prefix designators, as described later in this section.

If you supply a partial pathname that doesn’t contain a prefix designator to GS/OS, it
takes one of the following actions:

n If prefix designator 0 is non-null, GS/OS automatically creates a full pathname by
adding 0/ to the front of the partial pathname.

n If prefix designator 0 is null, GS/OS automatically creates a full pathname by adding
8/ to the front of the partial pathname.

GS/OS determines the separator for a partial pathname in the same way that it determines

the separator for a full pathname, by using whichever one appeared first in the input
string.

@ Note: Although you may use a prefix designator as an input to the GS/OS SetPrefix call,

prefixes are always stored in memory in their full pathname form (that is, they include
no prefix designators themselves).

GS/OS supports two types of prefixes, as follows:

» Short prefixes, referred to by the prefix designators * and 0 through 7, cannot be

longer than 64 characters. Short prefixes are identical to the prefixes supported by
ProDOS 16.

= Long prefixes, referred to by the prefix designators @ and 8 through 31, can contain
up to about 8000 characters.

20 Apple 1IGS GS/OS Reference

This means that GS/OS allows you to set 32 prefixes. You set and read prefixes using the
standard GS/OS calls SetPrefix and GetPrefix. GetPrefix returns a string in which all
separators are colons (ASCII $3A). Alphabetic characters are returned with the same case
in which they were entered when the prefix was set.

Predefined prefix designators

For programming convenience, some prefix designators have predefined values. The
asterisk (*) has a fixed value as the name of the volume from which GS/OS was last
started up.

The at character @ helps applications be AppleShare aware. Whenever an application is
launched, GS/OS sets this prefix in one of two ways:

» If the application is being launched from a server, GS/OS sets the @ prefix to the user’s
folder on the server.

= If the application is not being launched from a server, GS/OS sets the @ prefix to the
folder where the application resides (same as prefix 9).

Other prefix designators have default values assigned by GS/OS at application launch (see
Tables 2-5 through 2-7 in Chapter 2), but your application can change those values when it

is running.

Table 1-1 shows some examples of prefix use in which prefix 0 : is set to : VOLUME1 : and
prefix 5: issetto : VOLUME1 : TEXT.FILES:. The pathname provided by the
application is compared with the full pathname constructed by GS/OS.

m Table 1-1 Prefixes used with full and partial pathnames

Full pathname
as supplied: : VOLUME1 : TEXT.FILES:CHAP. 3
as expanded by GS/OS: : VOLUME1 : TEXT .FILES : CHAP . 3

Partial pathname—implicit use of prefix : 0
as supplied: Gs.os
as expanded by GS/OS: : VOLUME1 :GS.0S

Partial pathname—explicit use of prefix : 0
as supplied: 0 : SYSTEM: FINDER
as expanded by GS/0OS: : VOLUME1 : SYSTEM: FINDER

Partial pathname—explicit use of prefix 5 :
as supplied: 5:cHAP .12
as expanded by GS/OS: : VOLUME1 : TEXT .FILES : CHAP .12

Chapter 1 The GS/OS Abstract File System

21

File information

GS/OS files have several characteristics, including the following:

m Access privileges

n A file type and an auxiliary type

» File size and the current reading-writing position

m Creation and modification date and time

Your application can access and modify this information. These characteristics are

introduced in the following sections and described more completely in Chapter 4,
“Accessing GS/OS Files.”

File access

The characteristic of file access determines what operations can be performed on the file.
Several GS/OS calls read or set the access attribute for the file, which can determine the
following capabilities:

» whether the file can be destroyed
n whether the file can be renamed

n whether the file is invisible, that is, whether its name is displayed by file-cataloging
applications

» whether the file needs to be backed up
s whether an application can write to the file

» whether an application can read from the file

File types and auxiliary types

The file type and auxiliary type of a file do not affect the contents of a file in any way;
they indicate to applications the type of information stored in the file. Apple Computer
reserves the right to assign file type and auxiliary type combinations, except for the user-
defined file types $F1 through $F8. The current list of file types is available on AppleLink®
or from Apple Developer Technical Support.

22 Apple 1IGS GS/OS Reference

A\ Important If you need a new file type or auxiliary type assignment, please
contact Apple Developer Technical Support. a

EOF and mark

To make reading from and writing to files easier, each open standard file and each fork of
an open extended file have a byte count indicating the size of the file in bytes (the end-
of-file, or EOF), and another defining the current position in the file (the mark). GS/OS
moves the position of both the EOF and the mark automatically when data is added to
the end of the file, but an application program must move them whenever data is deleted
or added somewhere else in the file.

The EOF represents the number of readable bytes in the file. Since the first byte in a file has
number 0, the value of the EOF indicates one position past the last character in the file.

When a file is opened, the mark is set to indicate the first byte in the file. It is automa-
tically moved forward one byte for each byte written to or read from the file. The mark,
then, always indicates the next byte to be read from the file, or the next byte position in
which new data can be written. The value of the mark cannot exceed the value of the EOF.

