
hhr Gs/ossvitm Hps' GS/OS' Rcfereiice
Softwcuv Version 5.0

and Later by Apple Computer, Inc.

$00

$02

Open
$00

$02

Close

$04

GetPrefix

p C o u n t

r e f N u m

$00

Crea te
$00

$02

— p a t h n a m e —

p C o u n t
q u e s t A c c e s s —

p C o u n t

2 T i m e —

Read

p C o u n t

r e f N u m

p a t h n a m e
W r i t e

p C o u n t

— r e f N u m

a c c e s s

fi l e T y p e

$0A

SOE

.$10

$14

a u x T y p e —

s t o r a g e T y p e —

e o f

— r e s o u r c e E O F —

For GS/OS System Apple IlGS® GS/OS® Reference
Software Version 5.0

and Later

A
T T

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menio Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan

Limited warranty on media and replacement

A APPLE COMPUTER, INC.
© 1990, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc. Printed in the
United States of America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark iiJiringement and unfair
competition in violation of federal
and state laws.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408)996-1010

Apple, the Apple logo, AppleLink,
AppleShare, AppleTalk, Apple llGS,
Disk 11, DuoDisk, GS/OS, LaserWriter,
Lisa, Macintosh, MPW, ProDOS, and
SANE are registered trademarks of
Apple Computer, Inc.
APDA, Apple Desktop Bus, APW,
Finder, ProFile, QuickDraw, and
UniDisk are trademarks Of
Apple Computer, Inc.
IBM is a registered trademark of
International Business Machines
Corporation.
lie Garamond and ITC Zapf
Dingbats are registered trademarks of
International Typeface Corporation.
Microsoft is a registered trademark of
Microsoft Corporation.

POSTSCRIPT is a registered trademark,
and Illustrator is a trademark, of
Adobe Systems Incorporated.

Sony is a registered trademark of
Sony Corporation.
Simultaneously published in the
United States and Canada.

ISBN 0-201-55020-2
ABCDEFGHlJ-MU-90
First printing, June 1990

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABIUTY AND
FTTNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR REPRESEN
TATION, EITHER EXPRESS OR
implied, with respect to
THIS MANUAL, ITS QUAUIY,
ACCURACY, MERCHANTA
BILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
"AS K," AND YOU, THE
PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.
IN NO EVENT WILL APPLE BE
liable for direct, indirect,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
manual, even if advised of the
possibility of such damages.

THE WARRANTY AND
remedies set forth above
ARE EXCLUSIVE AND IN UEU
OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent,
or employee is authorized to
make any modification, extension,
or addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental
or consequential damages, so the
above limitation or exclusion may
not apply to you. This warranty
gives you specific legal rights, and
you may also have other rights
which vary from state to state.

C o n t e n t s

Figures and tables / xvii

P re face / x x i
About this book / xxii

How to use this book / xxii
Other materials you'll need / xxiii
Visual cues / xxiv

Terminology / xxiv
Language notation / xxv

Roadmap to the Apple IlGS technical manuals / xxv
Introductory Apple IlGS manuals / xxviii
Apple IlGS machine reference manuals / xxviii
Apple IlGS toolbox manuals / xxix
Apple IlGS operating-system manuals / xxix
All-Apple manuals / xxk
The APW manuals / xxx
The MPW IlGS manuals / xxx
The AppleShare programmer's manual / xxxi
The debugger manual / xxxi

Introduction What Is GS/OS? / 1
The components of GS/OS / 2
GS/OS features / 4

File system independence / 4
Enhanced device support / 4
Speed enhancements / 5
Elimination of ProDOS restrictions / 5
ProDOS 16 compatibility / 5

Where to find call descriptions / 5
GS/OS system requirements / 7
The development of GS/OS / 8

Part I The Application Level / 11

1 The GS/OS Abstract File System / 13
A high-level file system interface / 14
Classes of GS/OS files / 16

Directory files / l6
Standard files / 17
Extended files / 17

Filenames / 17
Pathnames / 18

Full pathnames / 18
Prefixes and partial pathnames / 19
Prefix designators / 20

Predefined prefix designators / 21
File information / 22

File access / 22
File types and auxiliary types / 22
EOF and mark / 23
Creation and modification dates and times / 24
Character devices as files / 25

Groups of GS/OS calls / 26
File access calls / 26
Volume and pathname calls / 28
System information calls / 28
System control calls / 29
Interrupt and device calls / 29

2 GS/OS and Its Environment / 31
Apple IIGS memory / 32

Entry points and fixed locations / 33
Managing application memory / 34

Obtaining application memory / 35
Accessing data in a movable memory block / 35

Allocating stack and direct-page space / 36
Automatic allocation of stack and direct-page space / 37
Definition during program development / 37
Allocation at load time / 38

GS/OS default stack and direct-page space / 38

iv Apple IIGS GS/OS Reference

GS/OS and interrupts / 39
A new state of awareness / 40

System startup considerations / 40
Quitting and launching applications / 42

Specifying whether an application can be restarted from
memory / 42
Specifying standard prefixes / 42
Specifying the next application to launch / 43

Specifying a GS/OS application to launch / 43
Specifying a ProDOS 8 application to launch / 43

Specifying whether control should return to your application / 44
Quitting without specifying the next application to launch / 44
Launching another application without returning / 45
Launching another application and returning / 45

Machine state at application launch / 45
Machine state at GS/OS application launch / 46
Machine state at ProDOS 8 application launch / 47
Pathname prefixes at GS/OS application launch / 47
Pathname prefixes at ProDOS 8 application launch / 49

3 Making GS/OS CaUs / 51
GS/OS call methods / 52

Calling in a high-level language / 52
Calling in assembly language / 52

Making a GS/OS call using macros / 53
Making an in-line GS/OS call / 54
Making a stack call / 54

Including the appropriate files / 55
GS/OS parameter blocks / 56

Types of parameters / 56
Parameter block format / 56
GS/OS string format / 57

GS/OS input string structures / 58
GS/OS result buffer / 58

Setting up a parameter block in memory / 59
Conditions upon return from a GS/OS call / 60
Checking for errors / 6l

C o n t e n t s v

4 Accessing GS/OS Files / 63
An overview of simple file access / 64
Creating a file / 65
Opening a file / 65
Sharing open files in an AppleShare environment / 66

Allowing single users to open the file for reading and writing / 67
Allowing multiple users to open a file for reading / 68
Allowing multiple users to open a file for reading and writing / 69
Using the 0 prefix / 69

Working on open files / 70
Reading from and writing to files / 70
Setting and reading the EOF and mark / 70
Enabling or disabling newline mode / 71
Examining directory entries / 71
Flushing open files / 71
Closing files / 71

Setting and getting file levels / 72
Working on closed files / 72

Clearing backup status / 73
Deleting files / 73

Setting and getting file characteristics / 73
Changing the creation and modification dates and times / 74
Copying files / 75
Caching files / 76
Using the write-deferral mechanism / 77

5 Working With Volumes and Pathnames / 79
Volumes / 80

Getting volume information / 80
Building a list of mounted volumes / 80
Getting the name of the boot volume / 80
Formatting a volume / 81

Pathnames / 82

Setting and getting prefixes / 82
Changing the path to a file / 82
Expanding a pathname / 82
Building your own pathnames / 83

Devices / 83
Device names / 83

vi Apple IIGS GS/OS Reference

Block devices / 84
Character devices / 84
Direct access to devices / 85
Device drivers / 85

6 Working With System Information / 87
Setting and getting system preferences / 88
Checking FST information / 88
Finding out the version of the operating system / 89
Getting the name of the current application / 89
Getting reference numbers and information / 89
Getting the current device number / 90
Working with the notification queue / 90
Using the opt ionList parameter / 92

7 GS/OS Call Reference / 93
The parameter block diagram and description / 94
$2034 AddNotifyProc / 95
$201D BeginSession / 96
$2031 Bindint / 97
$2004 ChangePath / 98
$200B ClearBackupBit / 100
$2014 Close / 101
$2001 Create / 102
$202E DControl / 106

ResetDevice (DControl subcall) / 108
FormatDevice (DControl subcall) / 108
EjectMedium (DControl subcall) / 109
SetConfigParameters (DControl subcall) / 109
SetWaitStatus (DControl subcall) / 110
SetFormatOptions (DControl subcall) / 111
AssignPartitionOwner (DControl subcall) / 113
ArmSignal (DControl subcall) / 114
DisarmSignal (DControl subcall) / 114
SetPartitionMap (DControl subcall) / 115
Device-specific DControl subcalls / 115

$2035 DelNotifyProc / 116
$2002 Destroy / 117

C o n t e n t s v i i

$202C DInfo / 119
$202F DRead / 123
$2036 DRename / 125
$202D DStatus / 126

GetDeviceStatus (DStatus subcall) / 128
GetConfigParameters (DStatus subcall) / 129
GetWaitStatus (DStatus subcall) / 130
GetFormatOptions (DStatus subcall) / 130
GetPartitionMap (DStatus subcall) / 134
Device-specific DStatus subcalls / 134

$2030 DWrite / 135
$201E EndSession / 137
$2025 EraseDisk / 138
$200E ExpandPath / 140
$2015 Flush / 142
$2024 Format / 143
$2033 FSTSpecific / 145
$2028 GetBootVol / 146
$2020 GetDevNumber / 147
$201C GetDirEntry / 148
$2019 GetEOF / 153
$2006 GetFilelnfo / 154
$202B GetFSTInfo / 158
$201B GetLevel / l6l
$2017 GetMark / l6l
$2027 GetName / 162
$200A GetPrefix / 163
$2039 GetReflnfo / 164
$2038 GetRefNum / l65
$2037 GetStdRefNum / 167
$200F GetSysPrefs / 168
$202A GetVersion / 169
$2011 NewLine / 170
$200D Null / 172
$2010 Open / 173
$2003 OSShutdown / 177
$2029 Quit / 178
$2012 Read / 180
$2026 ResetCache / 182
$201F SessionStatus / 183

viii Apple IIGS GS/OS Reference

$2018 SetEOF / 184
$2005 SetFilelnfo / 185
$201A SetLevel / 189
$2016 SetMark / 190
$2009 SetPrefix / 191
$200C SetSysPrefs / 192
$2032 Unbindint / 194
$2008 Volume / 195
$2013 Write / 197

8 Loading Program Files / 199
How the GS/OS Loaders work / 200

Definitions / 200

Segments and the GS/OS Loaders / 201
References to dynamic segments / 202
Unmounted volume / 202

The GS/OS Loaders and the Memory Manager / 203
OMF and the GS/OS Loaders / 205

Restarting, reloading, and dormant programs / 206
The GS/OS Loaders: ExpressLoad and the System Loader / 207
Making GS/OS Loader calls / 208
$0F11 GetLoadSeglnfo / 210
$1011 GetUserlD / 211
$2111 GetUserID2 / 212
$0911 InitialLoad / 213
$2011 InitialLoad2 / 215
$1111 LGetPathname / 217
$2211 LGetPathname2 / 218
$0111 Loaderlnitialization / 218
$0511 LoaderReset / 219
$0311 LoaderShutDown / 219
$0211 LoaderStartup / 219
$0611 LoaderStatus / 220
$0411 LoaderVersion / 221
$0D11 LoadSegName (Load Segment by Name) / 222
$0B11 LoadSegNum (Load Segment by Number) / 224
$1311 RenamePathname / 227
$0A11 Restart / 228
$0E11 UnloadSeg (Unload Segment by Address) / 230
$0C11 UnloadSegNum (Unload Segment by Number) / 231
$1211 UserShutDown / 233

C o n t e n t s i x

9 Using the Console Driver / 235
General information / 236

Console output / 236
Console input / 236

The Console Output routine / 238
Screen size / 238
The text port / 238
Character set mapping / 240
Screen control codes / 242

The Console Input routine / 246
The input port / 246
Using raw mode / 249
Using user input mode / 249
Terminators / 250

How to disable terminators / 251
Terminators and newline mode / 251

User-input editing commands / 252
Using no-wait mode / 253

Device calls to the console driver / 253
DStatus ($202D) / 253

Standard DStatus subcalls / 254

GetConfigParameters (DStatus subcall) / 254
GetTextPort (DStatus subcall) / 254
GetlnputPort (DStatus subcall) / 254
GetTerminators (DStatus subcall) / 255
SaveTextPort (DStatus subcall) / 255
GetScreenChar (DStatus subcall) / 255
GetReadMode (DStatus subcall) / 256
GetDefaultString (DStatus subcall) / 256

DControl ($202E) / 256
Standard DControl subcalls / 257

FormatDevice (DControl subcall) / 257

EjectMedia (DControl subcall) / 257
SetConfigParameters (DControl subcall) / 257
SetlnputPort (DControl subcall) / 257
SetTerminators (DControl subcall) / 258
RestoreTextPort (DControl subcall) / 258
SetReadMode (DControl subcall) / 259

SetDefaultString (DControl subcall) / 259

X Apple IIGS GS/OS Reference

Abortlnput (DControl subcall) / 259
AddTrap (DControl subcall) / 260
ResetTrap (DControl subcall) / 260

DRead ($202F) / 260
DWrite ($2030) / 261

10 Handling Interrupts and Signals / 263
Interrupts / 264

Interrupt sources / 264
Interrupt dispatching / 265
Interrupt handler structure and execution environment / 266
Connecting interrupt sources to interrupt handlers / 268

Bindint call / 268
Unbindint call / 268

Interrupt handler lifetime / 269
Unclaimed interrupts / 269

Signals / 270
Signal sources / 271
Signal dispatching and the signal queue / 271
Signal handler structure and execution environment / 272
Arming and disarming signals / 274

Arming device driver signal sources / 274
Disarming device driver signal sources / 275
Arming other signal sources / 275
Disarming other signal sources / 276

Part n The File System Level / 277

11 File System Translators / 279
The FST concept / 280
Calls handled by FSTs / 282
Programming for multiple file systems / 282

Don't assume file characteristics / 283
Use GetDirEntry / 284
Don't build your own device list / 284
Handle errors properly / 284
Optimize file access / 285

C o n t e n t s x i

Present and future FSTs / 286
Disk initialization and FSTs / 286

12 The ProDOS FST / 289
The ProDOS file system / 290
GS/OS and the ProDOS FST / 290
ProDOS FST Calls / 292

GetDirEntry ($201C) for ProDOS FST / 292
GetFilelnfo ($2006) for ProDOS FST / 293
SetFilelnfo ($2005) for ProDOS FST / 293

FSTSpecific ($2033) for ProDOS FST / 294
SetTimeStamp (ProDOS FSTSpecific subcall) / 295
GetTimeStamp (ProDOS FSTSpecific subcall) / 296
SetCharCase (ProDOS FSTSpecific subcall) / 296
GetCharCase (ProDOS FSTSpecific subcall) / 297

13 The High Sierra FST / 299
CD-ROM and the High Sierra/ISO 9660 formats / 300
Limitations of the High Sierra FST / 302
Apple extensions to ISO 9660 / 303
High Sierra FST calls / 304
GetFilelnfo ($2006) for High Sierra FST / 306
Volume ($2008) for High Sierra FST / 307
Open ($2010) for High Sierra FST / 308
Read ($2012) for High Sierra FST / 309
GetDirEntry ($201C) for High Sierra FST / 310
FSTSpecific ($2033) for High Sierra FST / 311

What a map table is / 312
MapEnable (High Sierra FST FSTSpecific subcall) / 313
GetMapSize (High Sierra FST FSTSpecific subcall) / 314
GetMapTable (High Sierra FST FSTSpecific subcall) / 314
SetMapTable (High Sierra FST FSTSpecific subcall) / 315

14 The Character FST / 317
Character devices as files / 318
Character FST calls / 318

Open ($2010) for Character FST / 319

xii Apple IIGS GS/OS Reference

Read ($2012) for Character FST / 320
Write ($2013) for Character FST / 320
Close ($2014) for Character FST / 321
Flush ($2015) for Character FST / 321

15 The AppleShare FST / 323
Pathname syntax / 324
Macintosh and GS/OS file types / 324
Access privileges / 326

If you specify a request Access parameter of $0001, $0002,
or $0003 / 327
If you specify a request Access parameter of $0000 / 328
Constructing multi-user applications / 328

Interrupts and AppleTalk calls / 329
Using the option list / 330
Controlling directory and file buffers / 331
ProDOS 16 and ProDOS 8 compatibility / 332
Calls to the AppleShare FST / 332
Create ($2001) for AppleShare FST / 333
SetFilelnfo ($2005) for AppleShare FST / 333
GetFilelnfo ($2006) for AppleShare FST̂ / 334
Open ($2010) for AppleShare FST / 334
Read ($2012) for AppleShare FST / 335
Write ($2013) for AppleShare FST / 335
Close ($2014) for AppleShare FST / 336
SetEOF ($2018) for AppleShare FST / 336
GetEOF ($2019) for AppleShare FST / 336
GetDirEntry ($201C) for AppleShare FST / 337
ReadBlock ($0022) for AppleShare FST / 338
WriteBlock ($0023) for AppleShare FST / 338
Format ($2024) for AppleShare FST / 338
EraseDisk ($2025) for AppleShare FST / 339
GetBootVol ($2028) for AppleShare FST / 339
GetFSTInfo ($202B) for AppleShare FST / 339
FSTSpecific ($2033) for AppleShare FST / 340

BufferControl (AppleShare FSTSpecific subcall) / 342
ByteRangeLock (AppleShare FSTSpecific subcall) / 343
SpecialOpenFork (AppleShare FSTSpecific subcall) / 345
GetPrivileges (AppleShare FSTSpecific subcall) / 347

C o n t e n t s x i i l

SetPrivileges (AppleShare FSTSpecific subcall) / 350
Userlnfo (AppleShare FSTSpecific subcall) / 353
CopyFile (AppleShare FSTSpecific subcall) / 354
GetUserPath (AppleShare FSTSpecific subcall) / 355
OpenDesktop (AppleShare FSTSpecific subcall) / 356
CloseDesktop (AppleShare FSTSpecific subcall) / 357
GetComment (AppleShare FSTSpecific subcall) / 358
SetComment (AppleShare FSTSpecific subcall) / 359
GetSrvrName (AppleShare FSTSpecific subcall) / 360

Appendixes / 361

A GS/OS ProDOS 16 Calls / 363
$0031 ALLOCJNTERRUPT / 364
$0004 CHANGE.PATH / 365
$000B CLEAR_BACKUP_BIT / 367
$0014 CLOSE / 368
$0001 CREATE / 369
$0032 DEALLOCJNTERRUPT / 373
$0002 DESTROY / 374
$002C DJNFO / 375
$0025 ERASE_DISK / 376
$000E EXPAND_PATH / 378
$0015 FLUSH / 379
$0024 FORMAT / 380
$0028 GET_BOOT_VOL / 382
$0020 GET_DEV_NUM / 383
$001C GET_DIR_ENTRY / 384
$0019 GET_EOF / 388
$0006 GET_FILE_INFO / 389
$0021 GET_LAST_DEV / 391
$001B GET_LEVEL / 392
$0017 GET_MARK / 392
$0027 GET.NAME / 393
$000A GET.PREFIX / 394
$002A GET.VERSION / 395
$0011 NEWLINE / 396
$0010 OPEN / 397

xiv Apple IIGS GS/OS Reference

J

$0029 QUIT / 399
$0012 READ / 400
$0022 READ.BLOCK / 402
$0018 SET.EOF / 403
$0005 SET_FILEJNFO / 404
$001A SET.LEVEL / 406
$0016 SET.MARK / 407
$0009 SET.PREFIX / 408
$0008 VOLUME / 409
$0013 WRITE / 411
$0023 WRITE_BLOCK / 412

B ProDOS 16 Calls and FSTs / 413
The ProDOS EST / 414
The High Sierra FST / 414

GET_FILE_INFO ($0006) / 415
VOLUME ($0008) / 415
GET_DIR_ENTRY ($001C) / 4l6

The Character FST / 4l6
OPEN ($0010) / 417
READ ($0012) / 417
WRITE ($0013) / 417
CLOSE ($0014) / 418
FLUSH ($0015) / 418

ProDOS 16 device calls / 418

C Apple Extensions to ISO 9660 / 419
What the Apple extensions do / 420

The protocol identifier / 420
The directory record SystemUse field / 422
SystemUselD / 423

The Extension to ISO 9660 / 426
Filename transformations / 427

ProDOS / 428
Macintosh HFS / 429

ISO 9660 associated files / 430

C o n t e n t s x v

D Delta Guide to GS/OS System Software Version 5.0
Changes / 431
New features for the application programmer / 432
Enhanced features for the application programmer / 434
New and enhanced features for the device driver writer / 436

E GS/OS Error Codes and Constants / 437

F Object Module Format / 441
What files are OMF files? / 442
General format for OMF files / 444

Segment types and attributes / 445
Segment header /. 446
Segment body / 452
Expressions / 466

Example / 469
Object files / 469
Library files / 470
Load files / 472

Memory image and relocation dictionary / 473
Jump-table segment / 473

Unloaded state / 474
Loaded state / 474

Pathname segment / 475
Initialization segment / 476
Direct-page/stack segments / 476

Run-time library files / 477
Shell applications / 478

Glossary / 481

Index / 489

xvi Apple IIGS GS/OS Reference

Figures and tables

P r e f a c e / x x i

Figure P-1 Roadmap to Apple IIGS technical manuals / xxvi

Table P-1 Apple IlGS technical manuals / xxvii

Introduction What Is GS/OS? / 1

Figure I-l Interface levels in GS/OS / 2
Figure 1-2 Where to find call descriptions / 7

1 The GS/OS Abstract File System / 13

Figure 1-1 The application level of GS/OS / 14
Figure 1-2 A hierarchical file system / 15
Figure 1-3 Directory file format / 16
Figure 1-4 Prefixes and partial pathnames / 19
Figure 1-5 How GS/OS moves the EOF and the mark / 24

Table 1-1 Prefixes used with full and partial pathnames / 21
Table 1-2 GS/OS file access calls / 27
Table 1-3 Other GS/OS call groups / 27

2 GS/OS and Its Environment / 31

Figure 2-1 Apple IlGS memory map / 32
Figure 2-2 Pointers and handles / 36

Table 2-1 GS/OS vector space / 34
Table 2-2 General requirements for a system disk / 41
Table 2-3 Machine state at GS/OS application launch / 46
Table 2-4 Machine state at ProDOS 8 application launch / 47

x v i i

Table 2-5 Prefix values when a GS/OS application is launched
at boot time / 48

Table 2-6 Prefix values when a GS/OS application is launched after a
previous GS/OS application quits / 48

Table 2-7 Prefbc values when a GS/OS application is launched after a
ProDOS 8 application quits / 49

Table 2-8 Prefk and pathname values at ProDOS 8 application
launch / 49

3 Making GS/OS Calls / 51

Figure 3-1 GS/OS and Pascal strings / 57
Figure 3-2 GS/OS input string structure / 58
Figure 3-3 GS/OS result buffer / 58

Table 3-1 Registers on return from GS/OS / 60
Table 3-2 Status and control bits on return from GS/OS / 60
Table 3-3 General GS/OS errors / 6l

4 Accessing GS/OS Files / 63
Table 4-1 Access attributes and their implications / 67
Table 4-2 Date and time format / 74

6 Working With System Information / 87
Table 6-1 Notification procedure header / 91
Table 6-2 Notification procedure parameters / 91

8 Loading Program Files / 199
Table 8-1 Segment characteristics and memory-block attributes / 205
Table 8-2 GS/OS Loader calls / 209

9 Using the Console Driver / 235

Figure 9-1 Console driver I/O routines / 237

Table 9-1 Console driver character mapping—
MouseText disabled / 241

Table 9-2 Console driver character mapping—
MouseText enabled / 241

Table 9-3 Console driver character mapping—special direct
inverse mode / 242

xviii Apple IIGS GS/OS Reference

10 Handling Interrupts and Signals / 263
Table 10-1 VRNs and interrupt sources / 265
Table 10-2 Interrupt-handler execution environments / 267
Table 10-3 GS/OS signal-dispatching strategy / 272
Table 10-4 Signal-handler execution environment / 273

11 File System Translators / 279
Figure 11-1 The file system level in GS/OS / 281

Table 11-1 GS/OS calls handled by FSTs / 282
Table 11-2 File system IDs / 286

12 The ProDOS EST / 289

Table 12-1 GS/OS calls handled differently by the ProDOS FST / 292

13 The High Sierra FST / 299
Table 13-1 High Sierra FST calls / 305

14 The Character FST / 317

Table 14-1 GS/OS calls supported by the Character FST / 318

15 The AppleShare FST / 323
Table 15-1 ProDOS-to-Macintosh file type conversion / 325
Table 15-2 Macintosh-to-ProDOS file type conversion / 325
Table 15-3 AppleShare FSTSpecific subcalls / 341

B ProDOS 16 Calls and FSTs / 413
Table B-1 High Sierra FST ProDOS 16 calls / 414
Table B-2 GS/OS ProDOS 16 calls supported by the

Character FST / 417

C Apple Extensions to ISO 9660 / 419
Table C-1 Defined values for systemUseiD for aa signature / 423
Table C-2 Defined values for systemUseiD for ba signature / 423
Table C-3 Contents ofsystemUse field for each value of

SystemUseiD for AA signature / 424
Table C-4 Contents ofsystemUse field for each value of

SystemUseiD for BA signature / 425
Table C-5 ProDOS-to-ISO 9660 filename transformations / 429

Figures and tables xix

D Delta Guide to GS/OS System Software Version 5.0 Changes / 431
Table D-1 New features in GS/OS version 5.0 / 432
Table D-2 Enhancements in GS/OS version 5.0 / 434
Table D-3 New and enhanced device features in GS/OS

version 5.0 / 436

E GS/OS Error Codes and Constants / 437

Table E-1 GS/OS errors / 438

F Object Module Format / 441

Figure F-1 The structure of an OMF file / 444
Figure F-2 The format of a segment header / 447
Figure F-3 The format of a library dictionary segment / 471

Table F-1 GS/OS program-file types / 443
Table F-2 KIND field definition / 450
Table F-3 Segment-body record types / 452

X X Apple IIGS GS/OS Reference

P r e f a c e

The Apple IIGS GS/OS Reference describes a powerful operating system
developed specifically for the Apple IlGS® computer. GS/OS® is
characterized by fast execution, easy configurability, multiple-file-
system access, character-file access, direct device access, device
independence, compatibility with the large GS/OS memory space, and
compatibility with standard Apple® II (ProDOS® 8-based) and early
Apple IIGS (ProDOS l6-based) applications.
The Apple IlGS GS/OS Reference describes how GS/OS gives your
application access to the full range of Apple IIGS features.

x x i

About th is book

The Apple Has GS/OS Reference is a manual for software developers, advanced
programmers, and others who wish to understand the technical aspects of this operating
system. In particular, this manual will be useful to you if you want to write
■ any program that creates or accesses files
■ a program that catalogs disks or manipulates files
■ a stand-alone program that automatically runs when the computer starts up
■ a program that loads and runs other programs
■ any program using segmented, dynamic code
■ an interrupt handler
■ a device driver

The functions and calls in this manual are in assembly-language format. If you are
programming in assembly language, you can use the same format to access operating
system features. If you are programming in a higher-level language (or if your assembler
includes a GS/OS macro library), you can use library interface routines specific to your
language. Those library routines are not described here; consult your language manual.
The software described in this book is part of the Apple IlGS system software,
versions 5.0 and later. Apple IlGS system software is available from Apple dealers
and from the Apple Programmers and Developers Association (APDA™).

♦ Note: System software versions earlier than version 4.0 contain ProDOS 16 rather than
GS/OS. ProDOS 16 is described in the Apple IlGS ProDOS 16 Reference.

How to use this book

This book is primarily a reference tool that describes the application interface, the high-
level parts of GS/OS that your application calls in order to access files or to modify the
operating environment.
■ The introduction describes GS/OS in general.
■ Part I describes how applications interact with GS/OS and documents all application-

level GS/OS calls.

xxii Apple IlGS GS/OS Reference

J

■ Part II documents the file system translators (FSTs), the software modules that allow
your program to access files from many different file systems. Part II lists the
application calls each FST supports and documents any differences in call handling
from the standard descriptions in Part I.

The principal descriptions of all application-level GS/OS calls (other than device calls) are
in Part I. Call descriptions elsewhere in the book document how the call differs from its
standard description. Driver calls (low-level device calls used by device drivers) are
described in the GS/OS Device Driver Reference.

If you are writing a typical application, this book is probably all you will need. If you need
to access devices directly or if you are writing a device driver, you will need the GS/OS
Device Driver Reference.

This manual does not explain 65816 assembly language. Refer to the Apple IIGS
Programmer's Workshop Assembler Reference or the MPWIlGS Assembler Reference for
information on Apple IlGS assembly-language programming.

This manual does not give a detailed description of ProDOS 8, the operating system for
standard Apple II computers (Apple II Plus, Apple He, Apple lie). For detailed
information on ProDOS 8, see the ProDOS 8 Technical Reference Manual.

Other materials you'll need

In order to write Apple IlGS programs that run under-GS/OS, you need an Apple IlGS
computer and development-environment software. Furthermore, you need at least some
of the reference materials listed later in the Preface under "Roadmap to the Apple IlGS
Technical Manuals." In particular, if you intend to write desktop-style applications or
desk accessories, which make use of the Apple IlGS Toolbox, you will need the Apple IlGS
Toolbox Reference.

The GS/OS Exerciser can be useful for experimenting with GS/OS calls.

♦ Note: The GS/OS Exerciser is available through the Apple Programmers and Developers
Association (APDA).

P r e f a c e x x i i i

Visual cues

Certain typographical conventions in this manual provide visual cues alerting you, for
example, to the introduction of a new term or to especially important information.
When a new term is introduced, it is printed in boldface. This lets you know that the term
is defined at that place in the text and that there is an entry for it in the glossary.

Special messages are marked as follows:

♦ Note: Text set off in this manner—with the word Note—presents extra information or
points to remember.

A Ifflportant Text set off in this manner—with the word Important—vital
information or instructions, a

Terminology

This manual may define certain terms, such as Apple II znd ProDOS, somewhat differently
from what you are used to. Please note the following definitions:

Apple H: A general term for the Apple II family of computers, especially those that may
use ProDOS 8 or ProDOS 16 as an operating system. It includes the 64 KB Apple II Plus,
the Apple lie, the Apple He, and the Apple IIGS.

Standard Apple D: Any Apple II computer that is not an Apple IIGS. Since earlier
members of the Apple II family share many characteristics, it is useful to distinguish
them as a group from the Apple IIGS. A standard Apple II may also be called an 8-bit
Apple II, because of the 8-bit registers in its 6502 or 65C02 microprocessor.

ProDOS; A general term describing the family of operating systems developed for Apple II
computers. It includes both ProDOS 8 and ProDOS 16; it does not include DOS 3.3 or
SOS. ProDOS is also a file system developed to operate with the ProDOS operating
systems.

ProDOS 8: The 8-bit ProDOS operating system, through version 1.8, originally developed
for standard Apple II computers but compatible with the Apple IIGS. In previous
Apple II documentation, ProDOS 8 is called simply ProDOS.

ProDOS 16: The first l6-bit operating system developed for the Apple IlGS computer.
ProDOS 16 is based on ProDOS 8.

GS/OSs A native-mode, 16-bit operating system developed for the Apple IlGS computer.
GS/OS replaces ProDOS 16 as the preferred Apple IlGS operating system. GS/OS is the
system described in this manual.

xxiv Apple IIGS GS/OS Reference

Language notation

This manual uses certain conventions in common with Apple IIGS language manuals. Words
and symbols that are computer code appear in a monospaced font:

_ C a l l N a m e _ C l p a r m b l o c k ; N a m e o f c a l l
b o s e r r o r ; h a n d l e e r r o r i f c a r r y s e t o n r e t u r n

; c o d e t o h a n d l e e r r o r r e t u r n

p a r m b l o c k / • p a r a m e t e r b l o c k

Assembly-language labels, entry points, and filenames that appear in text passages are also
printed in a monospaced font. System software functions, except standard GS/OS call
names, are printed in a monospaced font in uppercase and lowercase letters (for
example, buf fTooSmaii). The subclass of GS/OS calls that are compatible with ProDOS
16 are printed in all uppercase letters and often include underscore characters (for
example, get_dir_entry).

Roadmap to the Apple IIGS technical manuals

The Apple IlGS personal computer has many advanced features, making it more complex
than earlier models of the Apple II computer. To describe the Apple IIGS fully, Apple has
produced a suite of technical manuals. Depending on the way you intend to use the
Apple IIGS, you may need to refer to a select few of the manuals, or you may need to refer
to most of them.

The Apple IlGS technical manuals document Apple IIGS hardware, Apple IIGS system
software, and two development environments for writing Apple IIGS programs. Figure P-1
is a diagram showing the relationships among the principal manuals; Table P-1 is a
complete list of all manuals. Individual descriptions of the manuals follow.

P r e f a c e x x v

Figure P-1 Roadmap to Apple IIGS technical manuals

To start finding out -
about the Apple lies Technical Introduction

to the Apple Ugs

To learn how the -

Apple lies works

To learn Apple lies
programming

Programmer's
Introduction
to the Apple llos

Apple lies
Hardware
Reference

Apple tics
Firmware
Reference

To use the toolbox -

Apple Uos
Toolbox Reference

To operate on files
and devices

GS/OS Reference

GS/OS Device
Driver Reference ProDOS STechnical

Reference Manual

To write Apple lies
programs with APW Apple lies Programmer's

Workshop Reference

To write Apple lies
programs with the
cross-development
system

MPW lies Tools Reference

xxvi Apple IIGS GS/OS Reference

■ Table P-1 Apple IIGS technical manuals

Title
Technical Introduction to the Apple IlGS
Apple IIGS Hardware Reference
Apple IIGS Firmware Reference
Programmer's Introduction to the Apple IIGS
Apple IIGS Toolbox Reference, Volume 1
Apple IlGS Toolbox Reference, Volume 2
Apple IlGS Toolbox Reference, Volume 3

FroDOS 8 Technical Reference Manual
Apple IIGS ProDOS 16 Reference

GS/OS Device Driver Reference

Human Interface Guidelines:
The Apple Desktop Interface

Apple Numerics Manual

Apple IIGS Programmer's Workshop Reference
Apple IIGS Programmer's Workshop

Assembler Reference
Apple IlGS Programmer's Workshop

C Reference

MPW IIGS Tools Reference
MPWIIGS Assembler Reference
MPW IIGS C Reference
MPW IlGS Pascal Reference

AppleShare Programmer's Guide
for the Apple II

Apple IIGS Debugger Reference

Subject

What the Apple IIGS is
Machine internals—hardware
Machine internals—firmware

Concepts and a sample program
How tools work, some specifications
More toolbox specifications
More toolbox specifications, and
corrections and clarifications to the
firs t two vo lumes

Standard Apple II operating system
ProDOS 16 operating system and loader

Device drivers and GS/OS

Apple's standards for the desktop interface
Standard Apple Numerics Environment

Using APW^M

Using the APW Assembler

Using the APW C Compiler

Using4he cross-development system
Using the MPW® IIGS Assembler
Using the MPW IIGS C Compiler
Using the MPW IIGS Pascal Compiler

Developing network-specific applications
for the Apple IIGS
Debugger for all Apple IlGS programs

P r e f a c e x x v i i

Introductory Apple JIGS manuals

The introductory Apple IlGS manuals are for developers, computer enthusiasts, and other
Apple IlGS owners who need basic technical information. Their purpose is to help the
technical reader understand the features and programming techniques that make the
Apple IlGS different from other computers.
■ The Technical Introduction to the Apple IlGS is the first book in the suite of technical

manuals about the Apple IlGS. It describes all aspects of the Apple IlGS, including its
features and general design, the program environments, the toolbox, and the
development environment.
You should read the Technical Introduction no matter what kind of programming you
intend to do, because it will help you understand the powers and limitations of the
machine.

■ When you start writing programs that use the Apple IlGS user interface (with windows,
menus, and the mouse), the Programmer's Introduction to the Apple IlGS provides the
concepts and guidelines you need. It is not a complete course in programming, only a
starting point for programmers writing applications for the Apple IlGS.
The Programmer's Introduction gives an overview of the routines in the Apple IlGS
Toolbox and the operating environment they run under. It includes a sample event-
driven program that demonstrates how a program uses the toolbox and the operating
system.

Apple IlGS machine reference manuals

The machine itself has two reference manuals. They contain detailed specifications for
people who want to know exactly what's inside the machine.
■ The Apple IlGS Hardware Reference is required reading for hardware developers and

anyone else who wants to know how the machine works. Information of special
interest to developers includes the mechanical and electrical specifications of all
connectors, both internal and external. Information of general interest includes
descriptions of the internal hardware and how it affects the machine's features.

■ The Apple IlGS Firmware Reference describes the programs and subroutines stored in
the machine's read-only memory (ROM). The Firmware Reference includes information
about interrupt routines and low-level input/output (I/O) subroutines for the serial
ports, the disk port, and the Apple Desktop Bus™ interface, which controls the
keyboard and the mouse. The Firmware Reference also describes the Monitor program,
a low-level programming and debugging aid for assembly-language programs.

xxviii Apple IlGS GS/OS Reference

J

Apple JIGS toolbox manuals

Like the Macintosh®, the Apple IIGS has a built-in toolbox. Volume 1 of the Apple IIGS
Toolbox Reference introduces concepts and terminology and explains how to use some of
the tools. Volume 2 contains information about more tools and explains how to write and
install your own tool set. Volume 3 adds more tools and includes corrections and
clarifications to the other two volumes.

If you are developing an application that uses the desktop interface, or if you want to
use the Super Hi-Res graphics display, you'll find the Toolbox Reference indispensable.

Apple IIGS operating-system manuals

The Apple IlGS has two operating systems: OS/OS and ProDOS 8. OS/OS uses the full
power of the Apple IlGS and can access files in multiple file systems. This book describes
GS/OS and includes information about the System Loader, which works closely with
GS/OS to load programs into memory.

♦ Note: GS/OS is compatible with and replaces ProDOS 16, the first operating system
developed for the Apple IlGS computer. ProDOS 16 is described in the Apple IIGS
ProDOS 16 Reference.

ProDOS 8, previously called simply ProDOS, is the standard operating system for most
Apple II computers with 8-bit CPUs. As a developer of Apple IlGS programs, you need to
use ProDOS 8 only if you are developing programs to run on standard (8-bit) Apple II
computers as well as on the Apple IIGS. ProDOS 8 is described in the ProDOS 8 Technical
Reference Manual.

All-Apple manuals

Two manuals apply to all Apple computers: Human Interface Guidelines: The Apple Desktop
Interface and the Apple Numerics Manual. If you develop programs for any Apple
computer, you should know about these manuals.
The Human Interface Guidelines manual describes Apple's standards for the desktop
interface to any program that runs on an Apple computer. If you are writing a commercial
application for the Apple IlGS, you should be fully familiar with the contents of this
manual.

P r e f a c e x x i x

The Apple Numerics Manual, second edition, is the reference for the Standard Apple
Numerics Environment (SANE®), a full implementation of the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE Std 754-1985). If your application requires floating-point
or robust arithmetic, you'll probably want it to use the SANE routines in the Apple IIGS.

The APW manuals

Apple provides two development environments for writing Apple IlGS programs. One is
the Apple IlGS Programmer's Workshop (APW). APW is a native Apple IlGS development
system—it runs on the Apple IlGS and produces Apple IlGS programs. There are three
principal APW manuals:
■ The Apple IlGS Programmer's Workshop Reference describes the APW Shell, Editor,

Linker, and utility programs; these are the parts of the workshop that all developers
need, regardless of which programming language they use. The APW reference manual
includes a sample program and describes object module format (OMF), the file format
used by all APW compilers to produce files loadable by the Apple IlGS System Loader.

■ The Apple IlGS Programmer's Workshop Assembler Reference includes the specifications
of the 65816 language and of the Apple IlGS libraries, and describes how to use the
assembler.

■ The Apple IlGS Programmer's Workshop C Reference includes the specifications of the
APW C implementation and of the Apple IlGS interface libraries, and describes how to
use the compiler.

Other compilers can be used with the workshop, provided they follow the standards
defined in the Apple IlGS Programmer's Workshop Reference. Several such compilers, for
languages such as Pascal, are now available.

♦ Note: The APW manuals, along with APW itself, are available through APDA.

The MPW I IGS manuals

The Macintosh Programmer's Workshop (MPW) is the other development environment
Apple provides for writing Apple IlGS programs (see Figure P-1). MPW is principally a
sophisticated, powerful development environment for the Macintosh computer. It
includes assemblers and compilers, linkers, and a variety of diagnostic and debugging
tools. When used to write Apple IlGS programs, MPW is a cross-development system—it
runs on the Macintosh, but produces executable programs for the Apple IlGS.

XXX Apple IIGS GS/OS Reference

MPW is documented in several manuals, but the parts needed for cross-development— t̂he
editor and the build tools—are described in the Macintosh Programmer's Workshop
Reference.
Four manuals describe the cross-development system. Each programming language has its
own manual. Whichever language you program in, you also need the MPW Has Tools
Reference.
■ Tools: The MPW IIGS Tools Reference describes the tools needed to create Apple IIGS

applications under MPW. It describes the linker, the file-conversion tool, and several
other conversion and diagnostic programs.

■ Assembler: The MPW IlGS Assembler Reference describes how to write Apple IlGS
assembly-language programs under MPW. It also documents a utility program that
converts source files written for the APW assembler to files compatible with the
MPW IlGS assembler.

■ C compiler: The MPW IIGS C Reference describes how to write Apple IIGS programs
in C under MPW.

♦ Note: The MPW IIGS manuals are available through APDA.

The AppIeShare programmer's manual

The AppIeShare Programmer's Guide for the Apple //describes in detail how to develop
new network-specific applications for the Apple IIGS and the Apple He computer. If you
need more help about writing such applications, see that manual.

The debugger manual

Neither MPW IIGS nor APW includes a debugger as part of the development environment.
However, the Apple IIGS Debugger, an independent product, is a machine-language
debugger that runs on the Apple IIGS and can be used to debug programs produced by
either MPW IIGS or APW.

The Apple IIGS Debugger is described in the Apple IIGS Debugger Reference.

P r e f a c e x x x i

Introduction What Is GS/OS?

GS/OS® is the first completely new operating system designed for the
Apple IIGS® computer. It is similar in interface and call style to the
ProDOS® operating systems, but it has far greater capabilities because it
has many new calls, and it has much faster execution because it is written
entirely in 65816 assembly language.
Even more important, GS/OS is file system-independent: by making
GS/OS calls, your application can read and write files transparently
among many different and normally incompatible file systems. GS/OS
accomplishes this by defining a generic GS/OS file interface, the abstract
file system. Your application makes calls to that interface, and then
GS/OS uses file system translators to convert those calls and data into
formats consistent with individual file systems.

This introduction gives an overview of the structure and capabilities
of GS/OS, followed by a brief history of the evolution in Apple® II
operating systems from DOS to GS/OS.

The components of GS/OS

GS/OS is more complex and integrated than previous Apple II operating systems. As
Figure I-l shows, you can think of it in terms of three levels of interface: the application
level, the file system level, and the device level. A t)'pical GS/OS call passes through the
three levels in order, from the application at the top to the device hardware at the
b o t t o m .

■ Figure I-l Interface levels in GS/OS

Application program

Application
level

File sy.stem
level

D e v i c e

level

Block

device

Block

device

Character
device

Character
device

2 Apple IlGS GS/OS Reference

■ Application level; At this level, the GS/OS Call Manager processes OS/OS calls that
allow an application to access files or devices, or to get or set specific system
i n f o r m a t i o n .

In handling a typical GS/OS call, the Call Manager mediates between an individual
application and the file system level. The application-interface level is described in
Part I of this book.

■ File system level: The file system level consists of file system translators (FSTs),
which receive application calls, convert them to a specific file system format, and
send them on to device drivers. FSTs allow applications to use the same calls to read
and write files for any number of file systems. FSTs also allow applications to access
character devices (like display screens or printers) as if they were files.
The file system level is completely internal to GS/OS. Although your applications don't
interact with the file system level directly, you may want to know how calls are
translated by different file system translators. For example, CD-ROM files are read
only, so write calls cannot be translated meaningfully by an FST that accesses files on
compact discs.
In handling a typical GS/OS call, the file system translators mediate belx\'een the
application level and the device level. The file system-interface level is described in
Part II of this book.

■ Device level: The device level consists of the Device Manager, the Device Dispatcher,
and all device drivers connected to the system. In handling a t)'pical GS/OS call, the
Device Manager and the Device Dispatcher mediate between the file system level and
an individual device driver.

The device level of GS/OS has two other types of communication. Your application
can bypass the file system level entirely by making device calls, which are calls that
directly access devices. Finally, device drivers communicate with the device level by
accepting driver calls, which are mostly low-level translations of device calls.
Devices are normally accessed through applicationdevel file calls, described in Part I of
this book. The lower-level device calls are described in the GS/OS Device Driver

Reference; if you want to give your application direct access to devices, look there to
find out how to do it. Driver calls are also described in the GS/OS Device Driver

Reference; if you are writing a device driver, look there for details.
Another part of system software that is described in this manual is the Apple IIGS System
Loader. The System Loader loads programs into memoiy and prepares them for
execution. Although not strictly part of GS/OS, the System Loader occupies the same disk
file as GS/OS, and works very closely with GS/OS. For most applications, however, its
functioning is totally automatic; in special situations, some applications need to make
loader calls.

I n t r o d u c t i o n 3

GS/OS features

This section describes some of the principal GS/OS features of interest to application
w r i t e r s .

File system independence

Because it uses file system translators, GS/OS accesses non-ProDOS file systems as easily
as it accesses the more familiar (to Apple II applications) ProDOS files. It is possible to
gain access to any file system for which an FST has been written. Several FSTs currently
exist; as Apple Computer creates new FSTs, they can be added very easily to existing
systems.

The GS/OS abstract file system supports both flat and hierarchical file systems and
systems with specific file types and access permissions. GS/OS recognizes standard files,
directory files, and extended files (two-fork files such as those used by the Macintosh®).
Certain GS/OS calls make it easy to retrieve and use directory information for any file
system.

The abstract file system is described in Chapter 1 of this book. FSTs are described in
Part II of this book.

Enhanced device support

All GS/OS device drivers provide a uniform interface to character and block devices.
GS/OS supports both ROM-based and RAM-based device drivers, making it easier to
integrate new peripheral devices into GS/OS.
GS/OS provides a uniform input/output model for both block and character devices.
Devices such as printers and the console are accessed in the same way as sequential files
on block devices. This can greatly simplify I/O for your application.

Unlike ProDOS 8 and ProDOS 16, GS/OS recognizes disk-switched and duplicate-volume
situations, to help your application avoid writing data to the wrong disk.

Devices are normally accessed through application-level file calls, described in Part I of
this book. Device drivers are described in the GS/OS Device Driver Reference.

4 Apple IIGS GS/OS Reference

speed enhancements

GS/OS transfers data much faster than ProDOS 8 or ProDOS 16 because it uses caching,
allows multiple-block reads and writes, eliminates the duplicate levels of buffering used by
ProDOS 16, and is written entirely in 65816 native-mode assembly language.

El iminat ion of ProDOS restr ict ions

GS/OS allows any number of open files (rather than only 8) up to the amount of available
RAM, any number of devices on line (rather than only 14), and any number of devices per slot
(rather than only 2). GS/OS allows volumes and files to be as large as 4096 megabytes (MB),
rather than only l6 MB for files and 32 MB for volumes.

The GS/OS file interface is described in Chapter 1 of this book.

ProDOS 16 compatibility

GS/OS includes a complete set of ProDOS 16 calls and implements them just as ProDOS 16
does. All well-designed ProDOS 16 applications can run without modification under
GS/OS. Further, existing ProDOS 16 applications running under GS/OS can now automati
cally access files on non-ProDOS disks, and can also access character devices as files.

Where to find call descriptions

As already noted, a program can make several types of calls to GS/OS. Broadly, calls can
be divided into application-level calls (made from application programs to GS/OS) and
low-level calls (made between GS/OS and low-level software such as device drivers). Most
application-level calls are described in this book; most low-level calls are described in the
GS/OS Device Driver Reference. Within these broad divisions, there are several
subcategories of calls and call-related descriptions; each subcategory is described in one
of the two books.

I n t r o d u c t i o n 5

The following call descriptions are found in this book:
■ Standard GS/OS calls: Also called class 1 calls or just GS/OS calls, these are the primary

calls an application makes to access files or system information. They are application-
level calls. This category covers all operating-system calls that a typical GS/OS
application makes.

■ System Loader calls: These are calls a program makes to load other programs or
program segments into memory. Although you usually don't make System Loader calls,
they are described in this book in case you need them.

■ FST-specific mformation on GS/OS calls: Because different file systems have
different characteristics, they do not all respond identically to GS/OS calls. In
addition, each FST can support the GS/OS call FSTSpecif ic, an application-level call
whose function is defined individually for each FST. Therefore, this book includes
descriptions of how each FST handles certain GS/OS calls, including FSTSpecif ic.

■ ProDOS 16 calls: Also called class 0 calls, these are application-level calls that are
identical to the calls described in the Apple IlGS ProDOS 16 Reference. GS/OS supports
these calls so that existing ProDOS 16 applications can run without modification under
GS/OS.

■ FST-specific mformation on ProDOS l6 caUs: Because different file systems have
different characteristics, they do not all respond identically to ProDOS l6 calls.
Therefore, this book includes descriptions of how each FST handles ProDOS 16 calls.
There is no FSTSpecif ic ProDOS l6 call as there is for GS/OS calls.

The following call descriptions are found in the GS/OS Device Driver Reference: ■
■ GS/OS device calls: These are a subset of the standard, application-level GS/OS

device calls described in the GS/OS Reference. The lower-level device calls are special
because they bypass the file system level altogether and access devices directly.

■ Driver-specific information on GS/OS device calls: Because different devices have
different characteristics, device drivers do not all respond identically to GS/OS calls.
Therefore, this book includes descriptions of how each GS/OS driver handles certain
GS/OS device calls.

■ Driver calls: These are calls that GS/OS makes to individual device drivers. They are
low-level calls, of interest mainly to device-driver writers.

■ System service caUs: System service calls give low-level components of GS/OS (such
as FSTs and device drivers) a uniform method for accessing system information and
executing standard routines. This book describes the system service calls that GS/OS
device drivers can make.

6 Apple IlGS GS/OS Reference

Figure 1-2 shows you where to look in each book for the principal descriptions of each call
category. For example, the descriptions of all standard GS/OS calls (except those that
access devices) are in Chapter 7, Part I, of this book. Most applications make only the
calls described in Part I (shaded area).

♦ Note: Figure 1-2 is reproduced in each part opening in this book, highlighted to show
the calls described in that part.

■ Figure 1-2 Where to find call descriptions

P a r t I P a r t 1 1

GS/OS system requirements

GS/OS will not run on a standard Apple II computer. It requires an Apple IIGS with a ROM
version of 01 or greater, at least 512 KB of RAM, and a disk drive with at least 800 KB
capacity. A second 800 KB drive or a hard disk is strongly recommended.

I n t r o d u c t i o n 7

The development of GS/OS

The material in this section is a brief discussion of how GS/OS evolved from previous
Apple II operating systems.

Apple Computer has created several operating systems for the Apple II family of
computers. GS/OS is the latest in that line; it is related to several earlier systems, but has
far greater capabilities than any of them. Here are thumbnail sketches of the other
systems:
■ DOS: DOS (for Disk Operating Systern) was Apple's first operating system. It provided

the Apple II computer with its first capability to store and retrieve disk files. DOS has
relatively slow data transfer rates by modern standards, supports a flat (rather than
hierarchical) file system, can read 140 KB disks only, has no uniform interrupt support,
includes no memory management, and is not extensible.

■ Pascal: Apple II Pascal is Apple Computer's implementation and enhancement of the
University of California, San Diego Pascal System. Its lineage is completely separate
from the other Apple operating systems. Apple II Pascal supports only a flat file
system, is characterized by slow, interpretive execution, provides no uniform support
for interrupts, has no memory management, and is difficult to extend.

■ SOS: SOS (for Sophisticated Operating System) was developed for the Apple III, but its
most important feature, the file system, is the heart of the ProDOS family of operating
systems (described next). SOS gives much faster data transfer than DOS, represents
Apple Computer's first hierarchical file system, supports block devices up to 32 MB,
provides a uniform sequential I/O model for both block devices and character
devices, and includes interrupt handling, memory management, device handling, and
extensibility via device drivers and interrupt handlers. The major deficiency of SOS is
that it requires at least 256 KB of RAM for effective operation.

■ PfoDOS 8: ProDOS 8 (originally called ProDOS, for Professional Disk Operating System)
brought some of the advanced features of SOS to 8-bit Apple II computers (Apple II
Plus, Apple He, Apple lie). It requires no more than 64 KB of RAM, and in fact can
directly access only 64 KB of memory space. ProDOS supports exactly the same
hierarchical file system as SOS, but it does not have the uniform I/O model for
character devices and files, memory management, or uniform treatment of device
drivers and interrupt handlers.

■ ProDOS 16: ProDOS 16 (ProDOS for the l6-bit Apple IIGS) is the first step toward an
operating system designed specifically for the Apple IlGS computer. It is an extension
of ProDOS 8; with a few important additions, it has essentially the same features as
ProDOS 8 and supports exactly the same hierarchical file system. The main advantage
of ProDOS 16 is that it allows applications to interact with the operating system from
anywhere in the 16 MB Apple IlGS address space.

8 Apple IlGS GS/OS Reference

■ GS/OS: GS/OS fully exploits the capabilities of the Apple IIGS. It is a fast, modular,
and extensible operating system that provides a file system-independent and device-
independent environment for applications. While upwardly compatible from ProDOS
16, it corrects deficiencies in the I/O performance of ProDOS 16 and eliminates its
restrictions on the number and size of open files, volumes, and devices. GS/OS
supports character devices as files, handles devices uniformly, and supports RAM-
based device drivers. GS/OS can create, read, and write files among a potentially
unlimited number of different file systems (including ProDOS).

Although it is an extension of the ProDOS line, GS/OS is really a completely new operating
system. As its name suggests, it is designed specifically for the Apple IlGS computer, and
it is intended to be the principal Apple IIGS operating system.

I n t r o d u c t i o n 9

Parti The Application Level

Appendixes

GS/OS calls
(except device calls)

(Chapter?)

System Loadercalls
(Chapters)

FST-specific
information on

GS/OS calls

(Chapters 11-15)

ProDOS 16 calls
(Appendix A)

FST-specific
information on
ProDOS 16 calls
(Appendix B)

11

Chapter 1 The GS/OS Abstract File System

A key feature of GS/OS is its ability to insulate applications from the
details of the hardware devices connected to the system and the file
systems used to store applications and their data. This chapter shows
how GS/OS implements this feature. It also lists, by category, the GS/OS
calls that an application can make.

13

A high-level file system interface

GS/OS has been designed to insulate you, the application programmer, from the details of
file systems and hardware devices. Normally, you simply make a GS/OS call, and GS/OS
routes the call to the correct file system and device. You can think of GS/OS as looking
like the illustration shown in Figure 1-1.

GS/OS can keep your application from dealing with FSTs and devices at all, and thus allow
you to take a higher-level approach, by supporting files in a hierarchical file system. A
hierarchical file system contains both normal files that contain data or applications, and

Figure 1-1 The application level of GS/OS

Application program

0 0 0
B l o c k B l o c k C h a r a c t e r C h a r a c t e r
d e v i c e d e v i c e d e v i c e d e v i c e

14 Apple IlGS GS/OS Reference

special files called directories. A directory file can contain the names of either normal
files or other directories. Figure 1-2 shows the relationships among files in a hierarchical
file system.

In GS/OS, the highest-level directory is called a volume directory. A volume is a logical
entity that allows you to access the files contained on a physical storage medium such as a
diskette, hard disk, or CD-ROM. Only block devices can be identified by volume name,
and then only if the named volume is mounted. For example, an entire disk is identified by
its volume name, which is the filename of its volume director)'. GS/OS also makes certain
assumptions about what each file in this hierarchical file system looks like. The
assumptions are as follows:
■ Each file can be classified as a directory, standard, or extended file (defined in the

next section).

■ Each file has a filename in a certain format.

■ The logical location of each file can be uniquely identified by a pathname, which is an
ordered collection of the filenames that lead to it.

■ Each file has access privileges.
■ Each file has a file type and an auxiliary type.
■ Each file has a creation and modification date and time.

The following sections define these assumptions.

Chapter 1 The GS/OS Abstract File System 15

Classes of GS/OS files

Every GS/OS file is a collection of bytes on a device. The classes of files are as follows:
■ Directory files store information about other files.
■ Standard files contain a single sequence of data.
■ Extended files contain two sequences of data.

♦ Note: These classes of files are for block devices. GS/OS also allows you to treat
character devices as if they contained files. See Chapter 14, "The Character EST."

Directory files

A directory file contains informational entries about other directories and files. Each
entry in the directory file describes and points to another directory file, standard file, or
extended file, as shown in Figure 1-3.

Directory files can be read from, but not written to (except by GS/OS).

■ Figure 1-3 Directory file format

D i r e c t o r y fi l e S t a n d a r d fi l e

16 Apple IIGS GS/OS Reference

A directory can, but need not, have associated file information, such as access controls,
file type, creation and modification times and dates, and so on.

Usually, you need to examine directory files only when you are creating an application that
catalogs files; more information about directory files is given in the section "Examining
Directory Entries" in Chapter 4.

Standard fi les

Standard files are named collections of data consisting of a sequence of bytes and
associated file information, such as access controls, file type, creation and modification
times and dates, and so on. They can be read from and written to, and have no predefined
internal format, because the arrangement of the data depends on the specific file type
and auxiliary type.

E x t e n d e d fi l e s

Extended files are named collections of data consisting of two sequences of bytes and a
single set of file information, such as access controls, file type, creation and modification
times and dates, and so on. The two different byte sequences of an extended file are
called the data fork and the resource fork. They can be read from and written to, and
have no predefined internal format; the formats depend on the specific file types.

F i l e n a m e s

Every GS/OS file is identified by a filename. A OS/OS filename can be any number of
characters long and can include spaces. Your application must encode filenames as
sequences of 8-bit ASCII codes. All 256 extended ASCII values are legal except the colon
(ASCII $3A), although most file system translators (FSTs) support much smaller legal
character sets.

A Important Because the colon is the pathname separator character, it must never
appear in a filename. See the next section, "Pathnames," for more
details about separators and pathnames, a

Chapter 1 The GS/OS Abstract File System 17

If an FST does not support a character that the user attempts to use in a filename, GS/OS
returns error $40 (badPathSyntax). FSTs are also responsible for indicating whether
filenames should be case-sensitive, and whether the high-order bit of each character is
turned off. See Part II of this book for more information about FSTs.

A filename must be unique within its directory. Some examples of legal filenames are the
following:
fi l e - l

J a n u a r y S a l e s

l o n g fi l e n a m e w i t h s p a c e s a n d s p e c i a l c h a r a c t e r s ! 0 # $ %

P a t h n a m e s

In a hierarchical file system, a file is identified by its pathname, a sequence of filenames
starting with the name of the volume directory and ending with the name of the file.
Pathnames specify the access paths to devices, volumes, directories, subdirectories, and
files within flat or hierarchical file systems.

A GS/OS pathname is either a full pathname or a partial pathname, as described in the
following sections. All calls that require you to name a file will accept either a full
pathname or a partial pathname.

Full pathnames

A full pathname is one of the following names:
■ a volume name followed by a series of zero or more filenames, each preceded by

the same separator, and ending with the name of a directory file, standard file, or
extended file

■ a device name followed by a series of zero or more filenames, each preceded by
the same separator, and ending with the name of a directory file, standard file, or
extended file

A separator is a character that separates filenames in a pathname. Both of the following
separators are valid:
■ a colon : (ASCII code $3A).
■ a slash character / (ASCII code $2F)

18 Apple IIGS GS/OS Reference

The first separator in the input string determines which separator will be used throughout.
When the colon is the separator, the constituent filenames must not contain colons, but
they may contain slashes. When the slash is the separator, the constituent filenames must
not contain slashes or colons. Thus, colons are never allowed in filenames. These are
examples of legal full pathnames:
: a l o y s i u s : b e e l z e b u b : c a t

: a : b : c

/ x

: X

Examples of illegal full pathnames are as follows;
A : must not appear in a filename.

: a: b: c: A separator must not appear after the last filename,
a: b: c: A full pathname must start with a volume or device name.

Prefixes and partial pathnames

A full pathname can be broken down into a prefix and a partial pathname. The prefix
starts at the volume or device name and can continue down the path through the last
directory name, that is, down to but not including the filename. In contrast, the partial
pathname always contains the filename and can trace back up the path to, but cannot
include, the volume name or device name. Thus, when the prefix and partial pathname are
combined, they yield the full pathname. Figure 1-4 illustrates the possible divisions of a
single full pathname into a prefix and a partial pathname.

Figure 1-4 Prefixes and partial pathnames

^̂ M[OnelMi-/TwoDk/MvPUe

Partial pathname

Chapter 1 The GS/OS Abstract File System 19

Prefixes are convenient when you want to access many files in the same subdirectory,
because you can use a prefix designator as a substitute for the prefix, thus shortening the
pathname references.

Prefix designators

A prefix designator takes the place of a prefix, and can be one of the following:
■ A digit or sequence of digits followed by a pathname separator. The digits specify the

prefix number. Thus, the prefk designators 002: and 2/ both specify prefix number 2.
■ The asterisk character * followed by a pathname separator. This special prefix

designator is one of the predefined prefix designators, as described later in this
s e c t i o n .

■ The at character 0 followed by a pathname separator. This special prefix designator is
one of the predefined prefix designators, as described later in this section.

If you supply a partial pathname that doesn't contain a prefix designator to GS/OS, it
takes one of the following actions:
■ If prefbt designator 0 is non-null, GS/OS automatically creates a full pathname by

adding 0 / to the front of the partial pathname.
■ If prefix designator 0 is null, GS/OS automatically creates a full pathname by adding

8 / to the front of the partial pathname.

GS/OS determines the separator for a partial pathname in the same way that it determines
the separator for a full pathname, by using whichever one appeared first in the input
string.

♦ Note: Although you may use a prefix designator as an input to the GS/OS SetPrefix call,
prefixes are always stored in memory in their full pathname form (that is, they include
no prefix designators themselves).

GS/OS supports two types of prefixes, as follows:
■ Short prefixes, referred to by the prefbc designators * and 0 through 1, cannot be

longer than 64 characters. Short prefixes are identical to the prefixes supported by
ProDOS 16.

■ Long prefixes, referred to by the prefix designators 0 and 8 through 31, can contain
up to about 8000 characters.

20 Apple IIGS GS/OS Reference

I

This means that GS/OS allows you to set 32 prefixes. You set and read prefixes using tlie
standard GS/OS calls SetPrefix and GetPrefix. GetPrefix returns a string in which all
separators are colons (ASCII $3A). Alphabetic characters are returned with the same case
in which they were entered when the prefix was set.

Predefined prefix designators

For programming convenience, some prefix designators have predefined values. The
asterisk (*) has a fixed value as the name of the volume from which GS/OS was last
started up.

The at character 0 helps applications be AppleShare aware. Whenever an application is
launched, GS/OS sets this prefix in one of two ways:
■ If the application is being launched from a server, GS/OS sets the 0 prefix to the user's

folder on the server.

■ If the application is not being launched from a server, GS/OS sets the 0 prefix to the
folder where the application resides (same as prefix 9).

Other prefbc designators have default values assigned by GS/OS at application launch (see
Tables 2-5 through 2-7 in Chapter 2), but your application can change those values when it
is running.

Table 1-1 shows some examples of prefix use in which prefbc 0 : is set to : volume 1: and
prefix 5: is set to : volume 1: TEXT .FILES:. The pathname provided by the
application is compared with the full pathname constructed by GS/OS.

■ Table 1-1 Prefixes used with full and partial pathnames
Full pathname

as supplied: :volume 1:TEXT .FILES :CHAP . 3
as expanded by GS/OS: : volumei: text .files :chap . 3

Partial pathname—implicit use of prefix : 0
as supplied: gs .os
as expanded by GS/OS: : volumei : gs . os

Partial pathname—explicit use of prefix : 0
as supplied: 0 : system:finder
as expanded by GS/OS: : volumei : system:finder

Partial pathname—explicit use of prefbc 5 :
as supplied: 5: chap . 12
as expanded by GS/OS: : volumei : text .files :chap . 12

Chapter 1 The GS/OS Abstract File System 21

F i l e i n f o r m a t i o n

GS/OS files have several characteristics, including the following:
■ Access privileges
■ A file type and an auxiliary type
■ File size and the current reading-writing position
■ Creation and modification date and time

Your application can access and modify this information. These characteristics are
introduced in the following sections and described more completely in Chapter 4,
"Accessing GS/OS Files."