If the mark meets the EOF during a write operation, both the mark and EOF are moved
forward one position for every additional byte written to the file: Thus, adding bytes to

the end of the file automatically advances the EOF to accommodate the new informa-
tion. Figure 1-5, on the next page, illustrates the relationship between the mark and EOF.

An application can place the EOF anywhere from the current mark position to the
maximum possible byte position. The mark can be placed anywhere from the first byte in
the file to the EOF. These two functions can be accomplished using the SetEOF and
SetMark calls. The current values of the EOF and the mark can be determined using the
GetEOF and GetMark calls.

Chapter 1 The GS/OS Abstract File System

23

= Figure 1-5 How GS/OS moves the EOF and the mark

Beginning position

After writing or reading two bytes

| l

Old MARK MARK

After writing two more bytes

Old MARK

Creation and modification dates and times

All GS/OS files are marked with the date and time of their creation. When a file is first
created, GS/OS stamps the file’s directory entry with the current date and time from the
system clock. If the file is later modified, GS/OS then stamps it with a modification date
and time (its creation date and time remain unchanged).

The creation and modification fields in a file entry refer to the contents of the file. The
values in these fields should be changed only if the contents of the file change. Since data
in the file’s directory entry itself are not part of the file’s contents, the medification field
should not be updated when another field in the file entry is changed, unless that change is
due to an alteration in the file’s contents. For example, a change in the file’s name is not a
modification; on the other hand, a change in the file’s EOF always reflects a change in its
contents and therefore is a modification.

2% Apple 1IGs GS/OS Reference

Remember also that a file’s entry is a part of the contents of the directory or subdirectory
that contains that entry. Thus, whenever a file entry is changed in any way (whether or not
its modification field is changed), the modification fields in the entries for all its
enclosing directories—including the volume directory—must be updated.

Finally, when a file is copied, a utility program must give the copy the same creation and
modification dates and times as the original file, and not the date and time at which the
copy was created.

Character devices as files

As part of its uniform interface, GS/OS permits applications to access character devices,
like block devices, through file calls. An extension to the GS/OS abstract file system lets

you make standard GS/OS calls to read to and write from character devices. This facility
can be a convenience for I/O redirection.

When character devices are treated as files, only certain features are available. You can
read from a character device but you cannot, for example, format it. Only the following
GS/OS calls have meaning whan applied to character devices: Open, Newline, Read, Write,
Close, and Flush (see brief descriptions of these calls later in this chapter).

In general, character “files” under GS/OS are much more restricted in scope than block
files:

m There are no extended or directory files. Character devices are accessed as if they were
standard files—single sequences of bytes. Further, it is not possible to obtain or
change the current position (mark) in the sequence.

m Character devices are not hierarchical. The only legal pathname for a character “file” is a
device name.

m Character devices may recognize some file-access attributes (read-enable, write-
enable), but not others (rename-enable, invisibility, destroy-enable, backup-needed).

m Character “files” have no file type, auxiliary type, EOF, creation time, or other
information associated with block-file directory entries.

In spite of these restrictions, it is generally quite simple and straightforward to treat
character devices as files. For more information on file access to character devices, see
Chapter 14, “The Character FST.”

Chapter 1 The GS/OS Abstract File System

25

Groups of GS/0S calls

Chapters 4 through 6 list and describe the GS/OS operating system routines that are
normally called by an application. They are divided into the following categories:

m File access calls (described in Chapter 4)
» Volume name and pathname calls (described in Chapter 5)

= System information and control calls (described in Chapter 6; the Quit call is described
in Chapter 2)

= Interrupt calls (described in Chapter 10) and calls that directly access devices (see the
GS/OS Device Driver Reference).

Tables 1-2 and 1-3 list the groups of GS/OS calls.

The following sections give you an overview of the capabilities of the calls in these
groups. Each call is discussed in much greater detail in Chapter 7, “GS/OS Call Reference.”

File access calls

The most common use of GS/OS is to make calls that access files. Your application places
a file on disk by issuing a GS/OS Create call. This call specifies the file’s pathname and
storage type (standard file, extended file, or directory) and possibly other information
about the state of the file, such as access attributes, file type, creation and modification
dates and times, and so on.

Your program must make the GS/OS Open call in order to access a file’s contents. For an
extended file, individual Open calls are required for the data fork and resource fork,
whic are then read and written independently. When your application opens a file, the
application must establish the access privileges.