File access

The characteristic of file access determines what operations can be performed on the file.
Several GS/OS calls read or set the access attribute for the file, which can determine the
following capabilities:
■ whether the file can be destroyed
■ whether the file can be renamed

■ whether the file is invisible, that is, whether its name is displayed by file-cataloging
applications

■ whether the file needs to be backed up
■ whether an application can write to the file
■ whether an application can read from the file

File types and auxiliary types

The file type and auxiliary type of a file do not affect the contents of a file in any way;
they indicate to applications the type of information stored in the file. Apple Computer
reserves the right to assign file type and auxiliary type combinations, except for the user-
defined file types $F1 through $Fk The current list of file types is available on AppleLink®
or from Apple Developer Technical Support.

22 Apple IIGS GS/OS Reference

A Important If you need a new file type or auxiliary type assignment, please
contact Apple Developer Technical Support, a

EOF and mark

To make reading from and writing to files easier, each open standard file and each fork of
an open extended file have a byte count indicating the size of the file in bytes (the end-
of-file, or EOF), and another defining the current position in the file (the mark). GS/OS
moves the position of both the EOF and the mark automatically when data is added to
the end of the file, but an application program must move them whenever data is deleted
or added somewhere else in the file.

The EOF represents the number of readable bytes in the file. Since the first byte in a file has
number 0, the value of the EOF indicates one position past the last character in the file.

When a file is opened, the mark is set to indicate the first byte in the file. It is automa
tically moved forward one byte for each byte written to or read from the file. The mark,
then, always indicates the next byte to be read from the file, or the next byte position in
which new data can be written. The value of the mark cannot exceed the value of the EOF.

If the mark meets the EOF during a write operation, both the mark and EOF are moved
forward one position for every additional byte written to the file: Thus, adding bytes to
the end of the file automatically advances the EOF to accommodate the new informa
tion. Figure 1-5, on the next page, illustrates the relationship between the mark and EOF.

An application can place the EOF anywhere from the current mark position to the
maximum possible byte position. The mark can be placed anywhere from the first byte in
the file to the EOF. These two functions can be accomplished using the SetEOF and
SetMark calls. The current values of the EOF and the mark can be determined using the
GetEOF and GetMark calls.

Chapter 1 The GS/OS Abstract File System 23

■ Figure 1-5 How GS/OS moves the EOF and the mark

B^inning position

M A R K

After writing or reading two bytes

O l d M A R K

After writing two more bytes
Old EOF EOF

Creation and modification dates and times

All GS/OS files are marked with the date and time of their creation. When a file is first
created, GS/OS stamps the file's directory entry with the current date and time from the
system clock. If the file is later modified, GS/OS then stamps it with a modification date
and time (its creation date and time remain unchanged).

The creation and modification fields in a file entry refer to the contents of the file. The
values in these fields should be changed only if the contents of the file change. Since data
in the file's directory entry itself are not part of the file's contents, the modification field
should not be updated when another field in the file entry is changed, unless that change is
due to an alteration in the file's contents. For example, a change in the file's name is not a
modification; on the other hand, a change in the file's EOF always reflects a change in its
contents and therefore is a modification.

24 Apple IIGS GS/OS Reference

Remember also that a file's entry is a part of the contents of the directoiy or subdirectory
that contains that entry. Thus, whenever a file entry is changed in any way (whether or not
its modification field is changed), the modification fields in the entries for all its
enclosing directories—including the volume directory—must be updated.

Finally, when a file is copied, a utility program must give the copy the same creation and
modification dates and times as the original file, and not the date and time at which the
copy was created.

Character devices as files

As part of its uniform interface, GS/OS permits applications to access character devices,
like block devices, through file calls. An extension to the GS/OS abstract file system lets
you make standard GS/OS calls to read to and write from character devices. This facility
can be a convenience for I/O redirection.

When character devices are treated as files, only certain features are available. You can
read from a character device but you cannot, for example, format it. Only the following
GS/OS calls have meaning whan applied to character devices: Open, Newline, Read, Write,
Close, and Flush (see brief descriptions of these calls later in this chapter).
In general, character "files" under GS/OS are much more restricted in scope than block
files:

■ There are no extended or directory files. Character devices are accessed as if they were
standard files—single sequences of bytes. Further, it is not possible to obtain or
change the current position (mark) in the sequence.

■ Character devices are not hierarchical. The only legal pathname for a character "file" is a
device name.

■ Character devices may recognize some file-access attributes (read-enable, write-
enable), but not others (rename-enable, invisibility, destroy-enable, backup-needed).

■ Character "files" have no file type, auxiliary type, EOF, creation time, or other
information associated with block-file directory entries.

In spite of these restrictions, it is generally quite simple and straightforward to treat
character devices as files. For more information on file access to character devices, see
Chapter 14, "The Character FST."

Chapter 1 The GS/OS Abstract File System 25

Groups of GS/OS calls

Chapters 4 through 6 list and describe the GS/OS operating system routines that are
normally called by an application. They are divided into the following categories:
■ File access calls (described in Chapter 4)
■ Volume name and pathname calls (described in Chapter 5)
■ System information and control calls (described in Chapter 6; the Quit call is described

in Chapter 2)
■ Interrupt calls (described in Chapter 10) and calls that directly access devices (see the

GS/OS Device Driver Reference.

Tables 1-2 and 1-3 list the groups of GS/OS calls.

The following sections give you an overview of the capabilities of the calls in these
groups. Each call is discussed in much greater detail in Chapter 7, "GS/OS Call Reference."

FUe access calls

The most common use of GS/OS is to make calls that access files. Your application places
a file on disk by issuing a GS/OS Create call. This call specifies the file's pathname and
storage type (standard file, extended file, or directory) and possibly other information
about the state of the file, such as access attributes, file type, creation and modification
dates and times, and so on.

Your program must make the GS/OS Open call in order to access a file's contents. For an
extended file, individual Open calls are required for the data fork and resource fork,
whicii are then read and written independently. When your application opens a file, the
application must establish the access privileges.
A file can be simultaneously opened any number of times with read access. However, a
single Open call with write access precludes any other Open calls on the given file.

While a file is open, your application can perform any of the following tasks:
■ Read data from the file by using the Read call, or write data to the file by using the

Write call

■ Set or get the mark by using the SetMark or GetMark call, and set or get the end of the
file by using the SetEOF or GetEOF call

■ Enable or disable newline mode by using the Newline call

26 Apple IIGS GS/OS Reference

■ Table 1-2 GS/OS file access calls

C a U a u a u C a U
Create ($2001) Read ($2012) SetEOF ($2018) Beg inSess ion ($201D)
Destroy ($2002) Wr i te ($2013) GetEOF ($2019) EndSession ($201E)
SetF l le ln fo ($2005) C lose ($2014) SetLeve l ($201A) Sess ionSta tus ($201F)
GetF l le ln fo ($2006) F lush ($2015) GetLeve l ($201B) ResetCache ($2026)

ClearBackupBit ($200B) SetMark ($2016) GetDlrEntry ($201C)
O p e n ($ 2 0 1 0) G e t M a r k ($ 2 0 1 7)
Newline ($2011)

■ Table 1-3 Other GS/OS call groups

Volume name-pathname calls System information calls

ChangePath ($2004) SetSysPrefs ($200C)
Volume ($2008) GetSysPrefs ($200F)
Se tPrefix ($2009) Ge tName ($2027)
GetPrefix ($200A) GetVersion ($202A)

ExpandPath ($200E) GetFSTInfo ($202B)
Format ($2024) FSTSpecific ($2033)
EraseDisk ($2025) GetStdRefNum ($2037)
GetBootVol ($2028) GetRefNum ($2038)

GetReflnfo ($2039)

System cont ro l ca l ls In ter rupt and Dev ice ca l ls

Qu i t ($2029) B ind in t ($2031)
AddNotifyProc ($2034) Unbindlnt ($2032)
DelNotifyProc ($2035) DControl ($202E)
N u l l ($ 2 0 0 D) D l n f o ($ 2 0 2 C)
OSShutdown ($2003) DRead ($202F)

DStatus ($202D)
DWrite ($2030)
DRename ($2036)
GetDevNumber ($2020)

■ If the open file is a directory file, get the entries held in the file by„.using the
GetDlrEntry call

■ Write changes to the disk for one or more open files by using the Flush, GetLevel, and
SetLevel calls

When you are through working with an open file, you issue a GS/OS Close call to close the
file and release any memory that it was using back to the Memory Manager.

After the file has been closed, you can use other GS/OS calls to work with it. One of these
calls, ClearBackupBit, clears a bit so that the file appears to GS/OS as if it does not need
backing up; another GS/OS call. Destroy, can be used to delete a file. Other GS/OS calls
that work on closed files are described in Chapter 4.

The GS/OS calls SetFilelnfo and GetFllelnfo allow you to access the information in the
file's directory entry. These calls are particularly useful when you are copying files because
they allow you to change the creation and modification dates for a file.

Chapter 1 The GS/OS Abstract File System 27

The GS/OS call ResetCache allows you to resize the GS/OS cache and be able to use that
resized cache immediately.

A final group of GS/OS calls—BeginSession, EndSession, and SessionStatus—are useful
when you want your application to defer writing files to disk.

The background information on the file access calls is described in Chapters 1 and 4, and
each individual call is listed alphabetically by name and described in detail in Chapter 7.

Volume and pathname calls

GS/OS provides a whole set of calls to deal with those situations where you want to work
directly with volumes and pathnames. These calls allow you to do the following tasks:
■ get information about a currently mounted volume by using the Volume call
■ build a list of all mounted volumes by using the DInfo, Volume, Open, and GetDirEntry

calls

■ get the name of the current boot volume by using the GetBootVol call
■ format a volume by using the Format call
■ quickly empty a volume by using the EraseDisk call
■ set or get pathname prefixes by using the SetPrefix or GetPrefix call
■ change the pathname of a file by using the ChangePath call
■ expand a partial pathname of a file to its full pathname by using the ExpandPath call

The background information on the volume and pathname calls is described in Chapter 5,
and each individual call is listed alphabetically by name and described in detail in
Chapter 7.

System information calls
The system information calls allow you to do the following tasks;
■ set or get system preferences by using the SetSysPrefs and GetSysPrefs calls, which

allow you to customize some GS/OS features
■ get information about a specified EST by using the GetPSTInfo call
■ use any special capabilities of an EST by using the ESTSpecific call
■ find out the version of the operating system by using the GetVersion call
■ get the filename of the currently executing application by using the GetName call

2 8 Apple IIGS GS/OS Reference

■ get the reference number of the last Open call to any of the three standard prefixes by
using the GetStdRefNum call

■ get the reference number and access attributes for an open file by using the
GetRefNum call

■ get the access attributes and full pathname for an open file by using the
GetReflnfo cal l

The background information on the system information calls is described in Chapter 6,
and each individual call is listed alphabetically by name and described in detail in
Chapter 7.

System control calls
The system control calls allow you to do the following tasks:
■ terminate your application by using the Quit call
■ add a procedure to the notification queue by using the AddNotifyProc call, or delete a

procedure from the notification queue by using the DelNotifyProc call
■ execute any pending events without doing anything else by using tlie Null call
■ shut down GS/OS by using the OSShutdown call

The background information on the system control calls is described in Chapter 6, and
each individual call is listed alphabetically by name and described in detail in Chapter 7.

Interrupt and device calls

GS/OS has two calls that allow you to work with interrupts. You can add an interrupt
handler by using the Bindint call, or delete the interrupt handler by using the Unbindint
call. The calls are briefly summarized in Chapter 7, "GS/OS Call Reference." The mechanism
for handling interrupts and signals is described in Chapter 10, "Handling Interrupts and
Signals."

GS/OS offers a set of calls that allow you to access devices directly, rather than going
through any file system. Most applications will not need to use any of these calls, except
perhaps DInfo and GetDevNumber (their use is described in Chapter 5). The GS/OS
device calls allow you to perform the following tasks:
■ get general information about a device by using the DInfo call
■ read information directly from a device by using the DRead call
■ write information directly to a device by using the DWrite call

Chapter 1 The GS/OS Abstract File System 29

■ get status information about a device by using the DStatus call
■ send commands to a device by using the DControl call
■ rename a device by using the DRename call
■ get the device number of a device by using the GetDevNumber call

The individual device calls are listed alphabetically by name and briefly summarized in
Chapter 7, "GS/OS Call Reference." The device calls are completely described in the GS/OS
Device Driver Reference.

30 Apple IIGS GS/OS Reference

Chapter 2 GS/OS and Its Environment

GS/OS is one of the many components that make up the Apple IIGS
operating environment, the overall hardware and software setting within
which Apple IlGS application programs run. This chapter describes how
GS/OS functions in that environment and how it relates to the other
components.

31

Apple IIGS memory

The Apple IlGS microprocessor can directly address 16 megabytes (16 MB) of memory.
The minimum memory configuration for GS/OS on the Apple IlGS is 512 kilobytes
(512 KB) of RAM and 128 KB of ROM. As shown in Figure 2-1, the total memory space
is divided into 256 banks of 64 KB each.

Figure 2-1 Apple IlGS memory map

Bank Numbers
I

S F F F F

SDOOO
SCOOO

S9A0{)

SOO SOI S02 S03 S E O S E l

S0800

S F O S F l S F D S F C S F D S F E S F F

SDOOO
SCOOO

52000

Expansion ROM

R A M

mmm GS/OS and System Loader
1 I Other reserved memory
I I Memory available through the Memory Manager

R O M

Banks $E0 and $E1 are used principally for high-resolution video display, additional
system software, and RAM-based tools. Specialized areas of RAM in these banks include
I/O space, bank-switched memory, and display buffers in locations consistent with
standard Apple II memory configurations.

Other reserved memory includes the ROM space in banks $FC-FF; they contain firmware
and ROM-based tools. In addition, banks $FO-FB are reserved for future ROM expansion.

Memory allocatable through the Memory Manager is in bank $00 at locations $0800-$9A00,
bank $01 at $0800-$BCOOO, banks $E(>-$E1 at $2000-$C000, and banks $02-$7F at
locations $0000-$FFFF (all 64 KB) in each bank. For example, a 1 MB Apple IlGS Memory
Expansion Card makes available 16 additional banks of memory.

32 Apple IlGS GS/OS Reference

Under most circumstances, you should simply request memory from the Memory Manager,
rather than using fixed locations. The Memory Manager is described in the Apple IlGs
Toolbox Reference. The only fixed locations you need to use are listed in the next section.

A Important Don't use all of the available memory. To process pathnames and such,
GS/OS allocates memory through the Memory Manager. If you've
allocated all of the available memory, GS/OS retums error $54
(outof Mem). If the condition is so severe that GS/OS can no longer
function, it retums a fatal GS/OS error with an ID = 2, and the user will
be asked to restart the system, a

For more detailed pictures of Apple IlGS memory, see the Technical Introduction to the
Apple JIGS, the Apple IlGS Hardware Reference, and the Apple JIGS Firmware Reference.

Entry points and fixed locations

Because most Apple IlGS memory blocks are movable and under the control of the
Memory Manager (see the next section, "Managing Application Memory"), there are very
few fbced entry points available to applications programmers. References to fixed entry
points in RAM are strongly discouraged, since they are inconsistent with flexible memory
management and are sure to cause compatibility problems in future versions of the Apple
IlGS. Informational system calls and referencing by handles (see "Accessing Data in a
Movable Memory Block" later in this chapter) should take the place of access to fixed
entry points.

The supported GS/OS entry points are $E100A8 and $E100B0. These locations are the
entry points for all GS/OS calls. The Tool Dispatcher entry point is $E10000, which is the
entry point for all Apple IlGS tool calls, including the System Loader (described in
Chapter 8).

♦ Note: How to use the entry points to make GS/OS calls is described in Chapter 3,
"Making GS/OS Calls."

The GS/OS entry points, and the other fixed locations in bank $E1 that GS/OS supports,
are shown in Table 2-1.

Chapter 2 GS/OS and Its Environment 33

■ Table 2-1 GS/OS vector space

Address

$E10000

$E100A8-$E100AB
$E100AC-$E100AF
$E100B0-$E100B3
$E100B4-$E100B9
$E100BA-$E100BB
$E100BC

$E100BD

$E100BE-$E100BF

Description

Entry vector for all Apple IIGS tool calls.
Entry vector for in-line GS/OS system calls
Reserved for internal use
Entry vector for stack-based GS/OS system calls
Reserved for internal use
Two NULL bytes (guaranteed to be zeros)
os_KiND byte—indicates currently running operating
system, as follows:
$00—ProDOS 8
$01—GS/OS
$FF—none; operating system is being loaded or
sw i t ched

os_BOOT byte—indicates the operating system that
was initially booted, as follows:
$00—ProDOS 8
$01—GS/OS
Bit 15 = 0—GS/OS is not busy
Bit 15 = 1—GS/OS is busy processing a system call

Managing application memory
The Memory Manager, a ROM-resident Apple IlGS tool set, controls the allocation,
deallocation, and repositioning of memory blocks in the Apple IIGS. It works closely with
GS/OS and the System Loader to provide the needed memory spaces for loading
programs and data and for providing buffers for input and output. All Apple IIGS
software, including the System Loader and GS/OS, must obtain needed memory space by
making requests (calls) to the Memory Manager.
The Memory Manager keeps track of how much memory is free and what parts are allo
cated to whom. Memory is allocated in blocks of arbitrary length; each block possesses
several attributes that describe how the Memory Manager can modify it (such as by
moving it or deleting it) and how it must be placed in memory (for example, at a fixed
address). See the chapter on the Memory Manager in the Apple IIGS Toolbox Reference for
more information.

34 Apple IIGS GS/OS Reference

Besides creating and deleting memory blocks, the Memory Manager moves blocks when
necessary to consolidate free memory. When it compacts memory in this way, it of course
can move only those blocks that needn't be fbted in location. Therefore, as many memory
blocks as possible should be movable (not fixed), if the Memory Manager is to be
efficient in compaction.

Obtaining application memory

Any memory that an application needs for its own purposes must be requested directly
from the Memory Manager. Figure 2-1 at the beginning of this chapter shows which parts
of the Apple IIGS memory applications can allocate through requests to the Memory
Manager. Applications for the Apple IlGS should avoid requesting absolute (fixed-
address) blocks. See also the Programmer's Introduction to the Apple IlGS and the Apple
IIGS Toolbox Reference.

Accessing data in a movable memory block

To access data in a movable block, an application cannot use a simple pointer, because
the Memory Manager may move the block and change the data's address. Instead, each
time the Memory Manager allocates a memory block, it returns to the requesting
application a handle referencing that block.
A handle is a pointer to a pointer; it is the address of a fixed (nonmovable) location,
called the master pointer, that contains the address of the block. If the Memory Manager
changes the location of the block, it updates the address in the master pointer; the value
of the handle itself is not changed. Thus the application can continue to access the block
using the handle, no matter how often the block is moved in memory. Figure 2-2 illustrates
the difference between a pointer and a handle.

If a block will always be fked in memory (locked or unmovable), it can be referenced by a
pointer instead of by its handle. To obtain a pointer to a particular block or location, an
application can dereference the block's handle. The application reads the address stored
in the location pointed to by the handle—that address is the pointer to the block. Of
course, if the block is ever moved, that pointer is no longer valid.

GS/OS and the System Loader use both pointers and handles to reference memory
locations. Pointers and handles must be at least three bytes long to access the full range of
Apple IIGS memory. However, all pointers and handles used as parameters by GS/OS are
four bytes long, for ease of manipulation in the l6-bit registers of the 65C816
microprocessor.

Chapter 2 GS/OS and Its Environment 35

■ Figure 2-2 Pointers and handles

P o i n t e r :

Value of pointer =
starting address of memory block

S X X X S X X X

Memory block

H a n d l e :

Value of handle =
address of master pointer

S Z Z Z

S X X X

- > - s z z z

Master pointer

Value of master pointer =
current starting address of

memory block

Allocating stack and direct-page space
In the Apple IIGS, the 65C816 microprocessor's stack-pointer register is 16 bits wide; that
means that, in theory, the hardware stack can be located anywhere in bank $00 of
memory, and the stack can be as much as 64 KB deep.

The direct page is the Apple IlGS equivalent to the standard Apple II zero page. The
difference is that it need not be absolute page zero in memoiy. Like the stack, the direct
page can theoretically be placed in any unused area of bank $00—the microprocessor's
direct register is l6 bits wide, and all zero-page (direct-page) addresses are added as
offsets to the contents of that register.

36 Apple IlGS GS/OS Reference

In practice, however, there are several restrictions on available space. First, only the
addresses between $800 and $9A00 in bank $00 can be allocated—the rest is reserved for
I/O space and system software. Also, because more than one program can be active at a
time, there may be more than one stack and more than one direct page in bank $00.
Furthermore, many applications may want to have parts of their code as well as their
stacks and direct pages in bank $00.

Your program should, therefore, be as efficient as possible in its use of stack and direct-
page space. The total size of both should probably not exceed about 4 KB in most cases.

Automatic allocation of stack and direct-page space

Only you can decide how much stack and direct-page space your program will need when
it is running. The best time to make that decision is during program development, when
you create your source files. If you specify at that time the total amount of space needed,
GS/OS and the System Loader will automatically allocate it and set the stack and direct
registers each time your program runs.

Definition during program development

You define your program's stack and direct-page needs by specifying a "direct-
page/stack" object segment (kind = $12) when you assemble or compile your program.
The size of the segment is the total amount of stack and direct-page space your program
needs. It is not necessary to create this segment; if you need no such space or if the
GS/OS default (see the section "GS/OS Default Stack and Direct-Page Space" later in this
chapter) is sufficient, you may leave it out.
When the program is linked, it is important that the direct-page/stack segment not be
combined with any other object segments to make a load segment—the linker must
create a single load segment corresponding to the direct-page/stack object segment. If
there is no direct-page/stack object segment, the linker will not create a corresponding
load segment.

Chapter 2 GS/OS and Its Environment 37

Al locat ion a t load t ime

Each time the program is started, the System Loader looks for a direct-page/stack load
segment. If it finds one, the loader calls the Memory Manager to allocate a page-aligned,
locked memory block of that size in bank $00. The loader loads the segment and passes
its base address and size, along with the program's user ID and starting address, to GS/OS.
GS/OS sets the accumulator (A), direct (D), and stack pointer (S) registers as shown, then
passes control to the program:
A = user ID assigned to the program
D = address of the first (lowest-address) byte in the direct-page/stack space
S = address of the last (highest-address) byte in the direct-page/stack space

By this convention, direct-page addresses are offsets from the base of the allocated
space, and the stack grows downward from the top of the space.

A Important GS/OS provides no mechanism for detecting stack overflow or
underflow, or collision of the stack with the direct page. Your
program must be carefully designed and tested to make sure this
c a n n o t o c c u r , a

When your program terminates with a Quit call, the System Loader's application shutdown
function makes the direct-page/stack segment purgeable, along with the program's other
static segments. As long as that segment is not subsequently purged, its contents are
preserved until the program restarts.

♦ Note: There is no provision for extending or moving the direct-page/stack space after
its initial allocation. Because bank $00 is so heavily used, any additional space you
later request may be unavailable—the memory adjoining your stack is likely to be
occupied by a locked memory block. Make sure that the amount of space you specify
at link time fills all your program's needs.

GS/OS default stack and direct-page space

If the loader finds no direct-page/stack segment in a file at load time, it still returns the
program's user ID and starting address to GS/OS. However, the loader does not call the
Memory Manager to allocate a direct-page/stack space, and it returns O's as the base
address and size of the space. GS/OS then calls the Memory Manager itself, and allocates a
4 KB direct-page/stack segment.

38 Apple IIGS GS/OS Reference

See the Apple IIGS Toolbox Reference for a general description of memory block attributes
assigned by the Memory Manager.
GS/OS sets the A, D, and S registers before handing control to the program, as follows:
A = user ID assigned to the program
D = address of the first (lowest-address) byte in the direct-page/stack space
S = address of the last (highest-address) byte in the direct-page/stack space

When your application terminates with a Quit call, GS/OS disposes of the direct-
page/stack segment.

GS/OS and interrupts

Do not leave interrupts disabled any longer than absolutely necessary. There are some
times when interrupts must be disabled, such as in a critical timing loop for a disk driver.
In particular, be aware of the following conditions:
■ Do not make operating system calls with interrupts disabled. These calls could

potentially take long periods of time to complete (for example, a large file read).
■ If interrupts are disabled inside a loop, the effect is multiplied by the number of

i te ra t i ons .

■ Interrupt handlers (like heartbeat tasks) execute with interrupts off; therefore, keep
their run time as short as possible (such as setting a flag for a foreground task to
check).

AppleShare needs to have interrupts enabled to function correctly. When interrupts are
off, packets cannot be received from or sent to other computers, thus causing network
services to stop functioning.

Interrupts must be on for an incoming packet to be received. Therefore, repeatedly
turning interrupts on and off can be just as bad as leaving them off the entire time. For
example, if a section of code has interrupts disabled 80 percent of the time and enabled
20 percent of the time, you will miss approximately 80 percent of all incoming packets.

Chapter 2 GS/OS and Its Environment 39

A new state of awareness

ProDOS has traditionally been a single-user, single-computer operating system and file
system. With the addition of AppleShare support to GS/OS, many computers (and many
types of computers) can share the same files (on the file server) at the same time.
An AppleShare-aware program is a program that can be successfully run from an
AppleShare file server. Such a program should be able to do the following tasks:
■ load and save files on a file server

■ handle error conditions in a reasonable manner (such as putting up a dialog box instead
of crashing the machine)

■ allow the user to quit from the program and return to a calling program (instead of
having to reboot or switch off the machine)

More information on AppleShare is available in Chapter 4 and Chapter 15.

System startup considerations

The startup sequence for the Apple IIGS is invisible to applications and relatively
complex, so this section describes only the general requirements for a system disk. For
more detailed information, see GS/OS Technical Note #1.

Table 2-2 shows the files that must be in place for a disk to be a startup disk.

At startup, GS/OS sets prefix 0 to the boot volume name and prefix 2 to
* : S Y S T E M : L I B S .

GS/OS selects the application to run at startup by taking the following steps;
1. It first looks for a type $B3 file named * : system: start. Typically, that file is the

Finder, but it can be any Apple IlGS application. If start is found, it is selected.
2. If there is no start file, GS/OS searches the boot volume directory for a file that is

either one of the following types:
□ a ProDOS 8 system program (type $FF) with the filename extension . system
□ a GS/OS application (type $B3) with the filename extension . sysi 6

Whichever is found first is selected.

4 0 Apple IIGS GS/OS Reference

Table 2-2 General requirements for a system disk

* : S Y S T E M : S T A R T . G S . O S

* : S Y S T E M : E R R O R . M S G

* : SYSTEM: FSTS : SlatlFST

* : S Y S T E M : S Y S T E M . S E T U P : T O O L . S E T U P

: S Y S T E M : D E S K . A C C S

Description

This file is divided into GLoader and GQuit.
GLoader is the operating system loader. It's
temporary and is used only during system startup.
GQuit is the program dispatcher. It contains the
code used for starting and quitting ProDOS 8 and
GS/OS applications.
This file contains the system error messages.
The start FST must reside in the subdirectory, must
have a file type of $BD, and must have the high bit
of its auxiliary type set to 0. Any other FSTs to be
loaded at startup must reside in the
*: SYSTEM: FSTS Subdirectory. The files must be
Apple lies load files of type $BD. If bit 15 of a
file's auxiliary type is 1, the FST is not loaded.
The TOOL. SETUP file must have file type $B6; it
executes, in turn, every file (other than
TOOL. setup) that it finds in the
*:SYSTEM:SYSTEM.SETUP subdirectory. The
files must be Apple IIGS load files of type $B6 or
$B7. If bit 15 of a file's auxiliary type is 1, the
setup file is not executed.
GS/OS installs all desk accessories it finds in this
subdirectory. The files must be Apple IlGS load
files of type $B8 or B9. If bit 15 of a file's auxiliary
type is 1, the desk accessory is not loaded.

♦ Note: If a ProDOS 8 system program is found first, but the ProDOS 8 operating system
(file *: SYSTEM :P8) is not on the boot volume, GS/OS then searches for and selects
the first ProDOS 16 application.

The Apple IlGS startup sequence ends when control is passed to the GS/OS program
dispatcher. This routine is entered both at boot time and whenever an application
terminates with a GS/OS, ProDOS 16, or ProDOS 8 Quit call. The GS/OS program
dispatcher determines which program is to be run next, and runs it. After startup, the
program dispatcher is permanently resident in memory.

Chapter 2 GS/OS and Its Environment 41

Quitting and launching applications

When you want your application to quit, you issue a GS/OS Quit call. OS/OS performs all
necessary functions to shut down the current application, determines which application
should be executed next, and then launches that application. When you issue the Quit call,
you can take the following actions:
■ indicate to GS/OS whether your application can be restarted from memory
■ specify the next application to be launched
■ specify whether your application should be placed on the quit return stack so that it

will be restarted when the other program quits
■ specify whether prefixes lo through 12 should be set to .console or left as is

The following sections further explain your options when quitting.

Specifying whether an application can be restarted from memory

When your application sets the restart-f rom-memory flag in the Quit call to TRUE
(bit 14 of the flags word = 1), the application can be restarted from a dormant state in the
computer's memory. If your application sets the restart-f rom-memory flag to FALSE
(bit 14 = 0), the program must be reloaded from disk the next time it is run.

If you set the restart-f rom-memory flag to TRUE, remember that the next time the
application is run, its code and data will be exactly as they were when the application
quit. Thus, you may need to reinitialize certain data locations.

Specifying standard prefixes

To support I/O redirection, prefixes 10, 11, and 12 are defined to be the Standard I/O
prefixes, as follows:
prefix 10 = St din
prefix 11= stdOut
prefix 12 = StdError
If your application sets the skip-std-prefixes flag to FALSE (bit 13 = 0) in its Quit
call, GS/OS sets the standard I/O prefixes to . console before launching the next
application. When your application sets the skip-std-prefixes flag in the Quit call
to TRUE (bit 13 of the flags word = 1), the standard I/O prefixes remain unchanged.

42 Apple IIGS GS/OS Reference

when a GS/OS application is launched at startup or after a ProDOS 8 application has quit,
the standard I/O prefixes are always set to .console.

Specifying the next application to launch

When you are quitting your application, and want to pass control to another application,
you supply the pathname of that application in the Quit call.

♦ Note: GS/OS loads only programs that have a file type $B3, $B5, or $FF.

Specifying a GS/OS application to launch

You should not specify a device name if you are specifying the pathname of a GS/OS
application; GS/OS returns a fatal error if the device does not contain a disk. GS/OS does
not handle volume names or filenames longer than 32 characters.

Specifying a ProDOS 8 application to launch

If you are quitting to a ProDOS 8 application, the pathname specified in the Quit call
must be a legal ProDOS 8 pathname. In particular, device names must not be used when
specifying the pathname of a ProDOS 8 application; ProDOS 8 will return a fatal error.
The GS/OS Program Dispatcher then takes the following steps:
1. Shuts down GS/OS and the System Loader.
2. Allocates segments in nonspecial memory and copies parts of GS/OS into them.
3. Allocates all special memory for the application.
4. Loads and starts up ProDOS 8.

When the ProDOS 8 application quits, the next action depends on whether the ProDOS 8
application uses a standard ProDOS 8 quit call, or an enhanced ProDOS 8 quit call.
■ If the ProDOS 8 application executes a standard ProDOS 8 quit call, the GS/OS

Program Dispatcher restarts GS/OS and the System Loader and launches the next
application on the quit return stack.

■ If the ProDOS 8 application executes an enhanced ProDOS 8 quit call, which
contains a pathname to an application to be launched, control is passed to the
specified application. The specified application can be a ProDOS 8 application or a
GS/OS application. If it is a GS/OS application, the Program Dispatcher will restart
GS/OS and the System Loader and then launch the application.

Chapter 2 GS/OS and Its Environment 43

specifying whether control should return to your application

The quit return stack is a stack of user IDs used to restart applications that have
previously quit. If an application specifies a TRUE quit return flag (bit 15 of the flags
word = 1) in its Quit call, GS/OS pushes the user ID of the quitting program onto the quit
return stack and saves information needed to restart the program. As subsequent
programs run and quit, several user IDs may be pushed onto the stack. With this
mechanism, multiple levels of shells can execute subprograms and subshells, while ensuring
that they eventually regain control when their subprograms quit.