A file can be simultaneously opened any number of times with read access. However, a
single Open call with write access precludes any other Open calls on the given file.
While a file is open, your application can perform any of the following tasks:

» Read data from the file by using the Read call, or write data to the file by using the
Write call

s Set or get the mark by using the SetMark or GetMark call, and set or get the end of the
file by using the SetEOF or GetEOF call

= Enable or disable newline mode by using the Newline call

26 Apple 1IGS GS/OS Reference

m Table1-2 GS/OS file access calls

Call Call Call Call

Create ($2001) Read ($2012) SetEOF ($2018) BeginSession ($201D)
Destroy ($2002) Write ($2013) GetEOF ($2019) EndSession ($201E)
SetFileInfo ($2005) Close ($2014) SetLevel ($201A) SessionStatus ($201F)
GetFilelnfo ($2006) Flush ($2015) GetLevel ($201B) ResetCache ($2026)
ClearBackupBit ($200B) SetMark ($2016) GetDirEntry ($201C)

Open ($2010) GetMark ($2017)

Newline ($2011)

m Table1-3 Other GS/OS call groups

Volume name-pathname calls System information calls System control calls Interrupt and Device calls
ChangePath ($2004) SetSysPrefs ($200C) Quit ($2029) BindInt ($2031)
Volume ($2008) GetSysPrefs ($200F) AddNotifyProc ($2034) Unbindint ($2032)
SetPrefix ($2009) GetName ($2027) DelNotifyProc ($2035) DControl ($202E)
GetPrefix ($200A) GetVersion ($202A) Null ($200D) Dinfo ($202C)
ExpandPath ($200E) GetFSTInfo ($202B) OSShutdown ($2003) DRead ($202F)
Format ($2024) FSTSpecific ($2033) DStatus ($202D)
EraseDisk ($2025) GetStdRefNum ($2037) - DWrite ($2030)
GetBootVol ($2028) GetRefNum ($2038) DRename ($2036)
GetReflnfo ($2039) GetDevNumber ($2020)

» If the open file is a directory file, get the entries held in the file by_using the
GetDirEntry call

m Write changes to the disk for one or more open files by using the Flush, GetLevel, and
SetLevel calls

When you are through working with an open file, you issue a GS/OS Close call to close the
file and release any memory that it was using back to the Memory Manager.

After the file has been closed, you can use other GS/OS calls to work with it. One of these
calls, ClearBackupBit, clears a bit so that the file appears to GS/OS as if it does not need
backing up; another GS/OS call, Destroy, can be used to delete a file. Other GS/OS calls
that work on closed files are described in Chapter 4.

The GS/OS calls SetFileInfo and GetFilelnfo allow you to access the information in the
file’s directory entry. These calls are particularly useful when you are copying files because
they allow you to change the creation and modification dates for a file.

Chapter 1 The GS/OS Abstract File System 27

The GS/OS call ResetCache allows you to resize the GS/OS cache and be able to use that
resized cache immediately.

A final group of GS/OS calls—BeginSession, EndSession, and SessionStatus—are useful
when you want your application to defer writing files to disk.

The background information on the file access calls is described in Chapters 1 and 4, and
each individual call is listed alphabetically by name and described in detail in Chapter 7.

Volume and pathname calls

GS/0S provides a whole set of calls to deal with those situations where you want to work
directly with volumes and pathnames. These calls allow you to do the following tasks:

» get information about a currently mounted volume by using the Volume call

m build a list of all mounted volumes by using the Dinfo, Volume, Open, and GetDirEntry
calls

m get the name of the current boot volume by using the GetBootVol call

» format a volume by using the Format call

» quickly empty a volume by using the EraseDisk call

m set or get pathname prefixes by using the SetPrefix or GetPrefix call

= change the pathname of a file by using the ChangePath call

m expand a partial pathname of a file to its full pathname by using the ExpandPath call
The background information on the volume and pathname calls is described in Chapter 5,

and each individual call is listed alphabetically by name and described in detail in
Chapter 7.

System information calls

The system information calls allow you to do the following tasks:

m set or get system preferences by using the SetSysPrefs and GetSysPrefs calls, which
allow you to customize some GS/OS features

m get information about a specified FST by using the GetFSTInfo call
m use any special capabilities of an FST by using the FSTSpecific call
s find out the version of the operating system by using the GetVersion call

= get the filename of the currently executing application by using the GetName call

28 Apple 1IGS GS/OS Reference

m get the reference number of the last Open call to any of the three standard prefixes by
using the GetStdRefNum call

m get the reference number and access attributes for an open file by using the
GetRefNum call

= get the access attributes and full pathname for an open file by using the
GetReflInfo call

The background information on the system information calls is described in Chapter 6,
and each individual call is listed alphabetically by name and described in detail in
Chapter 7.

System control calls

The system control calls allow you to do the following tasks:
= terminate your application by using the Quit call

m add a procedure to the notification queue by using the AddNotifyProc call, or delete a
procedure from the notification queue by using the DelNotifyProc call

= execute any pending events without doing anything else by using the Null call
m shut down GS/OS by using the OSShutdown call

The background information on the system control calls is described in Chapter 6, and
each individual call is listed alphabetically by name and described in detail in Chapter 7.

Interrupt and device calls

GS/OS has two calls that allow you to work with interrupts. You can add an interrupt
handler by using the BindlInt call, or delete the interrupt handler by using the UnbindInt
call. The calls are briefly summarized in Chapter 7, “GS/OS Call Reference.” The mechanism
for handling interrupts and signals is described in Chapter 10, “Handling Interrupts and
Signals.”

GS/OS offers a set of calls that allow you to access devices directly, rather than going
through any file system. Most applications will not need to use any of these calls, except
perhaps DInfo and GetDevNumber (their use is described in Chapter 5). The GS/OS
device calls allow you to perform the following tasks:

m get general information about a device by using the DInfo call
» read information directly from a device by using the DRead call
m write information directly to a device by using the DWrite call

Chapter 1 The GS/OS Abstract File System

29

= get status information about a device by using the DStatus call

s send commands to a device by using the DControl call

= rename a device by using the DRename call

s get the device number of a device by using the GetDevNumber call

The individual device calls are listed alphabetically by name and briefly summarized in

Chapter 7, “GS/OS Call Reference.” The device calls are completely described in the GS/OS
Device Driver Reference.

30 Apple 11GS GS/OS Reference

Chapter 2 GS/0S and Its Environment

GS/OS is one of the many components that make up the Apple IIGS
operating environment, the overall hardware and software setting within
which Apple IIGs application programs run. This chapter describes how
GS/OS functions in that environment and how it relates to the other
components.

31

Apple IIGS memory

The Apple IIGS microprocessor can directly address 16 megabytes (16 MB) of memory.
The minimum memory configuration for GS/OS on the Apple IIGS is 512 kilobytes
(512 KB) of RAM and 128 KB of ROM. As shown in Figure 2-1, the total memory space
is divided into 256 banks of 64 KB each.

m Figure 2-1 Apple IIGS memory map

Bank Nlumbers

r

I
S00 801 S02 S03 STF SE0 SE1 SFO SF1 SFD SFC SFD SFE SFF
SFFFFo
$D000 SD000
$C000 7 SC000
59400 Expansion RAM Expansion ROM
$2000
50800
N : / i I g
RAM ROM
4 GS/OS and System Loader

Other reserved memory
[Memory available through the Memory Manager

Banks $E0 and $E1 are used principally for high-resolution video display, additional
system software, and RAM-based tools. Specialized areas of RAM in these banks include

1/0O space, bank-switched memory, and display buffers in locations consistent with
standard Apple II memory configurations.

Other reserved memory includes the ROM space in banks $FC-FF; they contain firmware
and ROM-based tools. In addition, banks $FO-FB are reserved for future ROM expansion.

Memory allocatable through the Memory Manager is in bank $00 at locations $0800-$9A00,
bank $01 at $0800-$BC000, banks $E0-$E1 at $2000-$C000, and banks $02-$7F at
locations $0000-$FFFF (all 64 KB) in each bank. For example, a 1 MB Apple 1IGs Memory
Expansion Card makes available 16 additional banks of memory.

32 Apple 1IGs GS/OS Reference

Under most circumstances, you should simply request memory from the Memory Manager,
rather than using fixed locations. The Memory Manager is described in the Apple IIGs
Toolbox Reference. The only fixed locations you need to use are listed in the next section.

A Important Don't use all of the available memory. To process pathnames and such,
GS/OS allocates memory through the Memory Manager. If you've
allocated all of the available memory, GS/OS returns error $54
(outofMem). If the condition is so severe that GS/OS can no longer
function, it returns a fatal GS/OS error with an ID = 2, and the user will
be asked to restart the system. a

For more detailed pictures of Apple IIGS memory, see the Technical Introduction to the
Apple IIGS, the Apple IIGS Hardware Reference, and the Apple IIGS Firmware Reference.

Entry points and fixed locations

Because most Apple IIGS memory blocks are movable and under the control of the
Memory Manager (see the next section, “Managing Application Memory”), there are very
few fixed entry points available to applications programmers. References to fixed entry
points in RAM are strongly discouraged, since they are inconsistent with flexible memory
management and are sure to cause compatibility problems in future versions of the Apple
I1GS. Informational system calls and referencing by handles (see “Accessing Data in a
Movable Memory Block” later in this chapter) should take the place of access to fixed

entry points.

The supported GS/OS entry points are $E100A8 and $E100B0. These locations are the
entry points for all GS/OS calls. The Tool Dispatcher entry point is $E10000, which is the
entry point for all Apple IIGS tool calls, including the System Loader (described in

Chapter 8).

& Note: How to use the entry points to make GS/OS calls is described in Chapter 3,
“Making GS/OS Calls.”

The GS/OS entry points, and the other fixed locations in bank $E1 that GS/OS supports,
are shown in Table 2-1.