For example, the start file might pass control to a software development system shell,
using the Quit call to specify the pathname of the shell and placing its own ID on the
stack. The shell in turn could hand control to a debugger, likewise placing its own ID on
the stack. If the debugger quits without specifying a pathname, control passes
automatically back to the shell; if the shell then quits without specifying a pathname,
control passes automatically back to the start file.

This automatic return mechanism is specific to the GS/OS Quit call, and therefore is not
available to ProDOS 8 programs. When a ProDOS 8 application quits, it cannot put its ID
on the internal stack.

Quitting without specifying the next application to launch

If you want to quit your application and do not want to specify the next application to
be launched, supply the following parameters in the Quit call;
■ no pathname
■ a FALSE quit return flag

GS/OS then attempts to pull a user ID off the quit return stack and relaunch that
application. If the quit return stack is empty, GS/OS will attempt to relaunch the start
p r o g r a m .

44 Apple IIGS GS/OS Reference

Launching another application without returning

When you are quitting your application and want to pass control to another application,
but do not want control to eventually return to your application, supply the following
parameters in the Quit call:
■ the pathname of the application to be launched
■ a FALSE quit return flag

GS/OS will attempt to launch the specified application.

Launching another application and returning

If you want to pass control to another application, and want control to return to your
application when the next application is finished, set the quit return flag to TRUE in
the Quit call. That way your program can function as a shell—whenever it quits to another
specified program, it knows that it will eventually be reexecuted. Supply the following
parameters in the Quit call:
■ the pathname of the application to be launched
■ a TRUE quit return flag

GS/OS pushes the user ID of your quitting application onto the quit return stack, and then
attempts to launch the specified application.

Machine state at application launch

The GS/OS Program Dispatcher initializes certain components of the Apple IlGS and
GS/OS before it passes control to an application. The initial state of those components is
described in the following sections.

Chapter 2 GS/OS and Its Environment 45

Machine state at GS/OS application launch

When a GS/OS program is launched, the machine state Is as shown in Table 2-3.

Table 2-3 Machine state at GS/OS application launch

Reserved memory

Hardware registers
A register
X and Y registers
e, m, and x flags in the
processor status register

stack register
direct register

Standard input/output

Shadowing

Vector space values

Pathname prefix values

Addresses above $9A00 in bank $00 and above $BCOO in bank
$01 are reserved for GS/OS, and are therefore unavailable to the
application. A direct-page/stack space, of a size determined
either by GS/OS or by the application itself, is reserved for the
application; it is located in bank $00 at an address determined
by the Memory Manager.

User ID assigned to the application
Zero ($0000)

Set to zero; processor in full native mode
Address of the top of the direct-page/stack space
Address of the bottom of the direct-page/stack space
For both $B3 and $B5 files, standard input, output, and error
locations are set to Pascal 80-column character device vectors

The value of the Shadow register is $1E, which means
language card and I/O spaces: shadowing ON
t e x t p a g e s : s h a d o w i n g O N
g r a p h i c s p a g e s : s h a d o w i n g O F F
Addresses between $00A8 and $OOBF in bank $E1 constitute
GS/OS vector space. The specific values an application finds in
the vector space are shown in Table 2-1 earlier in this chapter.
Set as described in the section "Pathname Prefixes at GS/OS

Application Launch" later in this chapter.

46 Apple IIGS GS/OS Reference

Machine state at ProDOS 8 application launch

when a ProDOS 8 program is launched, the machine state is as shown in Table 2-4.

■ Table 2-4 Machine state at ProDOS 8 application launch

I t e m s t a t e

Reserved space All special memory is reserved for use by the program.
Hardware registers

A, X, and Y registers Undefined

e flag in processor
status register Set to 1; processor is in emulation mode

stack register Set to $01FB
direct register Set to $0000

Shadowing Shadow register is $08, which means
language card and I/O spaces: shadowing ON
t e x t p a g e s : s h a d o w i n g O N
g r a p h i c s p a g e s : s h a d o w i n g O N

Pathname prefk values Set as described in the section "Pathname Prefixes at
ProDOS 8 Application .Launch" later in this chapter.

Pathname prefixes at GS/OS application launch

When a GS/OS application is launched, all 32 GS/OS prefix numbers are assigned to
specific pathnames (some are meaningful pathnames, whereas others are NULL strings).
Because an application can change the assignment of any prefbc number except the boot
prefix (*/), and certain initial prefix values might be left over from the previous
application, beware of assuming a value for any particular prefix.

A Important Do not depend on prefix o to contain any specific value, such as the
name of the boot volume. Instead, use prefbt i and prefix 9, which are
both set to the full pathname of the directory containing the current
application. If the string is more than 64 characters long, prefk i is set
to a NULL string and prefix 9 contains the full string, a

Chapter 2 GS/OS and Its Environment 47

Tables 2-5 through 2-7 show the initial values of the prefix numbers that a GS/OS applica
tion receives under the three different launching conditions possible on the Apple IIGS.

At all times during execution, GetName returns the filename of the current application,
and GetBootVol returns the boot volume name.

■ Table 2-5 Prefix values when a GS/OS application is launched at boot time

P r e fi x D e s c r i p t i o n

* b o o t v o l u m e n a m e

0 b o o t v o l u m e n a m e

1 full pathname of directory containing current application, or NULL string
if pathname contains more than 64 characters

2 * / S Y S T E M / L I B S

3 - 8 n u l l s t r i n g s
9 full pathname of directory containing current application
1 0 - 1 2 . C O N S O L E

1 3 - 3 1 n u l l s t r i n g s
0 if current application resides on an AppleShare volume, 0 is set to the

pathname of the user's directory on the file server; otherwise, 0 is set to
the same pathname as prefix 9

■ Table 2-6 Prefix values when a GS/OS application is launched after a previous
GS/OS application quits

P r e fi x D e s c r i p t i o n

* unchanged from previous application
0 u n c h a n g e d f r o m p r e v i o u s a p p l i c a t i o n
1 full pathname of directory containing current application, or NULL string

if pathname contains more than 64 characters
2-8 unchanged from previous application
9 full pathname of directory containing current application
10-12 .CONSOLE if the skip-std-pref ixes flag (bit 13 of flags word) is 0,

or unchanged from previous application if flag is 1
1 3 - 3 1 N U L L s t r i n g s
0 if current application resides on an AppleShare volume, 0 is set to the

pathname of the user's directory on the file server; otherwise, 0 is set to
the same pathname as prefix 9

48 Apple IlGS GS/OS Reference

■ Table 2-7 Prefix values when a GS/OS application is launched after a ProDOS 8
application quits

P r e fi x D e s c r i p t i o n

* b o o t v o l u m e n a m e

0 set to the ProDOS 8 system prefix under previous application
1 full pathname of directory containing current application, or NULL string

if pathname contains more than 64 characters
2 * / S Y S T E M / L I B S
3 - 8 N U L L s t r i n g s
9 full pathname of directory containing current application
1 0 - 1 2 . C O N S O L E

1 3 - 3 1 N U L L s t r i n g s
0 if current application resides on an AppleShare volume, 0 is set to the

pathname of the user's directory on the file server; otherwise, 0 is set to
the same pathname as prefix 9

Pathname prefixes at ProDOS 8 application launch

Table 2-8 shows the initial values of the ProDOS 8 system prefix and the pathname at
location $0280 in bank $00 when a ProDOS 8 application is launched from GS/OS.

Table 2-8 Prefix and pathname values at ProDOS 8 application launch

Cond i t i on

Application launched at boot time

Application launched through
enhanced ProDOS 8 quit call

Application launched after a
GS/OS application has quit (if
Quit call specified a full
pathname)
Application launched after a
GS/OS application has quit (if
Quit call specified a prefbc and a
partial pathname)

System prefix

Boot volume name

Unchanged from
previous application
Previous application's
prefix 0 /

Prefix specified in the
Quit call

Location $0280 pathname

Filename of current

application
Full or partial pathname
given in QUIT call
Full pathname given in
Quit call

Partial pathname given in
Quit call

Chapter 2 GS/OS and Its Environment 49

Chapter 3 Making GS/OS Calls

This chapter describes the methods your application must use to make
GS/OS calls. The current application, a desk accessory, and an interrupt
handler are examples of applications that can make GS/OS calls.

51

Chapters Making GS/OS Calls

This chapter describes the methods your application must use to make
GS/OS calls. The current application, a desk accessory, and an interrupt
handler are examples of applications that can "make GS/OS calls.

51

GS/OS cal l methods

when an application makes a GS/OS call, the processor can be in emulation mode or full
native mode, or any state in between (see the Technical Introduction to the Apple JIGS).
There are no register requirements on entry to GS/OS. GS/OS saves and restores all
registers except the accumulator (A) and the processor status register (P); these two
registers store information on the success or failure of the call.

Calling in a high-level language

To make a GS/OS call from a high-level language, such as C, you supply the name of the call
and a pointer to the parameter block.

Calling in assembly language

You can make GS/OS calls in assembly language using any of the following techniques:
■ Macros. This technique uses macros defined by Apple Computer to generate in-line

calls. Macro calls are the simplest to make and the easiest to read.
■ In-line calls. This technique is similar to ProDOS 8.
■ Stack calls. This technique is consistent with the way compilers generate code.

There is virtually no difference in the run-time performance of these three techniques;
essentially, which one you use is a matter of personal preference. Each of these techniques
is detailed separately in the following sections.

To make a GS/OS assembly-language call, your application must provide
■ a Jump to Subroutine Long (jsl) instruction (if you don't use the macro name) to the

appropriate GS/OS entry point
■ a 2-byte call number or the macro name of the call
■ a 4-byte pointer to the standard GS/OS parameter block for the call; the parameter

block passes information between the caller and the called function

The macro name or call number specifies the type of GS/OS call, as follows:
■ Standard GS/OS calls: These calls allow you to access the full power of GS/OS; you

should use them if you are writing a new application. Most of the description in this
manual is devoted solely to these calls.

52 Apple JIGS GS/OS Reference

■ ProDOS 16 calls: These calls, described in Appendix A of this book, are provided only
for compatibility with ProDOS 16. (ProDOS 16 is described in the Apple IIGS ProDOS
16 Reference)

Every GS/OS call that doesn't use the macro technique must specify the system call
number and class in a parameter referred to in the next sections as callnum. The
c a 11 num parameter has the following format:

15 14 13 12 11 10 9 7 6 5 4 3 2 1

Reserved = 2-7
Class 1 = 1
Class 0 = 0

Call number

The primary call number is given in each call description. For example, the call number for
the Open call is $10.

Thus, to make a standard GS./OS (class 1) Open call, your application uses the macro name
or a callnum value of $2010 and a pointer to the standard GS/OS parameter block. To
make a ProDOS l6-compatible (class 0) open call, the caller uses a callnum value of
$0010 and a pointer to the ProDOS 16-compatible parameter block.

Making a GS/OS call using macros

To make a standard GS/OS call using the macro technique, follow these steps:
1. Provide the name of the standard GS/OS call.

2. Follow the name with a pointer to the parameter block for the call.

GS/OS performs the function and returns control to the instruction that immediately
follows the macro.

The following code fragment illustrates a macro call:
_ C a l l N a m e _ C l p a r m b l o c k ; n a m e o f c a l l
b c s e r r o r ; h a n d l e e r r o r i f c a r r y s e t o n r e t u r n

; c o d e t o h a n d l e e r r o r r e t u r n

/ p a r a m e t e r b l o c k

Chapter 3 Making GS/OS Calls 53

Making an in-line GS/OS call
To make a standard GS/OS call using the in-line method, perform the following steps:
1. Perform a jsl to $E100A8, the GS/OS in-line entry point.
2. Follow the jsl with the call number.

3. Follow the call number with a pointer to the parameter block.
GS/OS performs the function and returns control to the instruction that immediately
follows the parameter block pointer.

The following code fragment illustrates an in-line call:
i n l i ne_en t ry gequ $E100A8 ;address o f GS/OS in - l i ne en t ry po in t

j s l i n l i n e _ e n t r y ; l o n g j u m p t o G S / O S i n - l i n e e n t r y p o i n t
d o i 2 ' c a l l n u m ' ; c a l l n u m b e r

d o i 4 ' p a r m b l o c k ' / p a r a m e t e r b l o c k p o i n t e r
b o s e r r o r / h a n d l e e r r o r i f c a r r y s e t o n r e t u r n

•

A

e r r o r / c o d e t o h a n d l e e r r o r r e t u r n

p a r m b l o c k / p a r a m e t e r b l o c k

Making a Stack call

To make a standard GS/OS call using the stack method, perform the following steps:
1. Push the parameter block pointer onto the stack (high-order word first, low-order

word second).

2. Push the call number of the call onto the stack.

3. Perform a jsl to $E100B0, the GS/OS stack entry point.
GS/OS performs the GS/OS command and returns control to the instruction that
immediately follows the jsl.

54 Apple lies GS/OS Reference

The following code fragment illustrates a stack call:
s t a c k _ e n t r y g e q u $ E 1 0 0 B 0 / a d d r e s s o f G S / O S s t a c k e n t r y p o i n t
r

p e a p a r m b l o c k I - 1 6 / p u s h h i g h w o r d o f p a r a m e t e r b l o c k p o i n t e r
p e a p a r m b l o c k / p u s h l o w w o r d o f p a r a m e t e r b l o c k p o i n t e r
p e a c a l l n u m / p u s h c a l l n u m b e r
j s l s t a c k _ e n t r y / l o n g j u m p t o G S / O S s t a c k e n t r y p o i n t
b c s e r r o r / h a n d l e e r r o r i f c a r r y s e t o n r e t u r n

/ c o d e t o h a n d l e e r r o r r e t u r n

p a r m b l o c k / p a r a m e t e r b l o c k

Including the appropriate files

If you are writing your application in assembly language, include the following files, as
appropriate:
El 6. Gsos and mi 6. gsos If you are making standard GS/OS calls
E16 .ProDOS and M16 .ProDOS , If you are making ProDOS 16-compatible calls

If you are writing your application in C, include one or both of the following files:
GSOS. h If you are making standard GS/OS calls
ProDOS. h If you are making ProDOS 16-compatible calls

A Important In either language, if you include files to make both standard GS/OS
and ProDOS 16-compatible calls, you must append the suffix gs to
the standard GS/OS call names and parameter block type
identifiers, a

Chapter 3 Making GS/OS Calls 55

GS/OS parameter blocks

A GS/OS parameter block is a formatted table that occupies a set of contiguous bytes in
memory. The block consists of a number of fields that hold information that the calling
program supplies to the function it calls, as well as information returned by the function to
the caller.

Every GS/OS call requires a valid parameter block (parmbiock in the preceding
examples), referenced by a 4-byte pointer. The application is responsible for constructing
the parameter block for each call that it makes; the block can be anywhere in memory.

The formats of the fields for individual parameter blocks are presented in the detailed
system call descriptions in Chapter 7.

Types of parameters

Each field in a GS/OS parameter block contains a single parameter, one or more words in
length. Each parameter is an input from the application to GS/OS, a result that GS/OS
returns to the application, or both an input and a result.
■ An input can be either a numerical value or a pointer to a string or other data structure.
■ A result is a numerical value that GS/OS places into the parameter block for the caller

t o u s e .

A pointer is the 4-byte address of a location containing data or the starting address of a
buffer space in which GS/OS can receive or place data; that is, the pointer may point to a
location that contains an input, a location that receives a result, or a location that both
contains an input and receives a result.

P a r a m e t e r b l o c k f o r m a t

All standard GS/OS parameter blocks begin with a parameter count, which is a word-
length input value that specifies the total number of parameters in the block. This allows
you to vary the number of parameters in a call as needed, and also makes possible future
parameter block expansion.
All parameter fields that contain block numbers, block counts, file offsets, byte counts,
and other file or volume dimensions are 4 bytes long. Using 4-byte fields ensures that
GS/OS can accommodate large devices using file system translators.

56 Apple IIGS GS/OS Reference

All parameter fields contain an even number of bytes, for ease of manipulation by tlie
l6-bit 65C816 processor. Pointers, for example, are 4 bytes long even though 3 bytes are
sufficient to address any memory location. Wherever such extra bytes occur they must be
set to zero by the caller; if they are not, compatibility with future versions of GS/OS will
be jeopardized.

Pointers in the parameter block must be written with the low-order b)̂ e of the low-order
word at the lowest address.

A Important The range of theoretically possible values defined by the length of a
parameter is often very different from the range of permissible values
for that parameter. The fact that all fields are an even number of bytes
is one reason. Another reason is that each file system can define its
own permissible values for a field, a

GS/OS string format

GS/OS strings resemble Pascal-style strings. A Pascal string begins with a length byte
that defines the length of the string in bytes, followed by the string itself, with each
character equal to one byte. A GS/OS string is very similar, except that it begins with a
length word (two bytes) instead of a length byte. See Figure 3-1 •

String parameters consist of a pointer parameter in the call's parameter block that points
to a data structure containing the string. For standard GS/OS calls, that data structure
varies depending on whether the string parameter is an input to or output from the call.

ProDOS 16-compatible calls use Pascal-style strings, with the exception of the
GET_DIR_ENTRY Call, whlch uses GS/OS strings.

■ Figure 3-1 GS/OS and Pascal strings

GS/OS string

Chapter 3 Making GS/OS Calls 57

GS/OS input string structures

When a string is used as an input from an application to GS/OS, a pointer in the call's
parameter block points to the low-order byte of the length word of the string, as shown
in Figure 3-2.

■ Figure 3-2 GS/OS input string structure

GS/OS string

GS/OS result buffer

When a string is returned as a result from a GS/OS call to an application, a pointer in the
parameter block points to a buffer reserved for the result. This buffer starts with a buffer
size word that specifies the total length of the buffer, including the buffer size word, as
shown in Figure 3-3.

■ Figure 3-3 GS/OS result buffer

GS/OS string

How GS/OS returns the result depends on whether or not there is enough space in the
buffer (excluding the buffer size word) to hold the output string. If there is enough space,
the result is placed in the buffer just after the buffer size word.
If there is not enough space, GS/OS returns only the length word of the string, placing it
immediately after the buffer size word. This gives the caller the opportunity to resize the
buffer and reissue the call. The proper size is the value in the length word plus four (to
account for the buffer size and string length words).

58 Apple IlGS GS/OS Reference

If the area is too small to contain the string, GS/OS returns error $4F (buf fTooSmall)
and sets the length word to the actual string length. In this case, the string field is
undefined. The caller must add 4 to the returned string length to determine the total area
needed to hold the buffer size word, the length word, and the string field.

The Ge0irEntry call is an exception to the preceding rules. For this call only, if the result
does not fit in the buffer, GS/OS copies as much of the string into the buffer as possible.
The length word of the string will be set to the actuafstring length, not the size of the
string placed in the buffer. Thus, the application may choose to use a partial string—for
example, in a directory listing with a limited number of columns for the filename—or
reissue the call to get a complete string.

Setting up a parameter block in memory
Each GS/OS call uses a 4-byte pointer to point to its parameter block, which can be
anywhere in memory. All applications must obtain needed memory from the Memory
Manager, and therefore cannot know in advance where the memory block holding a
parameter block will be.
You can set up a GS/OS parameter block in memory in one of two ways:
■ Code the block directly into the program, referencing it with a label. This is the

simplest and most typical way to do it. The parameter block will always be correctly
referenced, no matter where in memory the program code is loaded.

■ Use Memory Manager and System Loader calls to place the block in memory, as follows:
1. Request a memory block of the proper size from the Memory Manager. Use the

procedures described in the Apple IlGS Toolbox Reference. The block should be
either fixed or locked.

2. Obtain a pointer to the block by dereferencing the memory handle returned by the
Memory Manager (that is, read the contents of the location pointed to by the
handle, and use that value as a pointer to the block).

3. Set up your parameter block, starting at the address pointed to by the pointer
obtained in step 2.

Chapter 3 Making GS/OS Calls 59

Conditions upon return from a GS/OS call

when control returns to the caller, the registers have the values shown in Table 3-1.

■ Table 3-1 Registers on return from GS/OS

Register Description

A 0 if call successful, error code if call unsuccessful
X Unchanged
Y Unchanged
S Unchanged
D Unchanged
P Shown in Table 3-2
D B Unchanged
P B Unchanged
P C Address of next instruction

"Unchanged" means that GS/OS initially saves, and then restores when finished, the value that the register
had just jjefore the call.

When control returns to the caller, the processor status and control bits have the values
shown in Table 3-2.

■ Table 3-2 Status and control bits on return from GS/OS

R e g i s t e r D e s c r i p t i o n

Undefined

Undefined

Unchanged
Unchanged
Unchanged
Unchanged
0 if call unsuccessful, 1 if call successful
0 if call successful, 1 if call unsuccesshil
Unchanged

n

V

m

X

d

i

z

c

e

The n flag is undefined here; under ProDOS 8, it is set according to the value in the A register.

60 Apple lies GS/OS Reference

1

Checking for errors

When control returns to your application, the carry bit will be set to 1 if an error occurred,
and the error code (if any) will be in register A. You can thus use a Branch if Carry Set (bcs)
instruction to branch to an error-handling routine, and then pick up the error code from
register A.

Fatal GS/OS errors are handled by the OS/OS Error Manager. When a fatal error occurs, the
OS/OS Error Manager displays a failure message on the screen and halts execution
of GS/OS.

The errors that specifically apply to a particular call are listed as part of the call
description in Chapter 7, "GS/OS Call Reference." The general GS/OS errors shown in
Table 3-3 can occur for almost any of the calls. You might want to invoke special error
handlers to handle these conditions.

■ Table 3-3 General GS/OS errors

Number E r r o r Description

$01 b a d S y s t e m C a l l bad GS/OS call number
$04 i n v a l i d P c o u n t parameter count out of range
$07 g s o s A c t i v e GS/OS is busy
$53 p a r a m R a n g e E r r parameter out of range
$54 o u t O f M e m out of memory

Chapter 3 Making GS/OS Calls 61

chapter 4 Accessing GS/OS Files

The most common use of GS/OS is to access files that contain data on a

storage medium such as a floppy disk, a hard disk, or a CD-ROM. A file is
an ordered collection of bytes that has several attributes, including a
name and a file type.

GS/OS tries to free you, the application programmer, from knowing
more about files and file systems than you want to. GS/OS has been built
on the theory that, in most cases, you only want to assign the attributes
that are critical to the function of the file, and that you're not really
interested in where the user chooses to store the file.

Thus, this chapter assumes that you want to access files using the
simplest possible method. Using this method, you call the Apple IIGS
Toolbox routines SFPutFile2 or SFGetFile2 (from the Standard File
Operations Tool Set) to construct the name of the file the user wishes to
create or open. With this method, you don't have to worry about the
pathname to the file, since GS/OS is able to construct the full pathname
to the file automatically.

If you want to build the pathname yourself, GS/OS also gives you that
capability; see Chapter 5, "Working With Volumes and Pathnames."

63

An overview of simple file access

This section summarizes the simplest method you can use to access files. Each step is
described in more detail in the rest of this chapter.

To use this method, perform the following steps:
1. If the user is creating a new file, call the tool set routine SFPutFile2 to get a pointer to

the pathname of the file that the user wishes to create. Save the pointer, and use it in a
GS/OS Create call to place the file on the disk. For more information, see the section
"Creating a File" later in this chapter.

2. If the user is opening an existing file, call the tool set routine SFGetFile2 or SFMultiGet2
to get a pointer to the pathname of the file or files that the user wishes to open. Save
the pointer for each file, and use it in a GS/OS Open call to open each file. For more
information, see the section "Opening a File" later in this chapter.

3. When you make the Open call, you request the access your application wants to the
file. At this point, you determine what access other users can have to the file. With the
advent of system software version 5.0 and its ability to support AppleShare, you
should carefully consider how best to implement file access. For more information, see
the section "Sharing Open Files in an AppleShare Environment" later in this chapter.
In the Open call, GS/OS returns a reference number that you must save to refer to the
file and the actual access you obtained to the file.

4. After a file has been opened, you can do the following tasks:
□ read and write data to the file by making Read and Write calls
□ move or get the current reading and writing position in the file by making SetMark

and GetMark calls

□ move or get the current EOF by making SetEOF and GetEOF calls
□ enable newline mode, which terminates a read if the read encounters one of the

specified newline characters, or disable that mode
□ write all buffered information to storage to ensure data integrity by making a

Flush call

5. When you have finished working with the file, close it by making a Close call.
This chapter provides you with some information on how to use the file access calls. For
more details on each individual call, see Chapter 7, "GS/OS Call Reference."

64 Apple IlGS GS/OS Reference

Creating a file

When you want your application to create a file, issue a GS/OS Create call. When you issue
that call, you assign some important characteristics to the file:
■ A pathname, which must place the file within an "existing directory. As already

mentioned, if you use the toolbox routine SFPutFile2, you only have to save the
pathname pointer it retums and supply that pointer in your Create call. If you want to
build the pathname yourself, see Chapter 5.

■ File access privileges, which determine whether or not the file can be written to, read
from, destroyed, or renamed, and whether the file is invisible.

■ A file type and an auxiliary type, which indicate to other applications the type of
information to be stored in the file. They do not affect, in any way, the contents of
the file.

■ A storage type, which determines the physical format of the file on the disk. There
are four different formats: one is used for directory files, the other three for non-
directory files.

■ The size of the file and the size of the resource of the file, which are used to
preallocate disk storage for the file. Under most circumstances, you can leave these
parameters set to their default of 0.

When GS/OS creates the file, it places the properties listed above on disk, along with the
current system date and time (called creation date and creation time). Once created, a
file remains on disk until it is deleted (using the Destroy call).

Opening a file

Before you can read information from or write information to a file that has been created,
you must use the Open call to open the file for access. When you open a file, you specify a
pathname to a previously created file; the file must be on a disk mounted in a disk drive
or on an AppleShare volume that has been mounted, or GS/OS returns an error. As already
mentioned, you can query the user for the filename by using the SFGetFile2 routine in the
Standard File Operations Tool Set of the Apple IIGS Toolbox.

The Open call retums a reference number that your application must save; any other calls
you make affecting the open file must use the reference number. The file remains open
until you use the Close call.

Chapter 4 Accessing GS/OS Files 65

Multiple Open calls can be made to files on block devices for read-only access; in that
situation, ±e fiie remains open until you make a Close caii for each file you opened.
GS/OS allows any number of files to be open at a time. The only limit is imposed by the
amount of total available memory and the number of available reference numbers.
However, each open file requires some system overhead, so in cases where memory is i
short supply, your application might want to keep as few files open as possible.
Be aware of the differences between a file on disk and portions of an open file in
memory. Although some of the file's characteristics and some of its data may be m
memory at any given time, the file itself still resides on the disk. This allows GS/OS to
manipulate files that are much larger than the computer's memory capacity. As an
application writes to the file and changes its characteristics, new data and characteristics
are written to the disk.

A final consideration when opening a file is the access that users are allowed to the file, as
discussed in the next section. Since GS/OS works in an AppleShare environment, that
access is critical in determining whether more than one user can access a file at once.

Sharing open fUes in an AppleShare environment
ProDOS has traditionally been a single-user, single-computer operating system and file
system. With the addition of AppleShare support to GS/OS, many users (using many types
of computers) can share files on the file server simultaneously. Thus, if your program opens
files, you must decide whether another user trying to open the same file should be allowed
access to the file, and open the file in an appropriate manner. The standard GS/OS Open
call allows you to specify the access you require to the open file in the requestAccess
parameter, as shown in Table 4-1.

A Important You should normally specify a nonzero value for the requestAccess
parameter. This way, files can be shared if possible. Further, if the
Open call does not return an error, you know that you have the access
to the file that you requested, a

Note: Your application can exercise greater control over the access that other users are
permitted on AppleShare volumes by using the SpecialOpenFork FSTSpecific call,
described in Chapter 15, "The AppleShare FST."

6 6 Apple IIGS GS/OS Reference

Table 4-1 Access attributes and their implications

requestAccess Access Description

Read only,
deny write

Write only,
deny read/write

Read/write,
deny read/write

As permitted

This setting allows your application to read the file, and allows
other users to read the file, but doesn't allow them to write to
the file, so that the data you are reading doesn't change.
This setting allows your application to write to the file, but
doesn't allow other users to read or write to the file.

This setting allows your application to read and write to the
file, but doesn't allow other users to read or write to the file.

This setting first tries to open the file for read/write; if that
fails, it tries read-only; if that fails, it tries write-only. There is
no way of knowing what access you have to the file.

Thus, your application can do one of the following:
■ allow a single user to open a file for reading and writing
■ allow multiple users to open a file only for reading
■ allow multiple users to open a file for reading and writing as necessary

Each of these options is described in the following sections.

Allowing single users to open the file for reading and writing

If you set the requestAccess parameter to 0, or don't even supply the field in the Open
call (it is optional), only the first usp can open the file; the rest get an error when they try to
open the file (error $4E, invalidAccess). This situation represents the pre-AppleShare
aware state of GS/OS, and prohibits your application from allowing more than one user
access to the file on the network. Thus, under normal circumstances, you should try to allow
the options described in the next section.

Chapter 4 Accessing GS/OS Files 67

Allowing multiple users to open a file for reading

You can easily allow users to open files for reading only; you don't even have to take any-
special AppleShare actions as long as you follow safe programming practices.

A Important The most important safe programming practice in an AppleShare
environment is to not disable interrupts. For more information, see
the section "GS/OS and Interrupts" in Chapter 2. a

"When GS/OS opens and loads your application, it makes sure the application file itself
can be shared by several computers. Thus, to ensure that your application can be executed
by more than one computer at a time, you need only be careful about how you open other
files. The guidelines you should use are as follows:
■ Because other users use the same copy of the application, do not write to the

application files—for example, to save configuration information.
■ If your application always opens certain files—such as error message files—be certain

that the application opens them read-only, so that other users can open the same files.
■ Be careful to assign only the minimum access required; that is, if your application only

needs read access to a file, do not assign read/write access.
■ If your application can handle several different kinds of access to the file, try those

different access modes individually until you get one of the desired kinds of access.
For example, if you can handle either read/write or read-only access but prefer
read/write, try opening the file with request Access parameter = 3 (read/write). If
this fails, try opening with requestAccess parameter = 1 (read-only).

■ Don't assume that requestAccess = 0 allows your application read and write access;
other users may have opened the file, or access privilege settings set by other
applications may restrict access.

For example, an adventure game might want to load a map of rooms in a dungeon. In this
example, the application really only needs to read the contents of the file, and does not
need to modify the contents. Since that is true, the application should open the file read
only (requestAccess = 1). Several users can then run the program at the same time and
open the dungeon file successfully, since the read-only open allows others to open the file
read-only.

As a second example, consider a file copying program (like the Finder). It opens the
source file read-only, so that other users can copy it or use it. It opens the destination file
write-only (requestAccess = 2), since it only needs to write to the file; thus, no other

68 Apple IIGS GS/OS Reference

user is allowed to read or write to the copy while it is being written. Note that opening the
destination file for reading and writing causes the open to fail if access privileges to the
file prevent read access (such as if the file is in a drop box).
As a third example, consider a word-processing program. It must be able to read from the
file so that it can be displayed or printed, and write to the file so that it can be edited and
saved. In this case, the application opens the file with request Access = 3 (read and
write). Also, the file must be kept open the entire time it is being edited. If it isn't,
another user can open the file for editing after it has been closed. In that case, that user's
version is saved, and the first version is overwritten.

Allowing multiple users to open a file for reading and writing

To allow multiple users the ability to access and possibly change data in the same file at
the same time, your application must make AppleShare calls. A typical example is a
database program that lets several users view and edit records at the same time. In this
case, the read/write protections are applied to individual records instead of the entire
file. To do this, you use commands specific to the AppleShare FST; see Chapter 15,
"The AppleShare FST," for more information.

Using the 0 prefix

The @ prefix is a system prefix defined when your application is launched. If the
application was launched from an AppleShare volume, this prefix is set to the name of the
user's directory on the file server. If the application was launched from a non-AppleShare
volume, it will be set to the name of the directory containing the application.
You can use the @ prefix as part of the pathname to save configuration information in a
separate place for each user. For example, if your program were called Fred, you might use
the pathname 0:Fred.Configfor storing preferences and configuration data for each
u s e r .

♦ Note: Your application still must handle the case where another workstation may be
accessing the same configuration file (for example, when two users at different
workstations log in using the same user name).

Chapter 4 Accessing OS OS Files 69

Working on open files

When you open a file, some of the file's characteristics are placed into a rcgic^n of
memory. Several of these characteristics are accessible to calling applications by way of
GS/OS calls, and can be changed while the file is open.

This section describes the GS/OS calls that work with open files.