Chapter 2 GS/OS and Its Environment

33

s Table2-1 GS/OS vector space

Address Description

$E10000 Entry vector for all Apple IIGS tool calls.
$E100A8-$E100AB Entry vector for in-line GS/OS system calls
$E100AC-$E100AF Reserved for internal use

$E100B0-$E100B3 Entry vector for stack-based GS/OS system calls
$E100B4-$E100B9 Reserved for internal use

$E100BA-$E100BB Two NULL bytes (guaranteed to be zeros)

$E100BC 0S_KIND byte—indicates currently running operating

system, as follows:
$00—ProDOS 8

$01—GS/0OS
$FF—none; operating system is being loaded or
switched

$E100BD 0s_BoOT byte—indicates the operating system that

was initially booted, as follows:

$00—ProDOS 8
$01—GS/0S

$E100BE-$E100BF Bit 15 = 0—GS/OS is not busy
Bit 15 = 1—GS/OS is busy processing a system call

Managing application memory

The Memory Manager, a ROM-resident Apple IIGS tool set, controls the allocation,
deallocation, and repositioning of memory blocks in the Apple IIGS. It works closely with
GS/0S and the System Loader to provide the needed memory spaces for loading
programs and data and for providing buffers for input and output. All Apple IIGS
software, including the System Loader and GS/OS, must obtain needed memory space by
making requests (calls) to the Memory Manager.

The Memory Manager keeps track of how much memory is free and what parts are allo-
cated to whom. Memory is allocated in blocks of arbitrary length; each block possesses
several attributes that describe how the Memory Manager can modify it (such as by
moving it or deleting it) and how it must be placed in memory (for example, at a fixed
address). See the chapter on the Memory Manager in the Apple IIGS Toolbox Reference for
more information.

% Apple 1IGs GS/OS Reference

Besides creating and deleting memory blocks, the Memory Manager moves blocks when
necessary to consolidate free memory. When it compacts memory in this way, it of course
can move only those blocks that needn't be fixed in location. Therefore, as many memory
blocks as possible should be movable (not fixed), if the Memory Manager is to be
efficient in compaction.

Obtaining application memory

Any memory that an application needs for its own purposes must be requested directly
from the Memory Manager. Figure 2-1 at the beginning of this chapter shows which parts
of the Apple IIGS memory applications can allocate through requests to the Memory
Manager. Applications for the Apple IIGs should avoid requesting absolute (fixed-
address) blocks. See also the Programmer’s Introduction to the Apple IIGS and the Apple

1IGs Toolbox Reference.

Accessing data in a movable memory block

To access data in a movable block, an application cannot use a simple pointer, because
the Memory Manager may move the block and change the data’s address. Instead, each
time the Memory Manager allocates a memory block, it returns to the requesting
application a handle referencing that block.

A handle is a pointer to a pointer; it is the address of a fixed (nonmovable) location,
called the master pointer, that contains the address of the block. If the Memory Manager
changes the location of the block, it updates the address in the master pointer; the value
of the handle itself is not changed. Thus the application can continue to access the block
using the handle, no matter how often the block is moved in memory. Figure 2-2 illustrates
the difference between a pointer and a handle.

If a block will always be fixed in memory (locked or unmovable), it can be referenced by a
pointer instead of by its handle. To obtain a pointer to a particular block or location, an
application can dereference the block’s handle. The application reads the address stored
in the location pointed to by the handle—that address is the pointer to the block. Of
course, if the block is ever moved, that pointer is no longer valid.

GS/OS and the System Loader use both pointers and handles to reference memory
locations. Pointers and handles must be at least three bytes long to access the full range of
Apple 1IGs memory. However, all pointers and handles used as parameters by GS/OS are
four bytes long, for ease of manipulation in the 16-bit registers of the 65C816

Microprocessor.

Chapter 2 GS/OS and Its Environment

35

s Figure 2-2 Pointers and handles

Memory block

Pointer:

Value of pointer =
starting address of memory block

SXXX —» SXXX

block

Handle: SXXXT

Value of handle =
address of master pointer

Master pointer

Value of master pointer =
current starting address of
memory block

Allocating stack and direct-page space

In the Apple IIGS, the 65C816 microprocessor’s stack-pointer register is 16 bits wide; that
means that, in theory, the hardware stack can be located anywhere in bank $00 of
memory, and the stack can be as much as 64 KB deep.

The direct page is the Apple IIGS equivalent to the standard Apple II zero page. The
difference is that it need not be absolute page zero in memory. Like the stack, the direct
page can theoretically be placed in any unused area of bank $00—the microprocessor’s
direct register is 16 bits wide, and all zero-page (direct-page) addresses are added as
offsets to the contents of that register.

36 Apple 11GS GS/OS Reference

In practice, however, there are several restrictions on available space. First, only the
addresses between $800 and $9A00 in bank $00 can be allocated—the rest is reserved for
I/0 space and system software. Also, because more than one program can be active at a
time, there may be more than one stack and more than one direct page in bank $00.
Furthermore, many applications may want to have parts of their code as well as their

stacks and direct pages in bank $00.

Your program should, therefore, be as efficient as possible in its use of stack and direct-
page space. The total size of both should probably not exceed about 4 KB in most cases.

Automatic allocation of stack and direct-page space

Only you can decide how much stack and direct-page space your program will need when
it is running. The best time to make that decision is during program development, when
you create your source files. If you specify at that time the total amount of space needed,
GS/0S and the System Loader will automatically allocate it and set the stack and direct
registers each time your program runs.

Definition during program development

You define your program’s stack and direct-page needs by specifying a “direct-
page/stack” object segment (KIND = $12) when you assemble or compile your program.
The size of the segment is the total amount of stack and direct-page space your program
needs. It is not necessary to create this segment; if you need no such space or if the
GS/OS default (see the section “GS/OS Default Stack and Direct-Page Space” later in this
chapter) is sufficient, you may leave it out.

When the program is linked, it is important that the direct-page/stack segment not be
combined with any other object segments to make a load segment—the linker must
create a single load segment corresponding to the direct-page/stack object segment. If
there is no direct-page/stack object segment, the linker will not create a corresponding
load segment.

Chapter 2 GS/OS and Its Environment

37

Allocation at load time

Each time the program is started, the System Loader looks for a direct-page/stack load
segment. If it finds one, the loader calls the Memory Manager to allocate a page-aligned,
locked memory block of that size in bank $00. The loader loads the segment and passes
its base address and size, along with the program’s user ID and starting address, to GS/OS.
GS/OS sets the accumulator (A), direct (D), and stack pointer (S) registers as shown, then
passes control to the program:

A = user ID assigned to the program
D = address of the first (lowest-address) byte in the direct-page/stack space
S = address of the last (highest-address) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated
space, and the stack grows downward from the top of the space.

A Important GS/OS provides no mechanism for detecting stack overflow or
underflow, or collision of the stack with the direct page. Your
program must be carefully designed and tested to make sure this
cannot occur. A

When your program terminates with a Quit call, the System Loader’s application shutdown
function makes the direct-page/stack segment purgeable, along with the program’s other
static segments. As long as that segment is not subsequently purged, its contents are
preserved until the program restarts.

& Note: There is no provision for extending or moving the direct-page/stack space after
its initial allocation. Because bank $00 is so heavily used, any additional space you
later request may be unavailable—the memory adjoining your stack is likely to be
occupied by a locked memory block. Make sure that the amount of space you specify
at link time fills all your program’s needs.

GS/0S default stack and direct-page space

If the loader finds no direct-page/stack segment in a file at load time, it still returns the
program’s user ID and starting address to GS/OS. However, the loader does not call the
Memory Manager to allocate a direct-page/stack space, and it returns 0's as the base
address and size of the space. GS/OS then calls the Memory Manager itself, and allocates a
4 KB direct-page/stack segment.

38 Apple IIGS GS/OS Reference

See the Apple IIGS Toolbox Reference for a general description of memory block attributes
assigned by the Memory Manager.

GS/OS sets the A, D, and S registers before handing control to the program, as follows:
A = user ID assigned to the program

D = address of the first (lowest-address) byte in the direct-page/stack space

S = address of the last (highest-address) byte in the direct-page/stack space

When your application terminates with a Quit call, GS/OS disposes of the direct-
page/stack segment.

GS/0S and interrupts

Do not leave interrupts disabled any longer than absolutely necessary. There are some
times when interrupts must be disabled, such as in a critical timing loop for a disk driver.

In particular, be aware of the following conditions:

m Do not make operating system calls with interrupts disabled. These calls could
potentially take long periods of time te complete (for example, a large file read).

m If interrupts are disabled inside a loop, the effect is multiplied by the number of
iterations.

m Interrupt handlers (like heartbeat tasks) execute with interrupts off; therefore, keep
their run time as short as possible (such as setting a flag for a foreground task to
check).

AppleShare needs to have interrupts enabled to function correctly. When interrupts are
off, packets cannot be received from or sent to other computers, thus causing network

services to stop functioning.

Interrupts must be on for an incoming packet to be received. Therefore, repeatedly
turning interrupts on and off can be just as bad as leaving them off the entire time. For
example, if a section of code has interrupts disabled 80 percent of the time and enabled
20 percent of the time, you will miss approximately 80 percent of all incoming packets.

Chapter 2 GS/OS and Its Environment

39

A new state of awareness

ProDOS has traditionally been a single-user, single-computer operating system and file
system. With the addition of AppleShare support to GS/OS, many computers (and many
types of computers) can share the same files (on the file server) at the same time.