Reading from and writing to files

Read and write calls to GS/OS transfer data between memor}- and a file. For both calls, the
application must specify the following information:
■ the reference number of the file (assigned when the file was opened)
■ the location in memory of a buffer that contains, or is to contain, the transferred data
■ the number of bytes to be transferred
■ the cache priority, which determines whether or not the blocks involved in the call are

saved in RAM for later reading or writing

When the request has been carried out, GS/OS passes back to the application the number
of bytes that it actually transferred.

A read or write request starts at the current mark and continues until the requested number
of bytes has been transferred (or, on a read, until the EOF has been reached). Read
requests can also terminate when a specified character is read.

Setting and reading the EOF and mark

Your application can place the EOF anywhere in the file, from the current mark position to
the maximum possible byte position. The mark can be placed anywhere from the first
byte in the file to the EOF. These two functions can be accomplished using the SetEOF
and SetMark calls. The current values of the EOF and the mark can be determined using the
GetEOF and GetMark calls.

70 Apple IIGS GS/OS Reference

Enabling or disabling newline mode

Your application can use the Newline call to indicate that read requests terminate on a
specified character or one of a set of specified characters. For example, you can use this
capability to read lines of text that are terminated by carriage returns.

Newline mode is disabled by default when a file is opened.

Examining directory entries

Your application does not need to know the details of directory format to access files
with known names. You need to examine a directory's entries only when your application
is performing operations on unknown files (such as listing the files in a directory). The
GS/OS call you use to examine a directory's entries is GetDirEntry; for more details, see
the GetDirEntry call in Chapter 7, "GS/OS Call Reference."

Flushing open files

The GS/OS Flush call writes any unwritten data from an open file's I/O buffer to the file,
and updates the file's size in the directory. However, it keeps the reference number
(returned from the Open call) and the file's buffer space active, and thus allows continued
access to the file.

When used with a reference number of 0, Flush normally causes all open files to be flushed.
Specific groups of files can be flushed using the system file level (see "Setting and Getting
File Levels" later in this chapter).

Closing files

When you finish reading from or writing to a file, you must use the Close call to close the
file. When you use this call, you specify only the reference number of the file that was
assigned when the file was opened.

Chapter 4 Accessing GS OS Files 71

The Close call writes any unwritten data from memor)' to the file and updates the file s si7.e
in the directory, if necessary. Then it frees the file's buffer space for other uses and
releases the file's reference number and file control block. To access the file again, ycni
must reopen it.

Information in the file's directory, such as the file's size, is normally updated only when the
file is closed. If the user were to press Control-Reset ftypically halting the current program)
while a file is open, data written to the file since it was opened could be lost, and the
integrity of the disk could be damaged. You can prevent this situation from occurring by
using the Flush call.

Setting and getting file levels

'When a file is opened, it is assigned a file level equal to the current value oi' the system
file leveL The system file level determines which files are closed or flushed whenever a
Close or Flush call is made with a reference number of 0. GS/OS closes or flushes only those
files whose levels are greater than the current system level.

The system file level feature can be used, for example, by a controlling program such as a
development system shell to implement an EXEC process:
1. The shell opens an EXEC program file when the level is SOO.
2. The shell then sets the level to, for example, S07.
3. The EXEC program opens whatever files it needs.
4. The EXEC program executes a GS/OS Close command with a reference number of

$0000 to close all the files it has opened. All files at or above level S07 are closed, but
the EXEC file itself remains open.

You assign a value to the system file level with a SetLevel call; you obtain the current value
by making a GetLevel call.

Working on closed files
r 1 c nF the GS/OS calls that work with closedThis section describes some of the ̂ ° are performed on closed tiles; see

files. Some of the calls that work with ^ nation.
Chapter 5, "Working With Volumes and Pathnam .,

72 Apple IlGS GS/OS Reference

clearing backup status

Whenever a file is altered, GS/OS automatically changes the information about the file's
state to indicate that it has been changed but not backed up. Thus, an application that
performs backups can check the backup status to determine whether or not to back up
the fi le .

If you want to change the information about the backup status to indicate to GS/OS that
the file does not need to be backed up, use the ClearBackupBit call. This resets the
backup status so that it looks to GS/OS as if the file had not been altered. For example,
you can use this technique in a word-processing application when the user deletes
something from the file but then decides to undo the change; issuing the ClearBackupBit
call prevents the file from being backed up.

Deleting files

If you want your application to delete a file on disk, you can use the GS/OS Destroy call
to delete the file. You can use this technique only on subdirectories, standard files, and
extended files; you can't use the technique to delete volume directories or character-
device files.

♦ Note: Character-device files are treated somewhat differently; see Chapter 14 for more
in fo rmat ion .

Setting and getting file characteristics

Certain characteristics of an open or closed file can be retrieved or modified by the
standard GS/OS calls SetPilelnfo and GetPilelnfo.

A Important Although SetPilelnfo and GetPilelnfo calls can be performed on open
files, you might not get back the information you want. It's safer to
perform these calls only on closed files, a

Chapter 4 Acces,sing GS/OS Piles 7 3

These characteristics include
■ access to the file
■ file type and auxiliary type
■ creation time and date
■ modification time and date
■ a pointer to an option list for FST-specific information (see Part II of this book, "The

File System Level," for more information about FSTs)
An example of how you can use SetFilelnfo and GetFilelnfo is given in the section
"Copying Files" later in this chapter.

Changing the creation and modification dates and times

The creation and modification fields in a file entry refer to the contents of the file. The
values in these fields should be changed only if the contents of the file change. Each field
contains the time and date information in the format shown in Table 4-2.

■ Table 4-2 Date and t ime format

I t e m B y t e p o s i t i o n

S e c o n d s B y t e 1
M i n u t e s B y t e 2
H o u r B y t e 3
Y e a r B y t e 4
D a y B y t e 5
M o n t h B y t e 6
N u l l B y t e 7

W e e k d a y B y t e 8
This date and time format is the same as that used by the ReadTimeHex IIGS Toolbox
call in the Miscellaneous Tool Set.

Since data in the file's directory entry itself is not part of the file's contents, the
modification field should not be updated when another field in the lile entry iŝchanged
unless that change ,s due to an alteration in the file's contents. For example, a change in

74 Apple IlGS GS/OS Reference

the file's name is not a modification; on the other hand, a change in the file's EOF always
reflects a change in its contents and, therefore, is a modification.

Remember also that a file's entry is part of the contents of the directory or subdirectory
that contains that entry. Thus, whenever a file entry is changed in any way (whether or not
its modification field is changed), the modification fields in the entries for all its
enclosing directories—including the volume directory—must be updated.

Finally, when a file is copied, a utility program must be sure to give the copy the same
creation and modification dates and times as the original file, and not the date and time
at which the copy was created. See the following section for more information.

Copying files

To copy single files to a disk, or to copy files to and from file servers where you have full
access, perform the following steps:
1. Make a GetFilelnfo call on the source file (the file to be copied) to get its creation and

mod ifica t ion da tes and t imes .

2. Make a Create call to create the destination file (the file to be copied to).
3. Open both forks of the source and destination files. Use Read and Write calls to copy

the source to the destination.

4. Make a Flush call on the destination fork or forks.
5. Make a SetFilelnfo call on the destination file, using all the information returned from

GetFilelnfo in step 1. This sets the modification date and time values to those of the
source file.

6. Close both files.

To copy multiple files, you may want to use the GS/OS cache mechanism, described in the
nex t sec t ion .

If you are writing an application similar to the Finder™, you will also need to deal with
drop folders. To copy files into a drop folder on a server where you have access to make
changes but not to see files or to see folders, perform the following steps:
1. Copy everything into the drop folder.
2. Just before closing, change the name of the owner of the copies to become the name

of the owner of the drop folder.

Chapter 4 Accessing GS, OS Files 75

Caching fi les

All blocks on a disk that can be read by GS/OS can be classified into one of two
categories. Application blocks are all blocks on the disk that are contained in any file
(except a directory file), while system blocks are other blocks on the disk. System blocks
belong to the file system and include directory blocks, bitmap blocks, and other
housekeeping blocks specific to the file system.
GS/OS always maintains at least a l6 KB cache, even if the user has used the Control Panel
to set the disk cache size to 0 KB. When the system (usually an FST) reads a system block
the block IS identified as a candidate for caching and is cached if possible. Applications'
defme blocfe as candidates for caching by using thecachePriority field of many
Standard (d̂s 1) GS/OS calls. Note that ProDOS 16-compatible (class 0) calls do not
ave this field; thus, applications using exclusively class 0 calls cannot cache any

a p p l i c a t i o n b l o c k s . ^

f rom " 'u =>" iomat ica l ly, f reeing your appl icat ioname pLlolf a d ® ""rl" ̂ PPlication normally reads theT c h a n i s r ' h e c a c h i n g
k ^ y a m e m o r y o f t e nd'oTm" .tlThirtlfdocument file (for example, cĥt̂ra worfpro«LôreV̂7™" ''rntanager, or individual ̂ctures for an animation program). This docuTem hU rprobably not vety long, but the application usually needs to read it quite often to quicklyaccess various portions of the document file. This header is a prime candidate for

caching, since it will be read many times during the life of the application
The best general rule is to not cache complete files, but instead cache only those portions
of your document files that will be read from disk many times.

For example, if you are attempting to cache a 40K file (80 512-byte blocks), and the cache
is set to less than 40K, the entire cache will be written through, kicking out all system
blocks currently cached. A cache of this size slows system performance for little gain,
since the entire file cannot be cached anyway. Even if the cache is large enough to hold the
entire file, you are needlessly storing a duplicate copy of a single file (by reading it into
memory that you obtain from the Memory Manager, as well as asking GS/OS to keep a
copy in the cache).

To further improve disk-caching performance, you can use the write-deferral mechanism,
descr ibed in the nex t sec t ion .

76 Apple 1IG,S GS/OS Reference

I.

Using the write-deferral mechanism

GS/OS provides a write-deferral mechanism that allows you to cache disk writes in order
to increase performance.

To use this technique, perform the following steps:
1. Start the write-deferral session by making a GS/OS BeginSession call. Deferred blocks

that are written to the cache are locked and cannot be purged until the EndSession call.

A Important If you have started a write-deferral session, and have written files to
the disk, do not allow the user to eject the disk until you end the
write-deferral session; otherwise, you could damage the disk files.
Make sure that you place an EndSession call in the flow of both a
normal and an abnormal exit, a

2. Copy the files.
3. If the cache fills up with deferred blocks, the GS/OS Autoflush feature automatically

issues an EndSession call, which immediately writes all deferred blocks to disk. GS/OS
then automatically issues a BeginSession call to restart the write-deferral session.

4. End the write-deferral session by making a GS/OS EndSession call.

The SessionStatus call also allows you to check whether a write-deferral session is currently
in force.

A Important The price of the increased performance is increased caution. Do not
allow your application to exit while a write-deferral mechanism is in
force; you could harm the data integrity of any open disk files. Make
sure that you place an EndSession call in the flow of both a normal and
an abnormal exit, a

Chapter a Accessing GS OS Files

Chapter 5 Working With Volumes and
P a t h n a m e s

You can usually avoid working with volumes, pathnames, and devices in
detail; GS/OS can free you from keeping track of exactly where files
reside. As discussed in Chapter 4, if you use the Apple IIGS Standard File
Operations Tool Set routines SFPutFile2 and SFGetFile2, you don't need
to know where a file is, since these routines tell GS/OS where the file is
located.

In some situations, however, you may not be able to or may not want to
use SFPutFile2 and SFGetFile2. For example, you might need or want
more control if your application has any of the following characteristics:
■ It is text-based (and thus unable to access SFPutFile2 and

SFGetFile2).

■ It needs to check whether particular files are in the appropriate
directories (for example, when the data files for an application need
to be in the same directory as the application).

■ It builds its own pathnames (for example, if you want to present a list
of all mounted volumes to the user).

In any of these cases, you have to understand more about pathnames and
volumes, and just a little bit more about devices. This chapter discusses
the concepts that you need to understand about entities, and the GS/OS
calls that allow you to work with them.

♦ Note: This chapter doesn't discuss direct access to devices; for that
information, see the GS/OS Device Driver Reference.

7 9

/

Chapter 5 Working With Volumes and
Pathnames

You can usually avoid working with volumes, pathnames, and devices in
detail; GS/OS can free you from keeping track of exacdy where files
reside As discussed in Chapter 4, if you use the Apple IIGS Standard File
Operations Tool Set routines SFPutFile2 and SFGetFile2, you don't need
to know where a file is, since these routines tell GS/OS where the file is
located.

In some situations, however, you may not be able to or may not want to
use SFPutFile2 and SFGetFile2. For example, you might need or want
more control if your application has any of the following characteristics:
. It is text-based (and thus unable to access SFPutFile2 and

SFGetFile2).
. It needs to check whether particular files are in the appropriate

directories (for example, when the data files for an application need
to be in the same directory as the application).

. It builds its own pathnames (for example, if you want to present a list
of all mounted volumes to the user).

In any of these cases, you have to understand more about pathnames and
volumes, and just a little bit more about devices. This chapter discusses
the concepts that you need to understand about entities, and the GS/OS
calls that allow you to work with them.

♦ Note- This chapter doesn't discuss direct access to devices; for that
information, see the GS/OS Device Driver Reference.

79

V o l u m e s

Some GS/OS calls are designed to allow you to work directly with volumes; they are
described in the following sections.

Getting volume information

GS/OS provides the Volume call to retrieve information about the volume currently
mounted in a specified device. You can retrieve the following information:
■ the name of the volume

■ the total number of blocks on the volume

■ the number o f f ree b locks on the vo lume

■ the file system contained on the volume
■ the size, in bytes, of a block on the volume

An example of the use of the Volume call is given in the next section.

Building a list of mounted volumes

If you want your application to build a list of all the mounted volumes, you need to use
the GS/OS calls DInfo and Volume, as follows:

^ 1. To determine the names of the current devices, make DInfo calls for device 1,
device 2, and so on until GS/OS returns error $11 (invalid device number). DInfo
returns the name of the device associated with each device number (see Chapter 7
for details on the DInfo call).

2. Once you have the device name, you can use the GS/OS Volume call to obtain the name
of the volume currently mounted on the device.

You can also continue from this point to examine directory entries and build the
pathname to a file. See the section "Building Your Own Pathnames," later in this chapter,
for more information.

Getting the name of the boot volume

If you need to determine the name of the volume from which GS/OS was booted, use the
standard GS/OS call GetBootVol to retrieve a pointer to the volume name. That name is

80 Apple IIGS GS/OS Reference

equivalent to the prefix specified by *:. For example, an application can start up
QuickDraw™ II and the Event Manager and then use the GetBootVol call to check if the
boot volume is on line. This allows the application to use the toolbox call TLMountVol to
put up a custom dialog box if the boot volume is off line.

Formatting a volume

GS/OS provides two format options to applications.
■ The GS/OS Format call attempts to format the medium; this method is necessary when

your application can't read the existing volume.
■ The GS/OS EraseDisk call assumes that a formatted medium already exists in the

appropriate device, and writes new boot blocks, directory, and bitmaps to the
medium. EraseDisk is usually faster than Format, but it requires that the medium
already be formatted. You can use this call, for example, to quickly make all of the
space reusable on a disk that can already be read by your application.

You have to provide a device name to either call, so you need to use the GS/QS DInfo call
at some point to find out the device name.

After you issue the EraseDisk or Format call, GS/OS takes control, and presents a graphic
or text interface that allows the user to choose the file system to be used to format the
vo lume .

♦ Note: If you don't want to give the user the option of selecting the file system to be
placed on the volume, you can specify the file system as a parameter to the EraseDisk
or the Format call.

For GS/OS to present the graphic user interface, your application has to meet the
following requirements:
■ The Apple IIGS Toolbox Desk Manager must be active; by implication, all of the tool

sets on which the Desk Manager depends must also be active (see the Apple IlGS
Toolbox Reference.

m The List Manager must be active.
■ For the graphics tools to run, 64 KB of RAM must be available.
■ The Super Hi-Res screen must be currently displayed.

If all of these requirements are met, GS/OS presents the graphic interface to the user; if
any one of the requirements is not met, GS/OS presents the text interface to the user.

Chapter 5 Working With Volumes and Pathnames 8 1

P a t h n a m e s

If you need to, you can work directly with the pathname of a file. The following sections
describe the pathname capabilities of GS/OS.

Setting and getting prefixes

You can use standard GS/OS calls to set and retrieve the prefix assignments manually. The
SetPrefix call explicitly sets one of the numbered prefixes to the prefix you want, and the
GetPrefix call returns the current value of any of the numbered prefixes.

A Important SetPrefix and GetPrefix cannot be used to change or retrieve the boot
volume prefix or the 0 prefix. To retrieve the name of the boot volume
prefbc, use the GS/OS GetBootVol call, described earlier in this
chapter and detailed in Chapter 7. Your application cannot change the
prefix of the boot volume at all. However, if the user renames the
boot volume, GS/OS automatically adjusts all pathnames to reflect
the changed prefbc. To retrieve the name of the 0 prefix, use the
•OS/OS ExpandPath call, a

Changing the path to a file
/

GS/OS allows you to change the path to a specified file. From the user's point of view, this
"moves" the file from the old directory to the new directory, even though the physical
location of the file does not change. In addition, if you change the path to a directory, all
files and directories that are in that directory also have their paths changed.

To change the pathname, use the standard GS/OS call ChangePath. For detailed
information about how to change the path, see the discussion of the ChangePath call in
Chapter 7.

Expanding a pathname

GS/OS allows you to expand a partial pathname into its corresponding full pathname. To
expand a pathname, use the standard GS/OS call ExpandPath. For detailed information
about how to expand a path, see the discussion of the ExpandPath call in Chapter 7.

82 Apple IIGS GS/OS Reference

Building your own pathnames

If you want your application to build a pathname by itself, you need to use several GS/OS
calls.

1. To determine the names of the current devices, make DInfo calls for device 1,
device 2, and so on until GS/OS returns error $11 (invalid device number). The DInfo
call returns the name of the device associated with each device number (see Chapter 7
for details on DInfo).

2. Once you have the device name, use the GS/OS Volume call to obtain the name of the
volume currently mounted on the device.

3. Open the volume directory by using the GS/OS Open call.
4. Get the directory entries for the files by using successive GetDirEntry calls.

D e v i c e s

A device is a piece of equipment that transfers information to or from the Apple IlGS.
Disk drives, printers, mouse devices, and joysticks are external devices. The keyboard
and screen are also considered devices. An input device transfers information to the
computer, an out̂ t device transfers information from the computer, and an
input/output device transfers information both ways.
GS/OS communicates with several different types of devices, but the type of the device
and its physical location (slot or port number) need not be known to a program that wants
to access that device. Instead, a program makes calls to GS/OS, identifying the device it
wants to access by its volume name or device name.

D e v i c e n a m e s

GS/OS identifies devices by device names. A GS/OS device name is a sequence of 2 to 32
characters beginning with a period (.).

Your application must encode device names as sequences of 7-bit ASCII codes, with the
device name in all uppercase letters and with the most significant bit off. The slash
character (/; ASCII 2F) and the colon (:; ASCII 3A) are always illegal in device names.

Chapter 5 Working With Volumes and Pathnames ^

Block devices

A block device reads and writes information in multiples of one block of characters at a
time. Furthermore, it is a random-access device—it can access any block on demand,
without having to scan through the preceding or succeeding blocks. Block devices are
usually used for storage and retrieval of information, and are usually input/output devices;
for example, disk drives are block devices.

♦ Note: GS/OS supports any RAM disk that behaves like a block device in all respects
just as if it were a block device.

GS/OS supports two different kinds of access to block devices:
■ File access, where you make a GS/OS Read or Write call, and GS/OS does the work of

finding and accessing the device. This process is described in Chapter 4.
■ Direct access, which you can use if your application needs to access blocks directly.

The calls that directly access devices are briefly summarized in Chapter 7 and discussed
in detail in the GS/OS Device Driver Reference.

Charac te r dev i ces

A character device reads or writes a stream of characters in order, one at a time. It is a
sequential-access device—it cannot access any position in a stream without first
accessing all previous positions. It can neither skip ahead nor go back to a previous
character. Character devices are usually used to pass information to and from a user or
another computer; some are input devices, some are output devices, and some are
input/output devices. The keyboard, screen, printer, and communications port are
character devices.

A Important Be aware of character devices. When prompted for a filename or
pathname, a user might enter a pathname to a character device. Error
$58 (notBiockDev) can protect you against this on many calls,
including Create, but you must still take precautions. The DInfo call
tells you if a device is a character device or block device; bit 7 of the
characteristics word is set if the device is a block device, a

GS/OS supports character devices through both direct access and file access. For more
information, see Chapter 14.

84 Apple IlGS GS/OS Reference

Direct access to devices

Generally, you don't need to do the work of accessing devices directly. For some special
applications and devices, however, you may want to take over that work; if you do, you'll
have to know a lot more about devices. See the GS/OS Device Driver Reference for that
in format ion.

D e v i c e d r i v e r s

Block devices generally require device drivers to translate a file system's logical block
device model into the tracks and sectors by which information is actually stored on the
physical device. Character devices also require drivers.
There are two types of GS/OS drivers: loaded drivers, which are RAM-based, and
generated drivers, which are constructed by GS/OS. Device drivers are discussed in the
GS/OS Device Driver Reference.

Chapter 5 Working With Volumes and Pathnames 8 5

Chapter 6 Working With System Information

Several GS/OS calls provide access to information about GS/OS.
This chapter introduces you to them.

8 7

i

Chapter 6 Working With System Information

Several GS/OS calls provide access to information about GS/OS.
This chapter introduces you to them.

87

Setting and getting system preferences

GS/OS provides a preferences word that allows your application to make the following
c h o i c e s :

■ If your application is using pathname calls, it can determine whether it will handle error
$45 (volNotFound) itself, or whether it will have GS/OS handle those errors.

■ It can display either a standard Volume Mount dialog box or a Volume Mount dialog
box w i thou t a Cance l bu t ton .

■ It can either suppress error dialog boxes that contain only one button or allow them to
be displayed.

For a more detailed discussion of how to set up the preferences word and any other
options available in that word, see the description of SetSysPrefs and GetSysPrefs in
Chapter 7, "GS/OS Call Reference."

Checking FST information

If you want to check the information for a specific FST, you can use the standard GS/OS
call GetFSTInfo. That call returns the following information about the FST:
■ name and version number of the FST

■ some general attributes of the FST, such as whether GS/OS will change the case of
pathnames to uppercase before passing them to the FST, whether GS/OS will strip the
high-order bit before passing on a filename, and whether it is a block or character FST

■ block size of blocks handled by the FST
■ maximum size of volumes handled by the FST
■ maximum size of files handled by the FST

For a more detailed discussion of how to retrieve the information, see the GetFSTInfo call
in Chapter 7, "GS/OS Call Reference." For more information about FSTs, see Part II.
Another call that is useful for a specific FST is, not surprisingly, FSTSpecific. FSTSpecific
is a call that can be defined individually for any file system translator. For a more detailed
discussion, see the FSTSpecific call in Chapter 7, "GS/OS Call Reference." For more
information about how the ProDOS FST, for example, uses the FSTSpecific Call, see
Chapter 12, "The ProDOS FST."

88 Apple IIGS GS/OS Reference

Finding out the version of the operating system

If your application depends on a feature of GS/OS that was implemented in a version later
than 2.0, you can use the standard GS/OS call GetVersion to retrieve the version number of
GS/OS. For more detailed information about how to retrieve the version number, see the
GetVersion call in Chapter 7, "GS/OS Call Reference."

Getting the name of the current application

To get the filename of the application that is currently executing, you can use the
standard GS/OS call GetName. For example, if you want your application to display its
own name to the user, you can use GetName to get its current name (remember, the user
can rename application files).

For more detailed information, see the GetName call in Chapter 7, "GS/OS Call Reference."

Getting reference numbers and information

You can use the following GS/OS calls to get information about the reference number,
access attributes, and full pathname of an open file.
■ To get the reference number of the last Open call to any of the three standard prefixes

(lo, 11, and 12), use the GetStdRefNum call.
■ To get the reference number and access attributes for an open file, use the

GetRefNum call.

■ To get the access attributes and full pathname for an open file, use the GetReflnfo call.

For more detailed information about how to use those calls, see their descriptions in
Chapter 7, "GS/OS Call Reference."

Chapter 6 Working With System Information 89

Getting the current device number

You can use the GetDevNumber call to get the device number of a device identified by
device name or volume name. Only block devices may be identified by volume name, and
then only if the named volume is mounted. Most other device calls refer to devices by
device number.

Working with the notification queue

The notification queue allows applications to be notified when certain operating-system
events occur. Two standard GS/OS calls, AddNotifyProc and DelNotifyProc, add and
delete notification procedures from the notification queue. For more detailed
information about how to use those calls, see the AddNotifyProc and DelNotifyProc calls
in Chapter 7, "GS/OS Call Reference."
A notification procedure starts with the header shown in Table 6-1.

The code in Proc_Entry must set the direct-page and data bank registers as needed;
however, it does not need to save and restore the entry values.
In general, GS/OS calls cannot be made by the notification procedure (because GS/OS is
busy). The exceptions are the "switch GS/OS to ProDOS 8" and "switch ProDOS 8 to
GS/OS" events; GS/OS calls are allowed during these events so that files may be opened or
closed.

/

A Important Do not make a Quit call from a notification procedure under any
c i r c u m s t a n c e s , a

V -

Notification procedures may be called during an interrupt; therefore, keep the code short
(set a flag or set up a signal).
Parameters are passed to notification procedures in the A, X, and Y registers. The
parameters for each event are shown in Table 6-2.

90 Apple IIGS GS/OS Reference

■ Table 6-1 Notification procedure header

N a m e Size Description

Reserved Long Reserved (link to next task in queue)
Reserved W o r d Reserved

S i g n a t u r e Word $A55A signature
E v e n t _ fl a g s Long Bit flags indicating which events to call the procedure

for, as follows:
B i t E v e n t

0 R e s e r v e d
1 S w i t c h G S / O S t o P r o D O S 8
2 S w i t c h P r o D O S 8 t o G S / O S

3 D i s k i n s e r t
4 D i s k e j e c t
5 S h u t d o w n
6 Volume change (wri t ing occurred)
3 1 - 3 7 R e s e r v e d

E v e n t _ c o d e Long The current event code will be put here by GS/OS. This
- will be equivalent to the value of Event_f lags with

the appropriate bit set (for example, disk insert =
$00000008).

P r o c _ E n t r y As needed The code for the notification procedure. GS/OS will
perform a jsl to the code in full native mode.

■ Table 6-2 Notification procedure parameters

E v e n t A r e g i s t e r X r e g i s t e r Y r e g i s t e r

Switch GS/OS to RroDOS 8 U n d e fi n e d U n d e fi n e d U n d e fi n e d

Switch ProDOS 8 to GS/OS U n d e fi n e d U n d e fi n e d U n d e fi n e d
Disk insert D e v i c e n u m b e r U n d e fi n e d U n d e fi n e d

Disk eject D e v i c e n u m b e r U n d e fi n e d U n d e fi n e d

Shutdown U n d e fi n e d U n d e fi n e d U n d e fi n e d
Volume change G S / O S c a l l n u m b e r * D e v i c e n u m b e r U n d e fi n e d

*The call number will be 0 when the AppleShare FST detects that a server volume has been modified.

1

Chapter 6 Working With System Information 91

Using the optionList parameter

Many GS/OS calls have an output longword pointer parameter called optionList. The
parameter allows you to point to additional data that your application requires. The
structure of the buffer pointed to by the optionList parameter must be as follows:
O f f s e t

t o t a l S i z e

r e q S i z e

fi l e S y s I D

o u t p u t D a t a

Size and type

Word input value

Word output value

Word output value

Output; length determined by call

t o t a l S i z e

r e q S i z e

fi l e S y s I D

Word input value: Total size of buffer, including this size word. If the
total size is less than 4, error $53 (paramRangeErr) will be returned.

Word output value: Required size of buffer minus 4 (that is, not including
the totalSize and reqSize parameters). If the data will not fit in the
space provided, error $4F (buf fTooSmaii) will be returned; in this
case, a new buffer should be allocated using the reqSize plus 4.

Word output value: File system ID. The file system IDs are as follows:
i h A A A A < t n n r i Q n n / J i A$ 0 0 0 0 R e s e r v e d
$0001 P roDOS/SOS
$0002 DOS 3 .3
$0003 DOS 3.2 or 3.1
$0004 Apple II Pascal
$0005 Macintosh (MPS)
$0006 Macintosh (HFS)
$ 0 0 0 7 L i s a ®

$0008
$0009
$000A
$000B
$000C
$000D
$OOOE-$FFFF

Apple CP/M
Reserved

MS/DOS

High Sierra
ISO 9660

AppleShare
Reserved

outputData Output value: Data specific to call and file system.
If the opt ionLi s t parameter is NIL, no error will be returned.

9 2 Apple IIGS GS/OS Reference

Chapter 7 GS/OS Call Reference

This chapter provides the detailed description for all GS/OS calls,
arranged in alphabetical order by call name. Each description includes
these elements:

■ the call's name and call number

■ a short explanation of its use
■ a diagram of its required parameter block
■ a detailed description of all parameters in the parameter block
■ a list of all possible operating system error messages

95

I

The parameter block diagram and description

The diagram accompanying each call description is a simplified representation of the
call's parameter block in memory. The width of the parameter block diagram represents
one byte; successive tick marks down the side of the block represent successive bytes in
memory. Each diagram also includes these features:
■ Offset: Hexadecimal numbers down the left side of the parameter block represent

byte offsets from the base address of the block.
■ Name: The name of each parameter appears at the parameter's location within

t h e b l o c k .

■ No.: Each parameter in the block has a number, identifying its position within the
block. The total number of parameters in the block is called the parameter count
(pCount); pCount is the initial (zeroth) parameter in each call. The pcount
parameter is needed because in some calls parameter count is not fixed; see minimum
parameter count, below.

■ Size and type: Each parameter is also identified by size (word, longword, or double
longword) and type (input or result, and value or pointer). A word is 2 bytes; a
longword is 4 bytes; a double longword is 8 bytes. An input is a parameter passed from
the caller to GS/OS; a result is a parameter returned to the caller from GS/OS. A value is
numeric or character data to be used directly; a pointer is the address of a buffer
containing data (whether input or result) to be used.

■ Minimum parameter count: To the right of each diagram, across from the pCount
parameter, the minimum permitted value for pCount appears in parentheses. Themaximum permitted value for pCount is the total number of parameters shown in the
parameter block diagram.

/

Each parameter is described in detail after the diagram.

94 Apple IIGS GS/OS Reference

$2034 AddNotifj^Proc

Description This call adds a notification procedure to the notification queue.
, After the call succeeds, whenever the specified event occurs, GS/OS will
1

i call the notification procedure. For the details of the notification
i

procedure, see the section "Working With the Notification Queue"
1

in Chapter 6. To delete a procedure, see the DelNotifyProc call later in
1

this chapter.

P a r a m e t e r s O f f s e t N o . S i z e a n d t y p e

- pCount - Word input va lue (min imum = 1)

$02 _

procPointer - 1 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

procPointer Longword input pointer: Pointer to the notification procedure
to add to the notification queue.

E r r o r s (none except general GS/OS errors)

i
1

i
1
!

i

!

Chapter 7 GS/OS Call Reference 95

$201D BeginSession

Desciiption This call tells GS/OS to begin deferring block writes to disk. Normally
GS/OS writes blocks to disk immediately whenever part of the system
issues a block write request. However, when a write-deferral session is in
progress, GS/OS caches blocks that are to be written until it receives an
EndSession call.

This technique speeds up multiple file copying operations because it
avoids physically writing file-system overhead blocks (such as directory
blocks) to disk for every file. To do a fast multiple file copy, the
application should execute a BeginSession call, copy the files, then
execute an EndSession call.

P a r a m e t e r s o f f s e t N o . s i z e a n d t y p e

Word input value (minimum = 0)

pcount Word input value: Number of parameters in this parameter block.
Minimum = 0; maximum = 0.

Errors (none except general GS/OS errors)

96 Apple IlGS GS/OS Reference

$ 2 0 3 1 B i n d l n t

This function places the address of an interrupt handler into GS/OS's
interrupt vector table.
For a complete description of GS/OS's interrupt handling subsystem, see
the GS/OS Device Driver Reference. See also tlie Unbindint call in this
chapter.
O f f s e t

p C o u n t

i n t N u m

No. Size and type

Word input value (minimum = 3)
- 1 Word resu l t va lue

Word input value

i n t C o d e 3 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 3; maximum = 3.

intNum Word result value: An identifying number assigned by GS/OS to the
binding between the interrupt source and the interrupt handler. Its only use
is as an input to the GS/OS call Unbindint.

vrn Word input value: Vector reference number of the firmware vector for the
interrupt source to be bound to the interrupt handler specified by
i n t C o d e .

intCode Longword input pointer: Points to the first instruction of the
interrupt handler routine.

$ 2 5 I r q Ta b l e F u l l interrupt vector table full

Chapter 7 GS/OS Call Reference 97

$2004 ChangePath

Description

P a r a m e t e r s

This call changes a file's pathname to another pathname on the same
volume, or changes the name of a volume. ChangePath cannot be used to
change a device name; use the DRename call for that purpose.

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 2)

p a t h n a m e 1 Longword input pointer

newPathname -I 2 Longword input pointer

C o m m e n t s

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

pathname Longword input pointer: Points to a GS/OS string representing the
name of the file whose pathname is to be changed.

newPathname Longword input pointer: Points to a GS/OS string representing
the new pathname of the file whose name is to be changed.

A file may not be renamed while it is open.

A file may not be renamed if rename access is disabled for the file.

A subdirectory s may ftot be moved into another subdirectory f if 5 = ? or if
t is contained in the directory hierarchy starting at s. For example,
"rename /v to /v/w" is illegal, as is "rename / v/wto / v/w/x".

Apple IIGS GS/OS Reference

E r r o r s $10 devNotFound
$ 2 7 d r v r l O E r r o r
$ 2 B d r v r W r t P r o t
$40 badPathSyntax
$44 pathNotFound
$ 4 5 v o l N o t F o u n d

$46 fileNotFound
$47 dupPathname
$ 4 A b a d F i l e F o r m a t
$ 4 B b a d S t o r e Ty p e
$ 4 E i n v a l i d A c c e s s
$ 5 0 fi l e B u s y

$52 unknownVol
$57 dupVolume
$58 notBlockDev
$5A damagedBi tMap

device not found
I/O error

write-protected disk
invalid pathname syntax
path not found
volume not found

file not found

duplicate pathname
v e r s i o n e r r o r

unsupported storage type
file not destroy-enabled
file open
unsupported volume type
duplicate volume
not a block device
block number out of range

Chapter 7 GS/OS Call Reference 99

$200B ClearBackupBi t

Description This call sets a file's state information to indicate that the file has been
backed up and not altered since the backup. Whenever a file is altered,
GS/OS sets the file's state information to indicate that the file has been
altered.

O f f s e t

soo
p C o u n t

S02

p a t h n a m e —

—

No. Size and type

Word input value (minimum = 1)

1 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

pathname Longword input pointer: Points to a GS/OS string that gives the
pathname of the file or directory whose backup status is to be cleared.

$27 d r v r l O E r r o r I/O error

$28 d r v r N o D e v i c e no device connected

$2B d r v r W r t P r o t write-protected disk
$2E d r v r D i s k S w i t c h disk switched

$40 b a d P a t h S y n t a x invalid pathname syntax
$44 p a t h N o t F o u n d path not found
$45 v o l N o t F o u n d volume not found

$46 fi l e N o t F o u n d file not found

$4A b a d F i l e F o r m a t vers ion error

$52 u n k n o w n V o l unsupported volume type
00 n o t B l o c k D e v not a block device

P a r a m e t e i ^

E r r o r s

/

100 Apple IIGS GS/OS Reference

P

$ 2 0 1 4 C l o s e

Description

P a r a m e t e r s

This call closes the access path to the specified file, releasing all resources
used by the file and terminating further access to it. Any file-related
information that has not been written to the disk is written, and
memory-resident data structures associated with the file are released.
If the specified value of the refNum parameter is $0000, all files at or
above the current system file level are closed. This not only closes the
resource fork of your application, but also closes the resource forks of
any open desk accessory.

O f f s e t No. Size and type

p C o u n t

r e f N u m

Word input value (minimum = 1)

1 Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; rnaximum = 1.

refNum Word input value: Identifying number assigned to the file by the Open
call. A value of $0000 indicates that all files at or above the current system
file level are to be closed.

$ 2 7 d r v r l O E r r o r
$2B drvrWrtProt
$ 2 E d r v r D i s k S w i t c h

$43 inval idRefNum
$48 volumeFul l
$5A damagedBitMap

I/O error

write-protected disk
disk swi tched

invalid reference number

volume full
block number out of range

Chapter 7 GS/OS Call Reference 101

$2001 C r e a t e

This call creates either a standard file, an extended file, or a subdirectory
on a volume mounted in a block device. A standard file contains a single
sequence of bytes; an extended file contains a data fork and a resource
fork, each of which is an independent sequence of bytes; a subdirectory
is a data structure that contains information about other files and
subdirectories. This call sets up file system state information for the new
file and initializes the file to the empty state.

This call cannot be used to create a volume directory; the Format call
performs that function. Similarly, it cannot be used to create a character-
device file; the Character FST creates that special kind of file (see
Chapter 14).

O f f s e t N o . S i z e a n d t y p e

$00
p C o u n t - Word input value (minimum =

S02
- —

- p a t h n a m e — 1 Longword input pointer

$06
a c c e s s 2 Word input value

$08 fi l e T y p e 3 Word input value

$0A
— —

a u x T y p e — 4 Longword input value

$0E
s t o r a g e T y p e - 5 Word input value

$10

e o f — 6 Longword input value

$14
_

r e s o u r c e E O F — 7 Longword input value

Description

P a r a m e t e r s

102 Apple IIGS GS/OS Reference

0

pcount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 7.

pathname Longword input pointer: Points to a GS/OS string representing the
pathname of the file to be created. This is the only required parameter.

access Word input value: Specifies how the file may be accessed after it is
created and whether or not the file has changed since the last backup, as
shown in the following bit flag:

The most common setting for the access word is $00C3.

Software that supports file hiding (invisibility) should use bit 2 of the flag
to determine whether or not to display a file or subdirectory.

"fileType Word input value: Categorizes the file's contents. The value of this
parameter has no effect on GS/OS's handling of the file, except that only
certain file types may be executed directly by GS/OS. The file type values
are assigned by Apple Computer.

auxType Longword input value: Categorizes additional information about the
file. The value of this parameter has no effect on GS/OS's handling of the
file. By convention, the interpretation of values in this parameter depends
on the value in the fileType parameter. The auxiliary type values are
assigned by Apple Computer.

Chapter 7 GS/OS Call Reference 103

storageType Word input value: Determines whether the file being created is a
standard file, an extended file, or a subdirectory file. In addition, if bit 15
(msb) is set to 1, a resource fork is added to the file if the file already
exists. The following values are valid:
$0000-$0003* create a standard file
$ 0 0 0 5 c r e a t e a n e x t e n d e d fi l e
$8005 convert an existing standard file to contain a

resource fork
$000D create a subdirectory file
*If this parameter is set to $0000, $0002, or $0003, GS/OS interprets it as $0001 and actually
changes it to $0001 on output.

eof Longword input value: Specifies an amount of storage to be preallocated
during the Create call for the file that is being created. The type of entity is
specified by the storageType parameter.
For a standard file, the eof parameter specifies the file size, in bytes, for
which space is to be preallocated. GS/OS preallocates enough space to hold
a standard file of the given size.

For an extended file, the eof parameter specifies the size, in bytes, of the
data fork. GS/OS preallocates enough space to hold a data fork of the
specified size.
For a subdirectory, the eof parameter specifies the number of entries the
caller intends to place in the subdirectory. GS/OS preallocates enough space
for the subdirectory to hold the specified number of entries.

resourceEOF Longword input value: Specifies the amount of space to
preallocate for the resource fork for an extended file. GS/OS preallocates
enough space to hold a resource fork of the specified size. This parameter
is meaningful only if the storageType parameter value is $0005, indicating
that an extended file„is to be created.

Comments The Create call applies only to files on block devices.

All FSTs implement standard files, but they are not required to implement
extended files.

104 Apple IIGS GS/OS Reference

Errors $10 devNotFound device not found
$27 drvrlOError I/O error
$2B drvrWrtProt wrlte-protected disk
$2F drvrOf f Line Specified volume not on line
$40 badPathSyntax invalid pathname syntax
$44 pathNotFound path not found
$45 voiNotFound volume not found
$46 fileNotFound file not found
$47 dupPathname duplicate pathname
$48 voiumeFuil volume full
$49 voiDirFuii volume directory full
$4B badStoreType unsupported (or incorrect) storage type
$52 unknownVol unsupported volume type
$58 notBiockDev not a block device
$5A damagedBitMap block number out of range
$70 resExistsErr cannot expand file, resource fork already

e x i s t s

$71 resAddErr cannot add resource fork to this type
of file

Chapter 7 GS/OS Call Reference 105

$ 2 0 2 E D C o n t r o l

This call sends control information to a specified de\ ice. Dconiroi is
really ten or more subcalls in one. Depending on the \ alue (jf the control
code parameter (code;, DControl can set several classes o(control
i n f o r m a t i o n .

O f f s e t

s o o

S02

S04

S06

SOA

SOE

p C o u n t

d e v N u m

c o d e

l i s t

r e q u e s t C o u n t —

k t r a n s f e r C o u n t —

N o . S i z e a n d t > ' p e

Word input value (minimum = S)

1 Word input value

2 Word input value

3 Longword input pointer

4 Longword input value

5 Longword result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 5; maximum = 5.

devNum Word input value: Device number of the device to which the control
information is being sent.

code Word input value: Number indicating the type of control request being
made. The standard control codes are as follows:

$ 0 0 0 0 R e s e t D e v i c e

$0001 FormatDev ice
$0002 Eject
$0003 SetConfigParameters
$ 0 0 0 4 S e t W a i t S t a t u s

Description

P a r a m e t e r s

106 Apple IIGS GS/OS Reference

I

$0005 SetFormatOptions
$0006 AssignParti t ionOwner
$0007 ArmSignal
$0008 D isarmSigna l
$ 0 0 0 9 S e t P a r t I t i o n M a p
$000A-$7FFF (reserved)
$8000-$FFFF (device-specific subcails)
$0000-$7FFF are standard DControl subcails that must be supported by the
device driver; device-specific control calls may be supported by a particular
device. Each subcall is described later in this section.

list Longword input pointer: Points to a buffer containing the device control
information. The format of the data returned in the control buffer depends
on the control subcall; see the individual subcall descriptions later in this
s e c t i o n .

requestcount Longword input value: For control codes that have a control
list, this parameter gives the size of the control list. For control subcails that
do not use the control list, this parameter is not used.

transferCount Longword result value: For control codes that have a control
list, this parameter indicates the number of bytes of information actually
transferred to the device. For control subcails that do not use the control
list, this parameter is not used.

E r r o r s $ 1 1 i n v a i i d O e v N u m i n v a l i d d e v i c e n u m b e r
$22 drvrBadParm bad call parameter

Control-Ust On a control call, the caller supplies a pointer (list) to a buffer, whose
buffer size must be at least requestcount bytes. In some cases, the first

2 bytes of the buffer are a length word, specifying the number of bytes of
data in the buffer. In those cases, requestcount (which describes the
amount of data supplied to the driver in the buffer) must be at least
2 bytes greater than the amount of data the driver needs, to account for
the length word. The value returned in transferCount is the number of
bytes used by the driver. If not enough data is supplied for the requested
function, this call may return error $22 (drvrBadParm).
For those subcails that pass no information in the control list, the driver
does not access the control list and verify that its length word is zero; the
driver ignores the control list entirely.

Chapter 7 GS/OS Call Reference 107

S u b c a l l s

Device-specific control subcalls. which m-'V ̂
devices, use control codes S8000 through

ResetDevice CDControl subcall)
Conlrof code - SOOOO.

The Reset Device subcaU sets a device's configuration \)avainetcv-> Ivwk
to their default values. Many GS OS device drivers contain dehiult
configuration settings for each device it contrids, see the (,s OS Dcricc
Driver Reference for more informaticjn.
ResetDevice also sets a device's format options back to their ilelault
values, if the device supports media \-ariables. See the
SetFormatOptions subcalJ described later in this secti(jn.

If successful, the transfer count for this call is zero. The re(|uest count is
ignored, and the control list is not used. Howei'er, for future-
compatibility, the requestCount parameter should be set to .SO.

Control code = $0001.

The FormatDevice subcall is used to format the medium, usually a disk
drive, used by a block device. This call is not linked to any particular file
system, in that no directory information is written to disk. FormatDevice
simply prepares all blocks on the media for reading and writing.
After formatting, FormatDevice resets the device's format options back
to their default values, if the device supports media variables. See the
DControl subcall SetFormatOptions described later in this section.
Character devices do not implement this function but return with no
e r r o r .

If successful, the transfer count for this call Ls zero. Keciuest count is
ignored; the control list is not used.

FormatDevice (DControl subcall)

Apple IIGS GS/OS Reference

EjectMedium (DControl subcall)

Control code = $0002.

The EjectMedium subcall physically or logically ejects the recording
medium, usually a disk, from a block device. In the case of linked
devices (separate partitions on a single physical disk), physical ejection
occurs only if, as a result of this call, all the linked devices become off
line. If any devices linked to the device being ejected are still on line, the
device being ejected is marked as off line but is not actually ejected.

Character devices do not implement this function but return v^ith no
e r r o r .

If successful, the transfer count for this call is zero. The requestcount
parameter is ignored; the control list is not used.

SetConfigParameters (DControl subcall)

Control code = $0003.

The Set ConfigParameters subcall is used to send device-specific
configuration parameters to a device. The configuration parameters are
contained in the control list. The first word in the control list (length)
indicates the length of the configuration list, in bytes. The configuration
parameters follow the length word. Here is what the control list
looks l ike:

O f f s e t

l e n g t h W o r d

Desc r i p t i on

The length of the list (in bytes)

-configParamList -I Longword The configuration list

The structure of the configuration list is device-dependent. See the
GS/OS Device Driver Reference for more information.

Chapter 7 GS/OS Call Reference 109

This subcall is most typically used in conjunction with the status sul)cali
GetConfigParameters. The application first uses the status subcall to get
the list of configuration parameters for the device; it then m<xlifies
parameters as needed and makes this control subcall t(j send the new-
parameters to the device driver.

The request count for this subcall must be equal to le.ce:: r.v;o r a + 2.
Furthermore, the length word of the new configuration list must ec|ual the
length word of the existing configuration list fthe list returned from
GetConfigParameters). If this call is made with an improper
configuration list length, the call returns error S22 CdrvrBadPoir:!;).

SetWaitStatus (DControl subcall)

Control code = $0004.

The SetWaitStatus subcall is used to set a character device to wait mode
or no-wait mode.

♦ Note: Block devices cannot be set to no-wait mode. For block
devices, the driver should return error $53 CparamRangeEr r) on a
no-wait mode request.

When a device is in wait mode, it does not terminate a Read call until it
has read the number of characters specified in the request count, or if a
newline character is encountered during the read and newline mode is
enabled. In no-wait mode, a read call returns immediately after reading
the available characters, with a transfer count indicating the number of
characters returned. If one or more characters was available, the transfer
count has a nonzero value; if no character was available, the transfer
count is zero.

11 0 Apple IIGS GS/OS Reference

The control list for this subcall contains $0000 (to set wait mode) or
$8000 (to set no-wait mode). The request count must be $0000 0002. The
control list looks like this:

S i z e D e s c r i p t i o n

Word The wa i t /no-wa i t s ta tus o f the dev ice

This subcall has no meaning for block devices; they operate in wait mode
only. SetWaitStatus should return from block devices with no error (if
wait mode is requested) or with error $ 22 (drvrBadParm) if no-wait
mode is requested.

SetFormatOptions (DControl subcall)

Control code = $0005.

Some block devices can be formatted in more than one way. Formatting
parameters can include such variables as file system group, number of
blocks, block size, and interleave. Each driver that supports media
variables (multiple formatting options) contains a list of the formatting
options for its devices.

The SetFormatOptions subcall is used to set these media-specific
formatting parameters prior to executing a FormatDevice subcall.
SetFormatOptions does not itself cause or require a formatting
operation. The control list for SetFormatOptions is as follows:

O f f s e t S i z e D e s c r i p t i o n

Word The number of the format option

Word The override interleave factor (if nonzero)

O f f s e t

Chapter 7 GS/OS Call Reference 111

The format option number (formatOptionNum) specifies a particular
format option entry from the driver's list of formatting options (returned
from the DStatus subcail GetFormatOptions), in the following format:

S i z e D e s c r i p t i o n

Word The number of this option

Word Number of linked option

Word Flags word; see the following definition

- f o r m a t O p t i o n N u m -

l i n k R e f N u m

fl a g s

b l o c k C o u n t —

b l o c k S i z e

i n t e r l e a v e

m e d i a S i z e

Longword Number of blocks supported by device

Word Flags word; see the following definition

Word Interleave factor (in ratio to 1)

Word Media size; see description of flags

See the description of the DStatus subcail GetFormatOptions, later in
this chapter, for a more detailed description of the format option entry.
The interleave parameter in the control list, if nonzero, overrides
interleave in the format option list. If the control list interleave
factor is zero, the interleave specified in the format option list is used.

To carry out a formatting process with this subcail, do this:
1. Issue a (DStatus) GetFormatOptions subcail to the device. The call

returns a list of all the device's format option entries and their
corresponding values of'formatoptionNum.

2. Issue a (DControl) SetFormatOptions subcail, specifying the desired
format option.

3. Issue a (DControl) FormatDevice subcail.

1 1 2 A p p l e I I G S G S / O S R e f e r e n c e ?
I

i

A Important SetFormatOptions sets the parameters for one
subsequent formatting operation only. You must call
SetFormatOptions each time you format a disk with
anything other than the recommended (default)
option. A

I

The SetFormatOptions subcall applies to block devices only; character
devices return error $20 (drvrBadReq) if they receive this call.

AssignPartitionOwner (DControl subcall)

Control code = $0006.

The AssignPartitionOwner subcall provides support for partitioned
media on block devices. Each partition on a disk has an owner,
identified by a string stored on disk. The owner name is used to identify
the file system to which the partition belongs.
This subcall is executed by an EST when an application makes the call
EraseDisk, to allow the driver to reassign the partition to the new owner.

Partition owner names are assigned by Apple Developer Technical
Support, and can be up to 32 bytes in length—uppercase and lowercase
characters are considered equivalent.

The control list for this call consists of a GS/OS string naming the
partition owner:

O f f s e t S i z e D e s c r i p t i o n
$00

l e n g t h W o r d The length of the name (in bytes)
$02

-

o w n e r N a m e

-

The partition owner name

Block devices with non-partitioned media and character devices do
nothing with this call and return no error.

Chapter 7 GS/OS Call Reference 113

ArmSignal (DControl subcall)

Control code = $0007.

The ArmSignal subcall provides a means for an application to bind its
own software interrupt handler to the hardware interrupt handler
controlled by the device. This is the control list for the subcall:

O f f s e t

s i g n a l C o d e

p r i o r i t y

S i z e D e s c r i p t i o n

Word An ID for this handler and its signals

Word The priority for this handler's signals

handlerAddress -j Longword A pointer to the signal handler's entry

The signalCode parameter is an arbitrary number assigned by the
caller to match the signals that the signal source generates with the proper
handler; its only subsequent use is as an input to the DControl subcall
DisarmSignal. The priority parameter is the signal priority the caller
wishes to assign, with $0000 being the lowest priority and $FFFF being
the highest priority. The handlerAddress parameter is the entry
address of the signal handler for that signal code.

DisarmSignal (DControl subcall)

Control code = $0008.

The Disarm Signal subcall provides a means for an application to unbind
its own software interrupt handler from the hardware interrupt handler
controlled by the device. The signalCode parameter is the
identification number assigned to that handler when the signal was
a r m e d .

Description

The signal handler's ID

O f f s e t

signalCode -I Word

114 Apple IIGS GS/OS Reference

SetPartitionMap (DControl subcall)

Status code = $0009.

This call passes to a device, in the control list, the partion map for a
partitioned disk or other medium. The structure of the partition
information is device-dependent.

Device-specific DControl subcalls

Device-specific DControl subcalls are provided to allow device-driver
writers to implement control calls specific to individual device drivers'
needs. DControl subcalls with code values of $8000 to $FFFF are passed
by the Device Manager directly to the device dispatcher for
interpretation by the device driver.

The content and format of information passed by this subcall can be
defined individually for each type of device. The only requirements are
that the parameter block must be the regular DControl parameter block,
and the control code must be in the range $8000-$FFFF.

Chapter 7 GS/OS Call Reference 115

$2035 DelNotifyProc

This call removes a notification procedure from the notification queue.
After this call succeeds, GS/OS no longer calls the specified notification
procedure. For the details of the notification procedure, see the section
"Working With the Notification Queue" in Chapter 6. To add a
procedure, see the AddNotifyProc call earlier in this chapter.

O f f s e t No. Size and type

p C o u n t Word input value (minimum = 1)

procPointer -I 1 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

procPointer Longword input pointer: Pointer to the notification procedure
to delete from the notification queue.

(none except general GS/OS errors)

ll6 Apple IIGS GS/OS Reference

$2002 Destroy

This call deletes a specified standard file, extended file (both the data
fork and resource fork), or subdirectory, and updates the state of the
file system to reflect the deletion. After a file is destroyed, no other
operations on the file are possible.
This call cannot be used to delete a volume directory; the Format call
reinitializes volume directories.

It is not possible to delete only the data fork or only the resource fork of
an extended file.

Before deleting a subdirectory file, you must empty it by deleting all the
files it contains.

P a r a m e t e r s O f f s e t No. Size and type

C o m m e n t s

Word input value (minimum = 1)

Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

pathname Longword input pointer: Points to a GS/OS string representing the
pathname of the file to be deleted.

A file cannot be destroyed if it is currently open or if the access
attributes do not permit destroy access.

Chapter 7 GS/OS Call Reference 117

L

$10 devNotFound device not found
$ 2 7 d r v r i O E r r o r I / O e r r o r
$2B drvrWrtProt write-protected disk
$40 badPathSyntax invalid pathname syntax
$44 pathNotFound path not found
$45 voiNotFound volume not found
$46 fi ieNotFound fi le not found
$4B badstoreType unsupported Storage type
$4E invaiidAccess file not destroy-enabled
$ 5 0 fi l e B u s y fi l e o p e n
$52 unknownvol unsupported volume type
$58 no tB lockDev no t a b lock dev ice
$5A damagedBitMap block number out of range

118 Apple IIGS GS/OS Reference

$202C

Description

P a r a m e t e r s

O M o

This call returns general information about a device attached to the
system.

O f f s e t

soo r~
No. Size and type

pCount - Word input value (minimum = 2)

devNum - 1 Word input value

d e v N a m e 2 Longword input pointer

-characteristics - 3 Word result value

SOA _

totaiBiocks - 4 Longword result value

SOE _ s l o t N u m - 5 Word result value

$10 _ u n i t N u m - 6 Word result value

$12 _ v e r s i o n - 7 Word result value

$14 . d e v i c e l D - 8 Word result value

$16 _ h e a d L i n k - 9 Word result value

$18 _ f o r w a r d L i n k - 1 0 Word result value

$1A

extendedDiBptr -111 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 11.

devNum Word input value: Device number. GS/OS assigns device numbers in
sequence 1, 2, 3, and so on as it loads or creates the device drivers. There is
no fixed correspondence between devices and device numbers. To get

Chapter 7 GS/OS Call Reference 119

information about every device in the system, make repeated calls to DInfo
with devNum values of 1, 2, 3, and so on until GS/OS returns error $11
(invalid device number).

devName Longword input pointer: Points to a result buffer in which GS/OS
returns the device name of the device specified by device number. The
maximum size of the string is 31 bytes, so the maximum size of the returned
value is 33 bytes. Thus the buffer size should be 35 bytes.

characteristics Word result value: Individual bits in this word give the
general characteristics of the device, as shown in the following bit flag:

1 5 1 4 i i 1 2 1 1 1 0 9 8 7 6 5 i i l 3 2 : l i 0 :

Device is a RAM disk or ROM disk

Device is a linked device

Reserved —'

Device is busy —̂
Device is restaitable —'

Device has a fixed name —'

Bits indicate device speed —'

Device is a block device —'

Writing to device allowed —

Reading from device allowed
Reserved

Formatting device allowed —̂
Device contains removable media

Reserved

totalBiocks Longword result value: If the device is a block device, this
parameter gives the maximum number of blocks on volumes handled by the
device. For character devices, this parameter returns zero.

120 Apple IIGS GS/OS Reference

siotNum Word result value: Slot number corresponding to the resident firmware
associated with the device or slot number of the slot containing the device.
Valid values are $0000-OOOF.

unitNum Word result value: Unit number of the device within the given slot.
This parameter has no correlation with device number.

version Word result value: Version number of the device driver. This parameter
has the same format as the SmartPort version, as shown in the following
bit flag:

1 5 1 4 1 3 1 2 11 1 0 9 8 7 6 5 4 3 2 1 0

Major release number •

Minor release number

Release phase J
A = Alpha

B = Beta

E = Experimental
0 = Final

For example, a version of 2.00 in this format would be entered as $2000; a
version of 0.18 Beta would be entered as $018B.

device ID Word result value: Identifying number associated with a particular
type of device. This parameter may be useful for Finder-like applications
when determining what type of icon to display for a particular device.

Chapter 7 GS/OS Call Reference 121

Current definitions of device ID numbers include

$0000 Apple 5.25 Drive (includes $0010 File Server
UniDisk™, DuoDisk®,
Disk lie, and Disk II®)

$ 0 0 0 1 P r o F i l e ™ 5 M B $ 0 0 1 1 R e s e r v e d
$0002 ProFilelO MB $0012 Apple Desktop Bus™
$0003 Apple 3.5 Drive (includes $0013 Hard disk (generic)

UniDisk 3.5 Drive)
$0004 SCSI (generic) $0014 Floppy disk (generic)
$0005 SCSI hard disk $0015 Tape drive (generic)
$0006 SCSI tape drive $0016 Character device driver

(generic)
$0007 SCSI CD-ROM $0017 MFM-encoded disk drive
$0008 SCSI printer $0018 AppleTalk network (generic)
$0009 Serial modem $0019 Sequential access device
$ 0 0 0 A C o n s o l e d r i v e r $ 0 0 1 A S C S I s c a n n e r
$ 0 0 0 B S e r i a l p r i n t e r $ 0 0 1 B O t h e r s c a n n e r
$000C Se r i a l Lase rWr i t e r® $001C Lase rWr i t e r SC
$000D AppleTalk® LaserWriter $001D AppleTalk main driver
$000E RAM disk $001E AppleTalk file service driver
$000F ROM disk $001F AppleTalk RPM dr iver
headLink Word result value: Device number that describes a link to another

device. It is the device number of the first device in a linked list of devices
that a represent distinct partitions on a single medium. A value of 0
indicates that no link exists.

f orwardLink Word result value: Device number that describes a link to
another device, that is, it is the device number of the next device in a linked
list of devices that represent distinct partitions on a single medium. A value
of 0 indicates that no link exists.

extendedDiBptr Longword input pointer: Points to a buffer in which GS/OS
returns information about the extended device information block.

E r r o r s $ 1 1 i n v a i i d O e v N u m i n v a l i d d e v i c e n u m b e r

122 Apple IIGS GS/OS Reference

4

$202F D R e a d

Description This call performs a device-level read on a specified device.
This description only provides general information about the parameter
block; for more information, see the GS/OS Device Driver Reference.

P a r a m e t e r s O f f s e t

p C o u n t

No. Siie and type

Word input value (minimum = 6)

devNum -I 1 Word input value

b u f f e r 2 Longword input pointer

requestcount -I 3 Longword input value

startingBiock -I 4 Longword input value

biocksize -15 Word input value

- transfercount -I 6 Longword result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 6; maximum = 6.

devNum Word input value: Device number of the device from which data is
to be read.

buffer Longword input pointer: Points to a buffer into which the data is to
be read. The buffer must be big enough to hold the data.

requestcount Longword input value: Specifies the number of bytes to be
read.

Chapter 7 GS/OS Call Reference 123

startingBiock Longword input value: For a block device, this parameter
specifies the logical block number of the block where the read starts. For a
character device, this parameter is unused.

blocksize Word input value: Size, in bytes, of a block on the specified block
device. For character devices, the parameter must be set to zero.

t rans f erCount Longword result value: Number of bytes actually transferred
by the call.

E r r o r s $ 11 i n v a l i d O e v N u m i n v a l i d d e v i c e n u m b e r

124 Apple IIGS GS/OS Reference

$ 2 0 3 6 D R e n a m e

This call replaces a device name as specified in a device information
b l o c k .

O f f s e t

p C o u n t

d e v N u m

No. Size and type

Word input value (minimum = 2)

1 Word input value

s t r P t r 2 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

devNum Word input value: Device number of the device to be renamed.

StrPtr Longword input pointer: Points to a GS/OS string with a maximum
length of 31 ASCII characters. The string must be uppercase with the most
significant bit off.

$11 inva l idDevNum
$53 paramRangeErr

$67 devNameErr

invalid device number

string length greater than 31 characters or
less than 1 character
device exists with same name as

replacement name

Chapter 7 GS/OS Call Reference 125

$ 2 0 2 D D S t a t u s

Returns status information about a specified device.

This description provides only general information about the call; for
more information, see the GS/OS Device Driver Reference.

O f f s e t

$00 r~

$02

$04

$06

$0A

$0E

p C o u n t

d e v N u m

c o d e

l i s t

No. Size and type

Word input value (minimum = 5)

1 Word input value

2 Word input value

3 Longword input pointer

r e q u e s t C o u n t —

- t r a n s f e r C o u n t —

4 Longword input value

5 Longword result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 5; maximum = 5.

Description

P a r a m e t e r s

devNum Word input value: Device number of the device whose status is to be
returned.

code Word input value: Number indicating the type of status request being
made. The status requests are described completely in the GS/OS Device
Driver Reference. Status codes of $0000-$7FFF are standard status calls that
must be supported by the device driver. Device-specific status calls may be
supported by a particular device; they use status codes $8000-$FFFF. These
are the standard status codes:

$0000 Device status

$0001 Return configuration parameters
$0002 Return wait/no-wait status

Apple IIGS GS/OS Reference

$0003 Get format options
$0004 Return partition map
$0005-$7FFF Reserved for Apple Computer, Inc.
$8000-$FFFF Device-specific

The individual subcalls are described later in this section.

list Longword input pointer: Points to a buffer in which the device returns its
status information.

requestcount Longword input value: Specifies the number of bytes to be
returned in the status list. The call will never return more than this number of
bytes.

transferCount Longword result value: Specifies the number of bytes actually
returned in the status list. This value will always be less than or equal to the
request count.

E r r o r s $ 11 i n v a i i d D e v N u m i n v a l i d d e v i c e n u m b e r

Buffer size On a status call, the caller supplies a pointer (list) to a buffer, whose
size must be at least requestcount bytes. In some cases, the first
2 bytes of the buffer are a length word, specifying the number of bytes
of data in the buffer. In those cases, requestcount must be at least
2 bytes greater than the maximum amount of data than the call can
return, to account for the length word.

If requestcount is not big enough for the requested data, the driver
either fills the buffer with as much data as can fit and returns with no
error, or does not fill the buffer and returns error $22 (drvrBadParm).
See the individual DStatus subcall descriptions for details.

DStatus subcalls DStatus is several status subcalls rather than a single call. Each value for
the parameter statusCode corresponds to a particular subcall. Status
codes of $0000 through $7FFF are standard status subcalls that are
supported (if not actually acted upon) by every device driver. Device-
specific status subcalls, which may be defined for individual devices, use
status codes $8000 through $FFFF. Each of the status subcalls is
described individually in the following sections.

Chapter 7 GS/OS Call Reference 127

GetDeviceStatus (DStatus subcall)

Status code = $0000.

The Device Status subcall returns, in the status list, a general device status
word followed by a number giving the total number of blocks on the
device.