An AppleShare-aware program is a program that can be successfully run from an
AppleShare file server. Such a program should be able to do the following tasks:

m load and save files on a file server

m handle error conditions in a reasonable manner (such as putting up a dialog box instead
of crashing the machine)

m allow the user to quit from the program and return to a calling program (instead of
having to reboot or switch off the machine)

More information on AppleShare is available in Chapter 4 and Chapter 15.

System startup considerations

The startup sequence for the Apple IIGS is invisible to applications and relatively
complex, so this section describes only the general requirements for a system disk. For
more detailed information, see GS/OS Technical Note #1.

Table 2-2 shows the files that must be in place for a disk to be a startup disk.

At startup, GS/OS sets prefix 0 to the boot volume name and prefix 2 to
*:SYSTEM:LIBS.
GS/OS selects the application to run at startup by taking the following steps:

1. It first looks for a type $B3 file named * : SYsSTEM: START. Typically, that file is the
Finder, but it can be any Apple IIGS application. If START is found, it is selected.

2. If there is no sTART file, GS/OS searches the boot volume directory for a file that is
either one of the following types:

o a ProDOS 8 system program (type $FF) with the filename extension . SYSTEM
o a GS/OS application (type $B3) with the filename extension .SYs16

Whichever is found first is selected.

40 Apple IIGs GS/OS Reference

m Table2-2 General requirements for a system disk

File

Description

*:SYSTEM:START.GS.OS.

* : SYSTEM: ERROR.MSG
* : SYSTEM:FSTS: startFST

*:SYSTEM:SYSTEM.SETUP : TOOL.SETUP.

*:SYSTEM:DESK.ACCS

This file is divided into GLoader and GQuit.
GLoader is the operating system loader. It's
temporary and is used only during system startup.
GQuit is the program dispatcher. It contains the
code used for starting and quitting ProDOS 8 and
GS/OS applications.

This file contains the system error messages.

The start FST must reside in the subdirectory, must
have a file type of $BD, and must have the high bit
of its auxiliary type set to 0. Any other FSTs to be
loaded at startup must reside in the

*: SYSTEM:FSTs subdirectory. The files must be
Apple 1IGS load files of type $BD. If bit 15 of a
file’s auxiliary type is 1, the FST is not loaded.

The TooL . SETUP file must have file type $BG; it
executes, in turn, every file (other than

TOOL . SETUP) that it finds in the
*:SYSTEM:SYSTEM. SETUP subdirectory. The
files must be Apple 1IGS load files of type $B6 or
$B7. If bit 15 of a file’s auxiliary type is 1, the
setup file is not executed.

GS/OS installs all desk accessories it finds in this
subdirectory. The files must be Apple IIGS load
files of type $B8 or BY. If bit 15 of a file’s auxiliary
type is 1, the desk accessory is not loaded.

Note: If 2 ProDOS 8 system program is found first, but the ProDOS 8 operating system
(file * : sysTEM: P8) is not on the boot volume, GS/OS then searches for and selects

the first ProDOS 16 application.

The Apple IIGS startup sequence ends when control is passed to the GS$/OS program
dispatcher. This routine is entered both at boot time and whenever an application
terminates with a GS/OS, ProDOS 16, or ProDOS 8 Quit call. The GS/OS program
dispatcher determines which program is to be run next, and runs it. After startup, the
program dispatcher is permanently resident in memory.

Chapter 2 GS/OS and Its Environment 41

Quitting and launching applications

When you want your application to quit, you issue a GS/OS Quit call. GS/OS performs all
necessary functions to shut down the current application, determines which application
should be executed next, and then launches that application. When you issue the Quit call,
you can take the following actions:

s indicate to GS/OS whether your application can be restarted from memory
m specify the next application to be launched

m specify whether your application should be placed on the quit return stack so that it
will be restarted when the other program quits

m specify whether prefixes 10 through 12 should be set to .CONSOLE or left as is

The following sections further explain your options when quitting.

Specifying whether an application can be restarted from memory

When your application sets the restart-from-memory flag in the Quit call to TRUE
(bit 14 of the flags word = 1), the application can be restarted from a dormant state in the
computer’s memory. If your application sets the restart-from-memory flag to FALSE
(bit 14 = 0), the program must be reloaded from disk the next time it is run.

If you set the restart-from-memory flag to TRUE, remember that the next time the
application is run, its code and data will be exactly as they were when the application
quit. Thus, you may need to reinitialize certain data locations.

Specifying standard prefixes

To support I/O redirection, prefixes 10, 11, and 12 are defined to be the Standard I/O
prefixes, as follows:

prefix 10 = stdIn

prefix 11= stdout

prefix 12 = StdError

If your application sets the skip-std-prefixes flag to FALSE (bit 13 = 0) in its Quit
call, GS/OS sets the standard 1/O prefixes to . cONSOLE before launching the next

application. When your application sets the skip-std-prefixes flag in the Quit call
to TRUE (bit 13 of the flags word = 1), the standard I/O prefixes remain unchanged.