This subcall normally requires an input request Count of $0000 0006,
the size in bytes of the status list in this case. However, if only the status
word is desired, use a request count of $0000 0002. This is the format of
the status list:

O f f s e t S i z e D e s c r i p t i o n

- statusWord - Word Status word (see following definition)

$ 0 2 I I
numBlocks - Longword The number of blocks on the device

The device status word has two slightly different formats, depending on
whether the device is a block device or a character device. This is its
defin i t ion:

Block device:

High byte
15 114 113 IIZI11110 f 9 :

Low byte

51413'

Uncertain block count = 1

Linked device 1 —'

Background busy = 1
Disk in drive = 1 —'

Device is write protected = 1 —'
Device is interupting = 1

Disk has been switched ■ 1

128 Apple IlGS GS/OS Reference

3

Character dev ice:

H i g h b y t e L o w b y t e
15|l4|l3ll2|n|l0! 9 I 8 1 7 16 I 5 4 I 3 | 2 1 0

Linked device = 1 —'

Background busy = 1
No-wait mode = 1 —'

Device is on line = l *

Device is interupting = 1 —'

Device is open = 1 —'

R e s e n t e d

To maintain future compatibility, the driver must return zero in all
reserved bit positions for the status word, because reserved bits may in
the future be assigned new values.

GetConfigParameters (DStatus subcall)

Status code = $0001.

The GetConfigParameters subcall returns, in the status list, a length word
and a list of configuration parameters. The structure of the configuration
list is device-dependent.

The request count for this subcall (the length of the configuration list plus
the length word) must be in the range $0000 0002 to $0000 FFFF. This is
the format of the status list:

O f f s e t S i z e D e s c r i p t i o n

- l eng th - Word The leng th o f the l i s t (i n by tes)

$ 0 2 I I
-configParamList - Longword The configuration list

Chapter 7 GS/OS Call Reference 129

GetWaitStatus (DStatus subcall)

Status code = $0002.

The GetWaitStatus subcall is used to determine if a device is in wait
mode or no-wait mode. When a device is in wait mode, it does not
terminate a Read call until it has read the number of characters specified
in the request count, or if a newline character is encountered during the
read and newline mode is enabled. In no-wait mode, a Read call returns
immediately after reading the available characters, with a transfer count
indicating the number of characters returned. If one or more characters
was available, the transfer count has a nonzero value; if no character was
available, the transfer count is zero.

The status list for this subcall contains $0000 if the device is operating in
wait mode, $8000 if it is operating in no-wait mode. The request count
must be $0000 0002. This is the status list format:

O f f s e t S i z e D e s c r i p t i o n

Word The wai t /no-wai t s ta tus o f the dev ice

♦ Note: Block devices always operate in wait mode. Whenever this call
is made to a block device, the call returns $0000 in the status list.

GetFormatOptions (DStatus sul^call)

Status code = $0003.

Some block devices can be formatted in more than one way. Formatting
parameters can include such variables as file system group, number of
blocks, block size, and interleave. Each driver that supports media
variables (multiple formatting options) contains a list of the formatting
options for its devices. The options can be used for two purposes:
■ An application can select one with a SetFormatOptions subcall, prior

to formatting a block device. See the description of the DControl
call in this chapter.

■ An FST can display one or more of the options to the user when
initializing disks. See the section "Disk Initialization and FSTs," in
Chapter 11.

130 Apple IIGS GS/OS Reference

This subcall returns the list of formatting options for a particular device.
Devices that do not support media variables return a transfer count of
zero and generate no error. Character devices do nothing and return no
error from this call. If a device does support media variables, it returns a
status list consisting of a 4-word header followed by a set of entries, each
of which describes a formatting option. The status list looks like this:

O f f s e t

n u m O p t i o n s W o r d

Description

Number of format-option entries in list

n u m D i s p l a y e d Wo r d Number of options to be displayed

-recommendOption -I Word Recommended default formatting option

c u r r e n t O p t i o n W o r d Formatting option of current media

formatOptioni -I l6 bytes The first format option entry

16 bytes The last format option entry

Of the total number of options in the list, zero or more can be displayed
on the initialization dialog presented to the user when initializing a disk
(see the calls Format and EraseDisk in this chapter). The options to be
displayed are always the first ones in the list. (Undisplayed options are
available so that drivers can provide FSTs with logically different options
that are actually physically identical and therefore needn't be duplicated
in the dialog.)

Each format-options entry consists of 16 bytes, containing these fields:

■ f o r m a t O p t i o n N u m W o r d

Description

The number of this option

l i n k R e f N u m W o r d Number of linked option

(Continued)

Chapter 7 GS/OS Call Reference

Flags word; see the following definition

biockCount -I Longword Number of blocks supported by device

b l o c k S i z e W o r d Flags word; see the following definition

i n t e r l e a v e - I Wo r d Interleave factor (in ratio to 1)

m e d i a S i z e W o r d Media size; see description of flags

Linked options are options that are physically identical but which may
appear different at the FST level. Linked options are in sets; one of the
set is displayed, whereas all others are not, so that the user is not
presented with several choices on the initialization dialog. See
"Example," later in this section.
Bits within the flags word are defined as follows:

H i g h b y t e L o w b y t e
[l 5 | l 4 | l 5 ! t 2 | l l | l o | 9 l 8 ! 7 | 6 - h U | 3 | 2 | l | 0 |

I I I I

Format type

Size multiplier —'

Reserved

In the format options flag word. Format type defines the general file-
system family for formatting. An FST might use this information to
enable or disable certain options in the initialization dialog. Format type
can have these binary values and meanings:

00 Universal Format (for any file system)
01 Apple Format (for an Apple file system)
10 NonApple Format (for other file systems)
11 (n o t v a l i d)

Size multiplier is used, in conjunction with the parameter mediaSize,
to calculate the total number of bytes of storage available on the device.

132 Apple IIGS GS/OS Reference

Size multiplier can have these binary values and meanings;

00 mediaSize is in bytes
01 mediaSize is in kilobytes (KB)
10 mediaSize is in megabytes (MB)
11 mediaSize is in gigabytes (GB)

Example A list returned from this call for a device supporting two possible
interleaves intended to support Apple's file systems (DOS 3.3, ProDOS,
MPS or HPS) might be as follows. The field t ransf erCount has the
value $0000 0038 (56 bytes returned in list). Only two of the three options
are displayed; option 2 (displayed) is linked to option 3 (not displayed),
because both have exactly the same physical formatting. Both must
exist, however, because the driver will provide an PST with either 512
bytes or 256 bytes per block, depending on the option chosen. At format
time, each PST will choose its proper option among any set of linked
options.
The entire format options list looks like this:
V a l u e E x p l a n a t i o n

Format options list header:
$0003 Three format options in the status list
$0002 Only two display entries
$0001 Recommended default is option 1
$0003 Current media is formatted as specified by option 3
Format Option 1:
$0001 Option 1
$0000 L inkRe f = none
$0005 Apple format/size in kilobytes
$0000 0640 Block count = 1600
$0200 Block size = 512 bytes
$0002 Interleave factor = 2:1
$0320 Media size = 800 KB

Format Option 2:
$0002 Option 2
$0003 LinkRef = option 3
$0005 Apple format/size in kilobytes
$0000 0640 Block count = 1600
$0100 Block size = 256 bytes
$0004 Interleave factor = 4:1
$0190 Media size = 400 KB

Chapter 7 GS/OS Call Reference 133

V a l u e E x p l a n a t i o n

Format Option 3:
$ 0 0 0 3 O p t i o n 3
$ 0 0 0 0 L i n k R e f = n o n e
$0005 Apple format/size in kilobytes
$0000 0320 Block count = 800
$0200 Block size = 512 bytes
$0004 Interleave factor = 4:1
$0190 Media size = 400 KB

GetPartitionMap (DStatus subcall)

Status code = $0004,

This call returns, in the status list, the partition map for a partitioned
disk or other medium. The structure of the partition information is
device-dependent.

Device-speciiic DStatus subcalls

Device-specific DStatus subcalls are provided to allow device-driver
writers to implement Status calls specific to individual device drivers'
needs. DStatus calls with statusCode values of $8000 to $FFFF are
passed by the Device Manager directly to the device dispatcher for
interpretation by the device driver.
The content and format of information returned from these subcalls can
be defined individually for each type of device; the only requirements
are that the parameter block must be the regular DStatus parameter
block, and the status code must be in the range $8000-$FFFF.

134 Apple JIGS GS/OS Reference

$2030 D W r i t e

Description This call performs a device-level write to a specified device.
This description only provides general information about the parameter
block; for more information, see the GS/OS Device Driver Reference.

P a r a m e t e r s O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 6)

devNum -I 1 Word input value

b u f f e] 2 Longword input pointer

request Count -I 3 Longword input value

startingBlock -I 4 Longword input value

biocksize -I 5 Word input value

transferCount -I 6 Longword result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 6; maximum = 6.

devNum Word input value: Device number of the device from which data is
to be written.

buffer Longword input pointer: Points to a buffer from which the data is
to be written.

requestcount Longword input value: Specifies the number of bytes to
be written.

Chapter 7 GS/OS Call Reference 135

E r r o r s

startingBiock Longword input value: For a block device, this parameter
specifies the logical block number of the block where the write starts. For
a character device, this parameter is unused.

blocksize Word input value: Size, in bytes, of a block on the specified
block device. For character devices, the parameter is unused and must be
s e t t o z e r o .

t ransf ercount Longword result value: Number of bytes actually transferred
by the call.

$11 invaiidDevNum invalid device number

136 Apple IIGS GS/OS Reference

$ 2 0 1 E E n d S e s s i o n

Description This call tells GS/OS to flush any deferred block writes that occurred
during a write-deferral session (started by a BeginSession call) and to
resume normal write-through processing for all block writes.

P a r a m e t e r s o f f s e t N o . S i z e a n d t y p e

Word input value (minimum = 0)

pCount Word input value: Number of parameters in this parameter block.
Minimum = 0; maximum = 0.

Errors (none except general GS/OS errors)

Chapter 7 GS/OS Call Reference 137

$2025 E r a s e D i s k

This call puts up a dialog box that allows the user to erase a specified
volume and choose which file system is to be placed on the newly erased
volume. The volume must have been previously physically formatted. The
only difference between EraseDisk and Format is that EraseDisk does
not physically format the volume. See the Format call later in this chapter.

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 3)

d e v N a m e 1 Longword input pointer

v o l N a m e Longword input pointer

fi l e S y s I D 3 Word result value

reqFileSysiD -I 4 Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 3; maximum = 4.

devNanie Longword input pointer: Points to a GS/OS string representing the
device name of the device containing the volume to be erased.

voiName Longword input pointer: Points to a GS/OS string representing the
volume name to be assigned to the newly erased volume.

fiieSysiD Word result value: If the call is successful, this parameter identifies
the file system with which the disk was formatted. If the call is unsuccessful,
this parameter is undefined.

138 Apple IIGS GS/OS Reference

0

The file system IDs are as follows:
$0000 Reserved $0008 Apple CP/M
$0001 ProDOS/SOS $0009 Reserved

$0002 DOS 3.3 $000A M S / D O S

$0003 DOS 3.2 or 3.1 $000B High Sierra
$0004 Apple II Pascal $000C ISO 9660

$0005 Macintosh (MPS) $000D AppleShare
$0006 Macintosh (HFS) $OOOE-$OOOF Reserved

$0007 L i s a

reqFiieSysiD Word input value: Provides the file system ID of the file system
that should be initialized on the disk. The values for this parameter are the
same as those for the fileSysid parameter.

If you supply this parameter, it suppresses the dialog box from the Disk
Initialization package that asks the user which file system to place on the
newly erased disk. Normally, your application should not use this parameter;
use it only if your application needs to format the disk for a specific FST.

Errors If the carry flag is set but A is equal to 0, the user selected Cancel in the
dialog box.
$ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
$11 invalidOevNum invalid device request
$ 2 7 d r v r l O E r r o r I / O e r r o r
$ 2 8 d r v r N o D e v i c e n o d e v i c e c o n n e c t e d
$2B drvrWrtProt write-protected disk
$40 badPathSyntax invalid pathname syntax
$50 fiieBusy files open on the volume mounted in the

target device
$ 5 8 n o t B i o c k o e v n o t a b l o c k d e v i c e
$5D osUnsupported file system not available
$ 6 4 i n v a l i d F S Ti D i n v a l i d F S T I D

Chapter 7 GS/OS Call Reference 139

$200£ ExpandPath

This call converts the input pathname into the corresponding full
pathname with colons (ASCII $3A) as separators. If the input is a full
pathname, ExpandPath simply converts all of the separators to colons. If
the input is a partial pathname, ExpandPath concatenates the specified
prefix with the rest of the partial pathname and converts the separators
to colons.

If a device name or number is used in the input path, GS/OS attempts to
replace that portion of the output path with the name of the volume
mounted in the selected device. If the volume name cannot be
determined, this call leaves the device name and number portion of the
input path unchanged in the output path.

If bit 15 (msb) of the flags parameter is set, the call converts all
lowercase characters to uppercase (all other bits in this word must be
cleared). This call also performs limited syntax checking. It returns an
error if it encounters an illegal character, two adjacent separators, or any
other syntax error.

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 2)

i n p u t P a t h 1 Longword input pointer

o u t p u t P a t h Longword input pointer

fl a g s 3 Word input value

pCount Word input value; Number of parameters in this parameter block.
Minimum = 2; maximum = 3.

inputPath Longword input pointer: Points to a GS/OS string that is to be
expanded.

1 4 0 A p p l e I I G S G S / O S R e f e r e n c e /

_ A

outputPath Longword input pointer: Points to a result buffer where the
expanded pathname is returned.

flags Word input value: If bit 15 is set to 1, this call returns the expanded
pathname all in uppercase characters. All other bits in this word must be
z e r o .

Errors $40 badPathSyntax inval id pathname syntax
$ 4 F b u f f T o o S m a l l b u f f e r t o o s m a l l

Chapter 7 GS/OS Call Reference I4l

$ 2 0 1 5 F l u s h

This call writes to the volume all file state information that is buffered in

memory but has not yet been written to the volume. The purpose of this
call is to assure that the representation of the file on the volume is
consistent and up to date with the latest GS/OS calls affecting the file.

Thus, if a power failure occurs immediately after the Flush call is
completed, it should be possible to read all data written to the file as well
as all file attributes. If such a power failure occurs, files that have not
been flushed may be in inconsistent states, as may the volume as a whole.
The price for this security is performance; the Flush call takes time to
complete its work. Therefore, be careful how often you use the Flush call.
A value of $0000 for the refNum parameter indicates that all files at or
above the current file level are to be flushed.

O f f s e t No. Size and type

p C o u n t

r e f N u m

Word input value (minimum = 1)

Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

refNum Word input value: Identifying number assigned to the file by the Open
call. A value of $0000 indicates that all files at or above the current system
file level are to be flushed.

$ 2 7 d r v r l O E r r o r
$ 2 B d r v r W r t P r o t

$2E d r v rD i skSv i i t ch
$43 inva l i dRe fNum
$48 vo lumeFu l l
$5A damagedBitMap

I/O error

write-protected disk
disk switched

invalid reference number
volume full

block number out of range

142 Apple IIGS GS/OS Reference

$2024 F o r m a t

This call puts up a dialog box that allows the user to physically format a
specified volume and choose which file system is to be placed on the
newly formatted volume.

Some devices do not support physical formatting. In this case the
Format call acts like the EraseDisk call and writes only the empty file
system. See the EraseDisk call earlier in this chapter.

O f f s e t

$00 r~

$02

$06

$0A

$0C

p C o u n t

d e v N a m e

v o l N a m e

fi l e S y s I D

r e q F i l e S y s I D -

No. Size and type

Word input value (minimum = 3)

1

Longword input pointer

2

Longword input pointer

3 Word resu l t va lue

4 Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 3; maximum = 4.

devName Longword input pointer: Points to a GS/OS string representing the
device name of the device containing the volume to be formatted.

volName Longword input pointer: Points to a GS/OS string representing the
volume name to be assigned to the newly formatted blank volume.

fileSysiD Word result value: If the call is successful, this parameter identifies
the file system with which the disk was formatted. If the call is unsuccessful,
this parameter is undefined.

Description

P a r a m e t e r s

Chapter 7 GS/OS Call Reference 143

The file system IDs are as follows:
$ 0 0 0 0 R e s e r v e d $ 0 0 0 8 A p p l e C P / M
$ 0 0 0 1 P r o D O S / S O S $ 0 0 0 9 R e s e r v e d
$ 0 0 0 2 D O S 3 . 3 $ 0 0 0 A M S / D O S
$ 0 0 0 3 D O S 3 . 2 o r 3 . 1 $ 0 0 0 B H i g h S i e r r a
$ 0 0 0 4 A p p l e I I P a s c a l $ 0 0 0 C I S O 9 6 6 0
$ 0 0 0 5 M a c i n t o s h (M P S) $ 0 0 0 D A p p l e S h a r e
$0006 Mac in tosh (HPS) $OOOE-$OOOP Reserved
$ 0 0 0 7 L i s a

reqFiieSysiD Word input value: Provides the file system ID of the file system
that should be initialized on the disk. The values for this parameter are the
same as those for the f iieSysiD parameter.

If you supply this parameter, it suppresses the dialog box from the Disk
Initialization package that asks the user how the disk should be formatted.
Normally, your application should not use this parameter; use it only if your
application needs to format the disk for a specific file system.

Errors If the carry flag is set but A is equal to 0, the user selected Cancel in the
dialog box.
$10 devNotFound dev ice no t found
$11 invaiidDevNum invalid device number request
$ 2 7 d r v r l O E r r o r I / O e r r o r
$28 drvrNoDevice no device connected
$2B drvrWrtProt wri te-protected disk
$40 badPathSyntax invalid pathname syntax
$50 f iieBusy files open on the volume mounted in the

target device
$ 5 8 n o t B l o c k D e v n o t a b l o c k d e v i c e
$5D osunsupported file system not available
$ 6 4 i n v a i i d F S T i D i n v a l i d P S T I D

l44 Apple IIGS GS/OS Reference

$2033 FSTSpecific

Description FSTSpecific is a call that can be defined individually for any file system
translator.

P a r a m e t e r s o f f s e t N o . S i z e a n d t y p e

Word input value (minimum = 1)

1 Word input value

2 Word input value

3 Subcall-specific parameter or parameters

pcount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = number of subcall-specific parameters.

fileSysiD Word input value: File system ID of the EST to which the call is
d i rec ted .

commandNum Word input value: Number that specifies which particular subcall
of FSTSpecific to execute.

(subcall-specific) Word or longword input or result value: Depends on the
specific subcall. See the appropriate EST chapter for those subcalls.

Errors (none except general GS/OS errors)

Chapter 7 GS/OS Call Reference 145

$ 2 0 2 8 G e t B o o t Vo l

Description

P a r a m e t e r s

Returns the volume name of the volume from which GS/OS was last
loaded and executed. The volume name returned by this call is equivalent
to the prefix specified by * /.

O f f s e t No. Size and type

p C o u n t Word input value (minimum = 1)

d a t a B u f f e r Longword input pointer

E r r o r s

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

dataBuffer Longword input pointer: Points to a memory area where a GS/OS
output string giving the boot volume name is to be returned.

$4F buffTooSma; buffer too small

146 Apple IIGS GS/OS Reference

$ 2 0 2 0 G e t D e v N u m b e r

Description This call returns the device number of a device identified by device name
or volume name. Only block devices may be identified by volume name,
and then only if the named volume is mounted. Most other device calls
refer to devices by device number.

GS/OS assigns device numbers at boot time. The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for
determining the device number for a particular device.
Because a device may hold different volumes and because volumes may
be moved from one device to another, the device number returned for a
particular volume name may be different at different times.

P a r a m e t e r s O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 2)

d e v N a m e Longword input pointer

d e v N u m Word result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

devName Longword input pointer: Points to a result buffer representing the
device name or volume name (for a block device).

devNum Word result value: Device number of the specified device.

$ 1 0 d e v N o t F o u n d
$ 11 i n v a l i d D e v N u m

$40 badPathSyntax
$ 4 5 v o l N o t F o u n d

dev ice no t found

invalid device request
invalid pathname syntax
vo lume not found

Chapter 7 GS/OS Call Reference 147

$201C GetDirEntry

Description This call returns information about a directory entry in the volume
directory or a subdirectory. Before executing this call, the application
must open the directory or subdirectory. The call allows the application
to step forward or backward through file entries or to specify absolute
entries by entry number.

P a r a m e t e r s O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 5)

r e f N u m 1 Word input value

fl a g s Word result value

b a s e 3 Word input value

displacement -I 4 Word input value

5 Longword input pointer

e n t r y N u m 6 Word result value

fl l e T y p e 7 Word result value

8 Longword result value

blockCount -j 9 Longword result value

l48 Apple IIGS GS/OS Reference

I

J

c r e a t e D a t e T i m e 10 Double longword result value

m o d D a t e T i m e 11 Double longword result value

access - I 12 Word r esu l t va l ue

auxType H 13 Longword result value

l i i e S y s i D - 11 4 Wo r d r e s u l t v a l u e

optionList H 15 Longword input pointer

resourceEOF -I l6 Longword result value

resourceBiocks -I 17 Longword result value

Chapter 7 GS/OS Call Reference 149

pCount Word input value: Number of parameters in this parameter block.
Minimum = 5; maximum = 17.

refNum Word input value: Identifying number assigned to the directory or
subdirectory by the Open call.

flags Word result value: Flags that indicate various attributes of the file,
as follows:

15 hi 13 12 11 Id

File is an extended Hie = 1
File is not an extended file = 0

Reserved

base Word input value: Determines how the displacement parameter should be
interpreted, as follows:
$0000 displacement gives an absolute entry number
$0001 displacement is added to current displacement to get next entry
number

$0002 displacement is subtracted from current displacement to get next
entry number

displacement Word input value: In combination with the base parameter,
the displacement parameter specifies the directory entry whose
information is to be returned. When the directory is first opened, GS/OS
sets the current displacement value to $0000. The current displacement
value is updated on every GetDirEntry call.
If the base and displacement parameters are both zero, GS/OS returns a
2-byte value in the entryNum parameter that specifies the total number of
active entries in the subdirectory. In this case, GS/OS also resets the current
displacement to the first entry in the subdirectory.
To step through the directory entry by entry, you should set both the base
and dis^5iacement parameters to $0001.

name Longword input pointer: Points to a result buffer giving the name of the
file or subdirectory represented in this directory entry.

entryNum Word result value: Absolute entry number of the entry whose
information is being returned. This parameter is provided so that a program
can obtain the absolute entry number even if the base and displacement
parameters specify a relative entry.

150 Apple IIGS GS/OS Reference

f ileType Word result value: File type of the director}^ entry.

eof Longword result value: For a standard file, specifies the number of bytes
that can be read from the file. For an extended file, this parameter gives the
number of bytes that can be read from the file's data fork.

biockCount Longword result value: For a standard file, specifies the number of
blocks used by the file. For an extended file, this parameter gives the
number of blocks used by the file's data fork.

createDateTime Double longword result value: Creation date and time of the
directory entry. The format of the date and time is shown in Table 4-2 in
Chapter 4.

modDateTime Double longword result value: Modification date and time of the
directory entry. The format of the date and time is shown in Table 4-2 in
Chapter 4.

access Word result value: Access attribute of the directory entry.
auxType Longword result value: Auxiliary type of the directory entry.
fiieSysiD Word result value: File system identifier of the file system on the

volume containing the file. Values of this parameter are described under the
Volume call later in this chapter.

optionList Longword input pointer: Points to a data area where GS/OS
returns FST-specific information related to the file. This is the same
information returned in the option list of the Open and GetFilelnfo calls.
This parameter points to a buffer that starts with a length word giving the
total buffer size, including the length word. The next word is an output
length value that is undefined on input. On output, this word is set to the
size of the output data excluding the length word and the output length
word. GS/OS will not overflow the available space specified in the input
length word. If the data area is too small, the application can reissue the callafter allocating a new output buffer with size adjusted to output length plus
four.

resourceEOF Longword result value: If the spedfted file is an extended file,this parameter gives the number of bytes that can be read from the file s
resource fork. Otherwise, the parameter is undefined.

resourceBiooks Longword result value: If the spedfed file Is aii extended
file, this parameter gives the number of blocks used by the file s resource
fork. Otherwise, the parameter is undefined.

Chapter 7 GS/OS Call Reference 151

E r r o r s $ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
$ 2 7 d r v r l O E r r o r I / O e r r o r
$4A badPiieFormat version error
$4B badStoreType unsupported Storage type
$4F buffTooSmail buffer too small
$52 unknownvol unsupported volume type
$58 notBiockDev not a block device
$ 6 l e n d O f D i r e n d o f d i r e c t o r y

152 Apple IIGS GS/OS Reference

$2019

Description

P a r a m e t e r s

E r r o r s

Ge tEOF

This function returns the current logical size of a specified file. See also
the SetEOF call.

No. Size and type

Word input value (minimum = 2)

1 Word input value

2 Longword result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

refNum Word input value: Identifying number assigned to the file by the
Open call.

eof Longword result value: Current logical size of the file, in bytes.

$43 invaiidRefNum invalid reference number

O f f s e t

Chapter 7 GS/OS Call Reference 153

$ 2 0 0 6 G e t F U e l n f o

This call returns certain file attributes of an existing open or closed block
file. See also the SetFilelnfo call.

A Important A GetFilelnfo call following a SetFilelnfo call on an
open file may not return the values set by the
SetFilelnfo call. To guarantee recording of the
attributes specified in a SetFilelnfo call, you must first
close the file, a

p C o u n t

No. Size and type

Word input value (minimum = 2)

pathname -I 1 Longword input pointer

a c c e s s 2 Word resu l t va lue

fileType -I 3 Word result value

auxType -I 4 Longword result value

storageType -I 5 Word result value

createDateTime -j ̂ Double longword result value

154 Apple IIGS GS/OS Reference

$18

$20

$24

$28

$2C

$30

m o d D a t e T i m e - i

o p t i o n L i s t -

e o f

b l o c k s U s e d ^

r e s o u r c e E O F H

- r e s o u r c e B l o c k s H

7 Double longword result value

8 Longword input pointer

9 Longword result value

10 Longword result value

11 Longword result value

12, Longword result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 12.

pathname Longword input pointer: Points to a GS/OS string representing the
pathname of the file whose file information is to be retrieved.

access Word result value: Access attribute of the file, described under the
Create call.

f iieType Word result value: File type attribute of the file.

Chapter 7 GS/OS Call Reference 155

auxType Longword result value: Auxiliary type attribute of the file.

storageType Word result value: Storage type of the file, as follows:
$01 = standard file

$05 = extended file
$0D = volume directory or subdirectory file

createDateTime Double longword result value: Creation date and time
attributes of the file. The format of the date and time is shown in Table 4-2
in Chapter 4.

modDateTime Double longword result value: Modification date and time
attributes of the file. The format of the date and time is shown in Table 4-2
in Chapter 4.

optionList Longword input pointer: Points to a result buffer. On output,
GS/OS sets the output length field to a value giving the number of bytes of
space required by the output data, excluding the length words. GS/OS will
not overflow the available output data area.

eof Longword result value: For a standard file, specifies the number of bytes
that can be read from the file. For an extended file, this parameter specifies
the number of bytes that can be read from the file's data fork.

For a subdirectory or a volume directory file, this parameter is undefined.
biocksused Longword result value: For a standard file, specifies the total

number of blocks used by the file. For an extended file, this parameter
specifies the number of blocks used by the file's data fork.
For a subdirectory or a volume directory file, this parameter is undefined.

resourceEOF Longword result value: If the specified file is an extended file,
this parameter gives the number of bytes that can be read from the file's
resource fork. Otherwise, the parameter is undefined.

resourceBiocks Longword result value: If the specified file is an extended
file, this parameter gives the number of blocks used by the file's resource
fork. Otherwise, the parameter is undefined.

156 Apple IIGS GS/OS Reference

E r r o r s $ 1 0 d e v N o t F o u n d
$ 2 7 d r v r l O E r r o r
$40 badPathSyntax
$44 pathNotFound
$45 volNotFound
$46 fi l eNo tFound
$4A badFi leFormat
$4B badStoreType
$52 unknownVol
$ 5 8 n o t B l o c k D e v

device not found

I/O error
invalid pathname syntax
path not found
volume not found

file not found
version error

unsupported storage type
unsupported volume type
not a block device

Chapter 7 GS/OS Call Reference 157

G e t F S T I n f o

This function returns general information about a specified File System
Translator (FST). See also the SetFSTInfo call, and Part II of this book.

O f f s e t

p C o u n t

f s t N u m

fi l e S y s I D

No. Size and type

Word input value (minimum = 2)

1 Word input value

Word result value

f s t N a m e 3 Longword input pointer

v e r s i o n H 4 Word result value

attributes -I 5 Word result value

b l o c k S i z e 6 Word result value

m a x V o l S i z e 7 Longword result value

maxFileSize -j 8 Lon^word result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 8.

fstNum Word input value: FST number. GS/OS assigns FST numbers in sequence
(1, 2, 3, and so on) as it loads the FSTs. There is no fbced correspondence
between FSTs and FST numbers. To get information about every FST in the
system, make repeated calls to GetFSTInfo with fstNum values of 1, 2, 3,
and so on until GS/OS returns error $53 (paramRangeErr).

158 Apple IIGS GS/OS Reference

fileSysiD Word result value: Identifies the file system as follows:
$0000 Reserved $0008 Apple CP/M
$0001 ProDOS/SOS $0009 Reserved

$0002 DOS 3.3 $000A MS/DOS

$0003 DOS 3.2 or 3.1 $000B High Sierra
$0004 Apple II Pascal $000C ISO 9660

$0005 Macintosh (MPS) $000D AppleShare
$0006 Macintosh (HFS) $OOOE-$OOOF Reserved

$0007 L i s a

f stName Longword input pointer: Points to a result buffer where GS/OS is to
return the name of the FST.

version Word result value: Version number of the FST, in the following format:

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Prototype = 1 •
Final release = 0

Major release number ■

Minor release number

tributes Word result value: General attributes of the FST, as follows:

1 5 1 4 1 3 1 2 11 1 0 9 8 7

GS/OS call dispatcher should ■
uppercase pathnames

before passing them = 1
GS/OS call dispatcher should

pass pathnames as is = 0

Character FST = 1 —'
Block FST = 0

Reserved

Chapter 7 GS/OS Call Reference 159

blockSize Word result value: Block size (in bytes) of blocks handled by
the FST.

maxvoisize Longword result value: Maximum size (in blocks) of volumes
handled by the FST.

maxFileSize Longword result value: Maximum size (in bytes) of files handled
by the FST.

EffOfS $53 paramRangeErr parameter out of range

160 Apple IIGS GS/OS Reference

$ 2 0 1 B G e t L e v e l

Description This function returns the current value of the system file level. See also the
SetLevel call.

P a r a m e t e r s O f f s e t No. Size and type

p C o u n t

l e v e l

Word input value (minimum = 1)

1 W o r d r e s u l t v a l u e

E r r o r s

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

level Word result value: The value of the system file level.

$ 5 9 i n v a l i d L e v e l invalid file level

$2017 G e t M a r k

Description This function returns the current file mark for the specified file. See also
the SetMark call.

P a r a m e t e r s O f f s e t

p C o u n I

r e f N u m

No. Size and type

Word input value (minimum = 2)

1 Word input value

p o s i t i o n 2 Longword result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

refNum Word input value: Identifying number assigned to the file by the
Open call.

position Longword result value: Current value of the file mark in bytes relative
to the beginning of the file.

$43 inva l idRefNum invalid reference number

Chapter 7 GS/OS Call Reference l6l

$ 2 0 2 7 G e t N a m e

Returns the filename (not the complete pathname) of the currently
running application program.
To get the complete pathname of the current application, concatenate
prefix 9/ with the filename returned by this call. Do this before making
any change in prefix 9/.

O f f s e t Size and type

Word input value (minimum = 1)

Longword input pointer

pcount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

dataBuf fer Longword input pointer: Points to a result buffer where the
filename is to be returned.

$ 4 F b u f f To o S m a l i b u f f e r t o o s m a l l

Description

P a r a m e t e r s

E r r o r s

162 Apple IlGS GS/OS Reference

□

$ 2 0 0 A G e t P r e fi x

Description This function returns tlie current value of any one of the numbered
prefixes. The retumed prefix string will always start and end with a
separator. If the requested prefix is null, it is retumed as a string with
the length field set to 0. This call should not be used to get the boot
volume prefbc (*/); use the GetBootVol call to do that. See also the
SetPrefbc call.

P a r a m e t e r s O f f s e t No. Size and type

pCount - Word input value (minimum = 2)

pref ixNum - 1 Word input value

p r e fi x 2 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

pref ixNum Word input value: Binary value of the prefix number for the prefix
to be returned.

prefix Longword input pointer: Pointer to a GS/OS output string where the
prefix value is returned.

$4F bu f fTooSmal l buffer too small

Chapter 7 GS/OS Call Reference l63

$2039 G e t R e fl n f o

Description This function returns the access attributes and full pathname for an open
file when the reference number is given as input.