42 Apple 1IGs GS/OS Reference

When a GS/OS application is launched at startup or after a ProDOS 8 application has quit,
the standard I/O prefixes are always set to . CONSOLE.

Specifying the next application to launch

When you are quitting your application, and want to pass control to another application,
you supply the pathname of that application in the Quit call.

@ Note: GS/OS loads only programs that have a file type $B3, $B5, or $FF.

Specifying a GS/0OS application to launch

You should not specify a device name if you are specifying the pathname of a GS/OS
application; GS/OS returns a fatal error if the device does not contain a disk. GS/OS does
not handle volume names or filenames longer than 32 characters.

Specifying a ProDOS 8 application to launch

If you are quitting to a ProDOS 8 application, the pathname specified in the Quit call
must be a legal ProDOS 8 pathname. In particular, device names must not be used when
specifying the pathname of a ProDOS 8 application; ProDOS 8 will return a fatal error.

The GS/OS Program Dispatcher then takes the following steps:

1. Shuts down GS/OS and the System Loader.

2. Allocates segments in nonspecial memory and copies parts of GS/OS into them.
3. Allocates all special memory for the application.

4. Loads and starts up ProDOS 8.

When the ProDOS 8 application qu1ts, the next action depends on whether the ProDOS 8
application uses a standard ProDOS 8 Qu1T call, or an enhanced ProDOS 8 QUIT call.

n If the ProDOS 8 application executes a standard ProDOS 8 quiT call, the GS/OS
Program Dispatcher restarts GS/OS and the System Loader and launches the next
application on the quit return stack.

m If the ProDOS 8 application executes an enhanced ProDOS 8 QuiT call, which
contains a pathname to an application to be launched, control is passed to the
specified application. The specified application can be a ProDOS 8 application or 2
GS/0S application. If it is a GS/OS application, the Program Dispatcher will restart
GS/0S and the System Loader and then launch the application.

Chapter 2 GS/OS and Its Environment

Specifying whether control should return to your application

The quit return stack is a stack of user IDs used to restart applications that have
previously quit. If an application specifies a TRUE quit return flag (bit 15 of the flags
word = 1) in its Quit call, GS/OS pushes the user ID of the quitting program onto the quit
return stack and saves information needed to restart the program. As subsequent
programs run and quit, several user IDs may be pushed onto the stack. With this
mechanism, multiple levels of shells can execute subprograms and subshells, while ensuring

that they eventually regain control when their subprograms quit.

For example, the START file might pass control to a software development system shell,
using the Quit call to specify the pathname of the shell and placing its own ID on the
stack. The shell in turn could hand control to a debugger, likewise placing its own ID on
the stack. If the debugger quits without specifying a pathname, control passes
automatically back to the shell; if the shell then quits without specifying a pathname,

control passes automatically back to the sTART file.

This automatic return mechanism is specific to the GS/OS Quit call, and therefore is not
available to ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its ID

on the internal stack.

Quitting without specifying the next application to launch

If you want to quit your application and do not want to specify the next application to
be launched, supply the following parameters in the Quit call:

= no pathname

m aFALSE quit return flag

GS/0S then attempts to pull a user ID off the quit return stack and relaunch that
application. If the quit return stack is empty, GS/OS will attempt to relaunch the START

program.

44 Apple IIGS GS/OS Reference

Launching another application without returning

When you are quitting your application and want to pass control to another application,
but do not want control to eventually return to your application, supply the following
parameters in the Quit call:

» the pathname of the application to be launched
s aFALSE quit return flag

GS/OS will attempt to launch the specified application.

Launching another application and returning

If you want to pass control to another application, and want control to return to your
application when the next application is finished, set the quit return flag to TRUE in
the Quit call. That way your program can function as a shell—whenever it quits to another
specified program, it knows that it will eventually be reexecuted. Supply the following
parameters in the Quit call:

m the pathname of the application to be launched
m a2TRUE quit return flag

GS/OS pushes the user ID of your quitting application onto the quit return stack, and then
attempts to launch the specified application.

Machine state at application launch

The GS/OS Program Dispatchéf initializes certain components of the Apple IIGS and
GS/OS before it passes control to an application. The initial state of those components is
described in the following sections.

Chapter 2 GS/OS and Its Environment

45

Machine state at GS/OS application launch

When a GS/OS program is launched, the machine state is as shown in Table 2-3.

m Table 2-3 Machine state at GS/OS application launch

Item

State

Reserved memory

Hardware registers
A register
X and Y registers
e, m, and x flags in the
processor status register

stack register
direct register
Standard input/output

Shadowing

Vector space values

Pathname prefix values

Addresses above $9A00 in bank $00 and above $BC00 in bank
$01 are reserved for GS/QOS, and are therefore unavailable to the
application. A direct-page/stack space, of a size determined
either by GS/OS or by the application itself, is reserved for the
application; it is located in bank $00 at an address determined
by the Memo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>