P a r a m e t e r s O f f s e t N o . S i z e a n d t y p e

- pCount - Word input value (minimum = 2)

502 _ refNum - 1 Word input value

504 - access - 2 Word output value

$06 _

pathname - 3 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 3.

re f Num Word input value: Reference number of the open file.

access Word output value: Access attributes of the open file, as follows:
1 = read only
2 = write only
3 = read/write

pathname Longword input pointer: Points to a GS/OS output string where
GS/OS places the full pathname'of the file selected by the refNum
parame te r.

E r r o r s

1

$43 inval idRefNum inval id reference number

\ -

164 Apple IIGS GS/OS Reference

$ 2 0 3 8 G e t R e f N u m

This function returns the reference number and access attributes for an

open file when the full pathname is given as input.

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 2)

p a t h n a m e 1 Longword input pointer

r e f N u m

a c c e s s

r e s N u m

c a s e S e n s e

d i s p l a c e m e n t

Word output value

Word output value

Word input value

Word input value

Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 6.

pathname Longword input pointer: Points to a GS/OS string representing the
pathname of an open file. This name cannot contain a device name or
number; if one is present, error $40 (badPathSyntax) is returned.

refNum Word output value: Reference number of open file or count of matching
open files if the displacement parameter = 0.

access Word output value: Access attributes of the open file, as follows:
1 = read only
2 = write only
3 = read/write

resNum Word input value: Selects the data or resource fork for the file, as
fol lows:

0 = data fork (default value)
1 = resource fork

Chapter 7 GS/OS Call Reference 165

i

caseSense Word input value: Selects case sensitivity for pathname
comparison, as follows:
0 = case insensitive (default value)
1 = case sensitive

displacement Word input value: Selects the nth matching open file. Default
is 1. If set to 0, the call returns the number of matching files in the refNum
parameter.

E r r o r s $ 4 0 b a d P a t h S y n t a x i n v a l i d p a t h n a m e s y n t a x
$60 dataUnavail data unavailable; no matching open files

% >

l66 Apple IIGS GS/OS Reference

$2037 GetS tdRe fNum

Description This function returns the reference number of the last open call to any of
the three standard prefixes (10,11, and 12), if available. The reference
number will be available if

■ a GS/OS Open call has been made with a path that is a prefix number
only and is 10,11, or 12

■

■ a GS/OS Close call has not been made with the reference number or
with 0

P a r a m e t e r s O f f s e t N o . S i z e a n d t y p e

- pCount - Word input value (minimum = 2)

- prefixNum - 1 Word input value

- r e f N u m - 2 W o r d o u t p u t v a l u e

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

prefixNum Word input value: Decimal value of the prefix number of the prefix;
10,11, and 12 are valid prefixes.

refNum Word output value: Reference number from the last Open call to the
selected prefix number.

E r r o r s $60 dataUnavaii data unavailable; no matching open files

Chapter 7 GS/OS Call Reference 167

$200F GetSysPrefs

Description This call returns the value of the current global system preferences. The
value of system preferences affects the behavior of some system calls.
See also the SetSysPrefs call.

P a r a m e t e r s O f f s e t

p C o u n I

p r e f e r e n c e s

No. Size and type

Word input value (minimum =1)

1 W o r d r e s u l t v a l u e

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

preferences Word result value: Value of system preferences, as follows:

15 114 113 112 111110 I 9 I 8 1.7 I 6 j 5 I 4 I 3 I 2 I 1 I 0

Display Volume Mount dialog box = 1
Do not display Volume Mount dialog box = 0

Use Volume Mount dialog box without Cancel button = 1 —'
Use standard Volume Mount dialog box = 0

Suppress error dialog boxes = 1
Do not suppress error dialogs (those with only l

button, such as the "disk damaged" dialog box) = 0

Reserved (returned as 0)

(none except general GS/OS errors)

168 Apple IIGS GS/OS Reference

$ 2 0 2 A G e t V e r s i o n

This call returns the version number of the GS/OS operating system. This
value can be used by application programs to condition version-
dependent operations.

O f f s e t

p C o u n t

v e r s i o n

No. Size and type

Word input value (minimum = 1)

1 W o r d r e s u l t v a l u e

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

version Word result value: Version number of the operating system, in the
following format:

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Prototype = 1
Final release = 0

Major release number

Minor release number ■

Errors (none except general GS/OS errors)

Chapter 7 GS/OS Call Reference 169

$ 2 0 1 1 N e w L i n e

This function enables or disables the newline read mode for an open file
and, when enabling newline read mode, specifies the newline enable mask
and newline character or characters.

When newline mode is disabled, a Read call terminates only after it reads
the requested number of characters or encounters the end of file. When
newline mode is enabled, the read also terminates if it encounters one of
the specified newline characters.

When a Read call is made while newline mode is enabled and a character
remains in the file, GS/OS performs the following operations;
1. Transfers the next character to the user's buffer.

2. Performs a logical AND operation between the character and the low-
order byte of the newline mask specified in the last NewLine call for
the open file.

3. Compares the resulting byte with the newline character or characters.
4. If there is a match, terminates the read; otherwise returns to step 1.

O f f s e t N o . Size and type

$00
p C o u n t Word input value (minimum = 4)

$02
- r e f N u m 1 Word input value

$04 e n a b l e M a s k 2 Word input value

$06 n u m C h a r s 3 Word input value

$08
—

n e w l i n e T a b l e — 4 Longword input pointer

pCount Word input value: Number of parameters in this parameter block.
Minimum = 4; maximum = 4.

refNum Word input value: Identifying number assigned to the file access path
by the Open call.

Description

P a r a m e t e r s

170 Apple IIGS GS/OS Reference

I

enableMask Word input value: $0000 disables newline mode. If the value is
greater than $0000, the low-order byte becomes the newhne mask. GS/OS
performs a logical AND operation of each Input character with the newhne
mask before comparing it to the newline character or characters.

numChara Word input value: Number of newline characters contained in the
newline character table. If the enableMask parameter is nonzero, this
parameter must be in the range 1-256. When disabling newline mode
(enableMask - $0000), this parameter is ignored.

newiineTabie Longword input pointer: Points to a table of from 1 to 256
bytes that specifies the set of newline characters. Each byte holds a distinct
newline character. When disabling newline mode (enableMask - $0000),
this parameter is ignored.

Errors $43 invaiiciRefNum invalid reference number

Chapter 7 GS/OS Call Reference 171

I

$ 2 0 0 D N u U

Description This call executes any pending events in the GS/OS event queue and in
the Scheduler queue before returning to the calling application. Note that
every GS/OS call performs these functions. This call provides a way to
flush the queues without doing anything else.

P a r a m e t e r s o f f s e t N o . S i z e a n d t y p e

Word input value (minimum = 0)

pCount Word input value: Number of parameters in this parameter block.
Minimum = 0; maximum = 0.

Errors (none except general GS/OS errors)

172 Apple IIGS GS/OS Reference

$2010 Open

Description This call causes GS/OS to establish an access path to a file. Once an
access path is established, the user may perform Read and Write
operations and other related operations on the file. This call can also
return all the file information returned by the GetFilelnfo call.

P a r a m e t e r s O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 2)

r e f N u m 1 W o r d r e s u l t v a l u e

p a t h n a m e 2 Longword input pointer

r e q u e s t A c c e s s Word input value

r e s o u r c e N u m b e r Word input value

Word result value

fi l e T y p e Word result value

a u x T y p e Longword result value

storageType -18 Word resu l t va lue

c r e a t e D a t e T i m e 9 Double longword result value

(Continued)

I C h a p t e r 7 G S / O S C a l l R e f e r e n c e 1 7 3

L

modDateTime -j jq Double longword result value

optionList H 11 Longword input pointer

12 Longword result value

blocksUsed —I 13 Longword result value

resourceEOF —I 14 Longword result value

resourceBlocks —I 15 Longword result value

pcount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 15.

refNum Word result value: Reference number assigned by GS/OS to the access
path. All other file operations (Read, Write, Close, and so on) refer to the
access path by this number.

pathname Longword input pointer: Points to a GS/OS string representing the
pathname of the file to be opened.

174 Apple IIGS GS/OS Reference

requestAccess Word input value: Specifies desired access permissions, as
follows:

1 4 13 1 2 1 1 1 0 9 8 6 3 iz,- 1 0

Reserved□

W = 1, request write permission-'
R = 1, request read permission ̂

If this parameter is not included or its value is $0000, the file is opened with
access permissions determined by the file's stored access attributes.

resourceNumber Word input value: Meaningful only when the pathname
parameter specifies an extended file. In that case, a value of $0000 tells
GS/OS to open the data fork, and a value of $0001 tells it to open the
resource fork.

access Word result value: Access attribute of the file, described under the
Create call.

fileType Word result value: File type attribute.

auxType Longword result value: Auxiliary type attribute.

storageType Word result valuc: Storage type attribute, as follows:
$01 = standard file

$05 = extended file

$0D = volume directory or subdirectory file
createDateTime Double longword result value: Creation date and time

attributes of the file. The format of the date and time is shown in Table 4-2
in Chapter 4.

modDateTime Double longword result value: Modification date and time
attributes of the file. The format of the date and time is shown in Table 4-2
in Chapter 4.

optionList Longword input pointer: Points to a GS/OS result buffer to which
FST-specific information can be returned. On output, GS/OS sets the
output length field to a value giving the number of bytes of space required
by the output data, excluding the length words. GS/OS will not overflow the
available output data area.

Chapter 7 GS/OS Call Reference 175

eof Longword result value: For a standard file, indicates the number of bytes
that can be read from the file. For an extended file, this parameter indicates
the number of bytes that can be read from the file's data fork.
For a subdirectory or volume directory file, this parameter is undefined.

biocksused Longword result value: For a standard file, indicates the number of
bytes used by the file. For an extended file, this parameter indicates the
number of bytes used by the file's data fork.

For a subdirectory or volume directory file, this parameter is undefined.
resourceEOF Longword result value; If the specified file is an extended file,

indicates the number of bytes that can be read from the file's resource fork,
even when you are opening the data fork. Otherwise, the parameter is
undefined.

resourceBiocks Longword result value: If the specified file is an extended
file, this parameter indicates the number of blocks used by the file's
resource fork, even if you are opening the data fork. Otherwise, the
parameter is undefined.

$ 2 7 d r v r l O E r r o r

$ 2 8 d r v r N o D e v i c e
$ 2 E d r v r D i s k S w i t c h
$40 badPa thSyn tax
$44 pa thNotFound
$ 4 5 v o l N o t F o u n d
$ 4 6 fi l e N o t F o u n d
$ 4 A b a d F i l e F o r m a t
$ 4 E i n v a l i d A c c e s s
$ 4 F b u f f To o S m a l l
$ 5 0 fi l e B u s y
$52 unknownVol
$ 5 8 n o t B l o c k D e v

I /O er ror
no device connected

disk switched

invalid pathname syntax
path not found
volume not found

file not found

version error

file not destroy-enabled
buffer too small

file open
unsupported volume type
not a block device

176 Apple IIGS GS/OS Reference

$ 2 0 0 3 O S S h u t d o w n

Description This call allows an application (such as the Finder) to shut down the
operating system in preparation for either powering down the machine or
performing a restart. GS/OS terminates any write-deferral session in
progress and shuts down all drivers and FSTs.
The action of tlie call is determined by the values of the shutdownFiag
parameter. If bit 0 is set to 1, GS/OS performs the shutdown operation
and restarts the machine. If bit 0 is cleared to 0, GS/OS performs the
same shutdown procedure and then displays a dialog box that allows the
user to either power down the computer or restart. If the user chooses to
restart, GS/OS then looks at bit 1 of the shutdownFiag parameter.

If bit 1 is cleared to 0, GS/OS leaves the Memory Manager power-up byte
alone; this leaves any RAM disks intact while the machine is restarted. If
bit 1 is set to 1, however, GS/OS invalidates the power-up byte, which
effectively erases any RAM disk, before restarting the computer.

P a r a m e t e r s O f f s e t No. Size and type

p C o u n t Word input value (minimum = 1)

- ShutdownFiag - 1 Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

ShutdownFiag Word input value: Two Boolean flags that specify information
about how to handle the shutdown, as follows:

15 Iw 1131121111101 9 I 8 I 7 I 6 I 5 1 4 I 3 1 2 I 1 I 0

Reserved—'

Invalidate the Memory Manager power-up —'
byte when powering down = 1

Leave Memory Manager power-up byte
alone when powering down = 0

Perform shutdown and restart the

computer = 1
Perform shutdown and display

power-down/restart dialog box = 0

Errors (none except general GS/OS errors)

Chapter 7 GS/OS Call Reference 177

i

$2029 Quit

This call terminates the running application. It also closes all open files, sets
the system file level to 0, initializes certain components of the Apple IIGS
and the operating system, and then launches the next application.

For more information about quitting applications, see Chapter 2,
"GS/OS and Its Environment."

No. Size and type

p C o u n t Word input value (minimum = 0)

p a t h n a m e 1 Longword input pointer

fl a g s Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 0; maximum = 2.

pathname Longword input pointer: Points to a GS/OS string representing the
pathname of the program to run next. If this parameter is NIL or the
pathname itself has length 0, GS/OS chooses the next application, as
described in Chapter 2.

flags Word input value: Three Boolean flags that specify information about
the Quit call, as follows:

15 14 13 12 11 10 9

Quit return flag —I
Place state information about the quitting

program on the Quit return stack so that it
will be automatically restarted later = 1
Do not stack the quitting program = 0

restart-from-memory flagThe quitting program is capable of being
restarted from its dormant memory image = 1
The quitting program must be reloaded from

disk if it is restarted = 0

skip-std-prefixes flagDo not change the values of prefixes 10-12 =1
Set prefixes 10-12 to. console = 0

178 Apple IIGS GS/OS Reference

C o m m e n t s

E r r o r s

Only global errors cause the Quit call to return to the calling application.
All other errors are managed within the GS/OS Program Dispatcher.

(none except general GS/OS errors)

Chapter? GS/OS Call Reference 179

$ 2 0 1 2 R e a d

This function attempts to transfer the number of bytes given by the
request Count parameter, starting at the current mark, from the file
specified by the refNum parameter into the buffer pointed to by the
dataBuf fer parameter. The function updates the file mark to reflect
the new file position after the read.

Because some situations cause the Read function to transfer fewer than
the requested number of bytes, the function returns the actual number of
bytes transferred in the transferCount parameter, as follows;
■ If GS/OS reaches the end of file before transferring the number of

bytes specified in requestcount, it stops reading and sets
transferCount to the number of bytes actually read.

■ If newline mode is enabled and a newline character is encountered
before the requested number of bytes have been read, GS/OS stops
the transfer and sets t ransf erCount to the number of bytes
actually read, including the newline character.

■ If the device is a character device and no-wait mode is enabled, the
call returns immediately, with transferCount indicating the
number of characters returned.

O f f s e t

p C o u n t

r e f N u m

No. Size and type

Word input value (minimum = 4)

1 Word input value

d a t a B u f f e r 2 Longword input pointer

r e q u e s t c o u n t Longword input value

t r a n s f e r C o u n t Longword result value

c a c h e P r i o r i t y Word input value

180 Apple IIGS GS/OS Reference

pCount Word input value: Number of parameters in this parameter block.
Minimum = 4; maximum = 5.

refNum Word input value: Identifying number assigned to the file by the
Open call.

dataBuf fer Longword input pointer: Points to a memory area large enough to
hold the requested data.

requestcount Longword input value: Number of bytes to be read.

t rans f e rcount Longword result value: Number of bytes actually read.

cachePriority Word input value: Specifies whether or not disk blocks
handled by the read call are candidates for caching, as follows:
$0000 = do not cache blocks involved in this read

$0001 = cache blocks involved in this read if possible

E r r o r s $ 2 7 d r v r i O E r r o r I / O e r r o r
$ 2 E d r v r D i s k S w i t c h d i s k s w i t c h e d
$ 4 3 i n v a i i d R e f N u m i n v a l i d r e f e r e n c e n u m b e r
$4C eofEncountered end-of-fi le encountered
$4E invalidAccess access not allowed

Chapter 7 GS/OS Call Reference 181

$ 2 0 2 6 R e s e t C a c h e

Description This call provides a way for a program to resize the GS/OS cache and
be able to use the resized cache immediately. The call ends the current
write-deferral session immediately, shuts down the cache, and then
reinitializes the cache with a new size determined by the cache size field
in battery RAM.

Before your application makes this call, it should use the Miscellaneous
Tool Set call writeBParam to set the new cache size. The battery RAM
parameter number for the cache size parameter is $0081. The value of this
parameter is the number of 32K blocks to use for the cache size, and the
valid range for this value is $00-$FE. For more information on
WriteBParam, see the Apple IlGS Toolbox Reference.

P a r a m e t e r s o f f s e t N o . s i z e a n d t y p e

Word input value (minimum = 0)

pCount Word input value: Number of parameters in this parameter block.
Minimum = 0; maximum = 0.

Comments The following sample code shows how to use this call;
c a c h e _ s i z e e q u $ 1 0 0 0 0 ; 6 4 K c a c h e

p e a . c a c h e s i z e / $ 8 0 0 0 / c o n v e r t s i z e i n t o # o f
/ b l o c k s

pea $0081 /battery RAM parameter #
Idx #$0B03 /write battery parameter
jsl $elOOOO /no error is possible

_ResetCache parms /tell GS/OS to reset cache

p a r m s d c 1 2 ' 0 ' / p a r m b l o c k f o r R e s e t C a c h e c a l l

Errors (none except general GS/OS errors)

182 Apple IlGS GS/OS Reference

$ 2 0 1 F S e s s i o n S t a t u s

Description

P a r a m e t e r s

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

status Word result value: Indicates whether a write-deferral session is in

progress, as follows:

$0000 no session in progress

$0001 session in progress

Errors (none except general GS/OS errors)

Chapter 7 GS/OS Call Reference 183

This call returns a value that tells whether or not a write-deferral session is
in progress. See also BeginSession and EndSession in this chapter.

O f f s e t No. Size and type

p C o u n t Word input value (minimum = 1)

s t a t u s Word result value

$ 2 0 1 8 S e t E O F

This call sets the logical size of an open file to a specified value that may
be either larger or smaller than the current file size. The EOF value cannot
be changed unless the file is write-enabled. If the specified EOF is less
than the current EOF, the system may—but need not—free blocks that
are no longer needed to represent the file. See also the GetEOF call.

O f f s e t

p C o u n t

r e f N u m

b a s e

Size and type

Word input value (minimum = 3)

Word input value

Word input value

d i s p l a c e m e n t 3 Longword input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 3; maximum = 3.

refNum Word input value: Identifying number assigned to the file by the
Open call.

base Word input value: Specifies how to interpret the displacement
parameter.

$0000 set EOF equal to displacement
$0001 set EOF equal to old EOF minus displacement
$0002 set EOF equal to file mark plus displacement
$0003 set EOF equal to file mark minus displacement

displacement Longword input value: Used to compute the new value of the
EOF as described for the base parameter.

$ 2 7 d r v r l O E r r o r
$ 2 B d r v r W r t P r o t
$ 4 3 i n v a l i d R e f N u m
$4D outOfRange
$ 4 E i n v a l i d A c c e s s
$5A damagedBitMap

I/O error

write-protected disk
invalid reference number

position out of range
file not write-enabled
block number out of range

184 Apple IlGS OS/OS Reference

$ 2 0 0 5 S e t F U e l n f o

Description This call sets certain file attributes of an existing open or closed block
file. This call immediately modifies the file information in the file's
directory entry whether the file is open or closed. It does not affect the
file information seen by previously opened access paths to the same file.

A Important A GetFilelnfo call following a SetFilelnfo call on an
open file may not return the values set by the
SetFilelnfo call. To guarantee recording of the
attributes specified in a SetFilelnfo call, you must first
close the file, a

See also the GetFilelnfo call.

P a r a m e t e r s O f f s e t

p C o u n t

Size and type

Word input value (minimum = 2)

p a t h n a m e Longword input pointer

ccess -12 Word input value

fi l e T y p e 3 Word input value

auxType -I 4 Longword result value

r e s e r v e d 5 Word input value

(Continued)

Chapter 7 GS/OS Call Reference 185

c r e a t e D a t e T i m e 6 Double longword input value

modD ate Time -j y Double longword input value

)ptionList -j 8 Longword input pointer

reserved —I 9 Longword input value

reserved —I 10 Longword input value

reserved -111 Longword input value

reserved H 12 Longword input value

186 Apple IIGS GS/OS Reference

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 12.

pathname Longword input pointer: Points to a GS/OS string representing the
pathname of the file whose file information is to be set.

access Word input value: Access attribute of the file, described under the
Create call.

f iieType Word input value: File type attribute of the file.

auxType Longword result value: Auxiliary type attribute of the file.

reserved Word input value: Reserved for use by GS/OS. The value you place
here is ignored.

createDateTime Double longword input value: Creation date and time
attributes of the file. If the value of this parameter is zero, GS/OS does not
change the creation date and time. The format of the date and time is
shown in Table 4-2 in Chapter 4.

modDateTime Double longword input value: Modification date and time
attributes of the file. If the value of this entire parameter is zero, GS/OS
sets the modification date and time with the current system clock value.
The format of the date and time is shown in Table 4-2 in Chapter 4.

optionList Longword input pointer: Points to a GS/OS result buffer to which
FST-specific information can be returned.

reserved Longword input value: Reserved for use by GS/OS. The value you
place here is ignored.

reserved Longword input value:-Reserved for use by GS/OS. The value you
place here is ignored.

reserved Longword input value: Reserved for use by GS/OS. The value you
place here is ignored.

reserved Longword input value: Reserved for use by GS/OS. The value you
place here is ignored.

Chapter 7 GS/OS Call Reference 187

£ f r o r S $ 1 0 d e v N o t F o u n d
$ 2 7 d r v r l O E r r o r
$ 2 B d r v r W r t P r o t
$40 badPathSyntax
$44 pathNotFound
$45 volNotFound
$46 fileNotFound
$4A badFi leFormat
$4B badStoreType
$ 4 E i n v a l i d A c c e s s
$52 unknownVol
$58 notBlockDev

device not found
I/O error

write-protected disk
invalid pathname syntax
path not found
volume not found

file not found

version error

unsupported storage type
file not destroy-enabled
unsupported volume type
not a block device

188 Apple IIGS GS/OS Reference

S e t L e v e l

This function sets the current value of the system file level.

Whenever a file is opened, GS/OS assigns it a file level equal to the
current system file level. A Close call with a reference number of $0000
closes all files with file level values at or above the current system file
level. Similarly, a Flush call with a reference number of $0000 flushes all
files with file level values at or above the current system file level. See also
the GetLevel call.

O f f s e t

p C o u n t

l e v e l

No. Size and type

Word input value (minimum = 1)

1 Word input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

level Word input value: New value of the system file level. Must be in the range
$0000-$00FF.

E r r o r s $ 5 9 i n v a l i d L e v e l invalid file level

Chapter 7 GS/OS Call Reference 189

$ 2 0 1 6 S e t M a r k

Description This call sets the file mark (the position from which the next byte will be
read or to which the next byte will be written) to a specified value. The
value can never exceed EOF, the current size of the file. See also the
GetMark cal l .

P a r a m e t e r s O f f s e t

p C o u n t

r e f N u m

Size and type

Word input value (minimum = 3)

Word input value

Word input value

displacement -I 3 Longword input value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 3; maximum = 3.

refNum Word input value: Identifying number assigned to the file by the Open
call.

base Word input value: Specifies how the displacement parameter should be
interpreted, as follows:
$0000 set mark equal to displacement
$0001 set mark equal to EOF minus displacement
$0002 set mark equal to old mark plus displacement
$0003 set mark equal to old mark minus displacement

displacement Longword input value: Used to compute the new value for the
file mark, as described for the base parameter.

$ 2 7 d r v r l O E r r o r

$ 4 3 i n v a l i d R e f N u m
$4D outOfRange
$5A damagedBitMap

I /O er ror

invalid reference number

position out of range
block number out of range

190 Apple IIGS GS/OS Reference

$2009 S e t P r e fi x

Description This call sets one of the numbered pathname prefixes to a specified
value. The input to this call can be any of the following pathnames:
■ a full pathname
■ a partial pathname beginning with a numeric prefix designator
■ a partial pathname beginning with the special prefix designator * /
■ a partial pathname without an initial prefix designator

The SetPrefbc call is unusual in the way it treats partial pathnames without
initial prefix designators. Normally, GS/OS uses the prefix 0 / in the
absence of an explicit designator. However, only in the SetPrefix call, it
uses the prefix «/where n is the value of the pref ixNum parameter. See
also the GetPrefix call.

Size and type

Word input value (minimum = 2)

Word input value

Longword input pointer

pcount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 2.

pref ixNum Word input value: Prefix number that specifies the prefix to be set.

prefix Longword input pointer: Points to a GS/OS string representing the
pathname to which the prefix is to be set.

Comments Specifying a pathname with length 0 or whose syntax is illegal sets the
designated prefix to NULL. GS/OS does not check to make sure that the
designated prefix corresponds to an existing subdirectory or file.
The boot volume prefix (*/) cannot be changed using this call.

Errors $40 badPathSyntax inval id pathname syntax

Chapter? GS/OS Call Reference 191

$200C SetSysPrefs

This call sets the value of the global system preferences. The value of
system preferences affects the behavior of some system calls. See also
the GetSysPrefs call.

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 1)

^̂referenceŝj 1 Word input value
pCount Word input value: Number of parameters in this parameter block.

Minimum = 1; maximum = 1.

preferences Word input value: Value of system preferences, as follows:

15 14 13 111 11 :;i; 1$?:

Display Volume Mount dialog box = 1
Do not display Volume Mount dialog box = 0

Use Volume Mount dialog box without Cancel button = 1 —
Use standard Volume Mount dialog box = 0

Suppress error dialog boxes = 1
Do not suppress error dialog boxes (those with only 1

button, such as the "disk damaged" dialog box) = 0
Reserved (must be 0)

♦ Note: If bits 14 and 13 are both set to 1, the Volume Mount dialog box
is always suppressed, because it only has one button.

192 Apple IIGS GS/OS Reference

Comments Under certain circumstances, parts of the system call the system's Mount
facility to display a dialog box asking the user to mount a specified
volume. This can happen when the call contains a reference number
parameter or a pathname parameter.
■ For those calls that specify a reference number parameter (for

example Read, Write, Close), Mount displays the dialog box if bits 14
and 13 are not both set to 1.

■ For those calls that specify a pathname parameter, the Mount facility
displays the dialog box only if system-preference bit 15 is 1 and bits
14 and 13 are not both set to 1. Otherwise, Mount returns the Cancel
return code, which normally causes the system to return a volume-not-
found error. Thus, an application can be written either to handle
volume-not-found errors itself (system-preference bit 15 = 0) or
to allow the system to automatically display mount dialog boxes
(bit 15 = 1), except when the System Loader is attempting to load
a dynamic segment.

■ For those calls that result in the System Loader attempting to load a
dynamic segment, the System Loader always sets the system
preference bit (bit 15) to 1, and then resets it to its original value
when the segment has been loaded. Thus, the Volume Mount dialog
box is always displayed when a dynamic segment is requested, unless
bits 14 and 13 are both set to 1.

EiTors (none except general GS/OS errors)

I

Chapter 7 GS/OS Call Reference 193

$ 2 0 3 2 U n b i n d l n t

Description

P a r a m e t e r s

pCount Word input value: Number of parameters in this parameter block.
Minimum = 1; maximum = 1.

intNum Word input value: Interrupt identification number of the binding
between interrupt source and interrupt handler that is to be undone.

Errors (none except general GS/OS errors)

This function removes a specified interrupt handler from the interrupt
vector tab le .

For a complete description of the GS/OS interrupt handling subsystem,
see the GS/OS Device Driver Reference. See also the Bindint call in this
chapter.

O f f s e t No. Size and type

p C o u n t

i n t N u m

Word input value (minimum = 1)

Word input value

194 Apple IIGS GS/OS Reference

$2008 V o l u m e

Description Given the name of a block device, this call returns the name of the
volume mounted in the device, along with other information about the
vo lume .

P a r a m e t e r s O f f s e t

- p C o u n t

$02 _

N o . Size and type

Word input value (minimum = 2)

- d e v N a m e - 1 Longword input pointer

$06 _

v o l N a m e - 2 Longword input pointer

_L
t o t a l B l o c k s5 - 3 Longword result value

$0E _

f r e e B l o c k s - 4 Longword result value

- fi l e S y s I D - 5 Word result value

- b l o c k S i z e - 6 Word result value

pCount Word input value: Number of parameters in this parameter block.
Minimum = 2; maximum = 6.

devName Longword input pointer: Points to a GS/OS input string containing
the name of a block device.

voiName Longword input pointer: Points to a GS/OS output string where
GS/OS returns the volume name of the volume mounted in the device.

i
!

'l

totalBlocks Longword result value: Total number of blocks contained on the
volume.

i ,
1 ' Chapter 7 GS/OS Call Reference 195

f reeBlocks Longword result value: The number of free (unallocated) blocks
on the volume.

fiieSysiD Word result value: Identifies the file system contained on the
.volume, as follows:
$ 0 0 0 0 R e s e r v e d $ 0 0 0 8 A p p l e C P / M
$ 0 0 0 1 P r o D O S / S O S $ 0 0 0 9 R e s e r v e d
$ 0 0 0 2 D O S 3 . 3 $ 0 0 0 A M S / D O S
$ 0 0 0 3 D O S 3 . 2 o r 3 . 1 $ 0 0 0 B H i g h S i e r r a
$ 0 0 0 4 A p p l e I I P a s c a l $ 0 0 0 C I S O 9 6 6 0
$ 0 0 0 5 M a c i n t o s h (M P S) $ 0 0 0 D A p p l e S h a r e
$0006 Mac in tosh (HPS) $OOOE-$OOOP Reserved
$ 0 0 0 7 L i s a

blocksize Word result value: The size, in bytes, of a block.

E r r o r s $ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
$11 invaiidDevNum invalid device request
$ 2 7 d r v r l O E r r o r I / O e r r o r
$28 drvrNoDevice no device connected
$2E drvrDiskSwitch disk switched
$45 voiNotFound volume not found
$4A badFileFormat version error
$52 unknownVol unsupported volume type
$57 dupVolume dupl icate volume
$58 notBiockDev not a block device

196 Apple IIGS GS/OS Reference

$2013 W r i t e

This call attempts to transfer tlie number of bytes specified by the
request Count parameter from the caller's buffer to the file specified
by the refNum parameter, starting at the current file mark.
The function returns the number of bytes actually transferred. The
function updates the file mark to indicate the new file position and
extends the EOF, if necessary, to accommodate the new data.

O f f s e t

p C o u n t

r e f N u m

No. Size and type

Word input value (minimum = 4)

1 Word input value

d a t a B u f f e r 2 Longword input pointer

requestcount -I 3 Longword input value

transferCount -I 4 Longword result value

- cachePriority -j 5 Word input value
pCount Word input value: Number of parameters in this parameter block.

Minimum = 4; maximum = 5'.

refNum Word input value: Identifying number assigned to the file by the
Open call.

dataBuf fer Longword input pointer: Points to the area of memory containing
the data to be written to the file.

requestcount Longword input value: Number of bytes to write.
transferCount Longword result value: Number of bytes actually written.

Chapter 7 GS/OS Call Reference 197

m

cachePriority Word input value: Specifies whether or not disk blocks
handled by the call are candidates for caching, as follows:
$0000 do not cache blocks involved in this call
$0001 cache blocks involved in this call if possible

E r r o r s $ 2 7 d r v r l O E r r o r I / O e r r o r
$28 drvrNoDevice no device connected
$2E drvrDiskSwitch disk switched
$43 invalidRefNum invalid reference number
$ 4 8 v o l u m e F u l l v o l u m e f u l l
$4E invalidAccess file not destroy-enabled
$5A damagedBitMap block number out of range

198 Apple IIGS GS/OS Reference

Chapter 8 Loading Program Files

Because the Apple IIGS has a large amount of available memory, a
flexible, dynamic facility for loading program files is required. Programs
should be able to be loaded in any available location in memory. The
burden of determining where to load a program should be on the system,
not on the application writer. Furthermore, programs should be able to
be broken into smaller program segments that can be loaded indepen
dently.
To provide these capabilities, GS/OS comes with two relocating
segment loaders called ExpressLoad and the System Loader. These
loaders, collectively referred to as the GS/OS Loaders, provide very
powerful and flexible facilities that are not available on standard Apple II
computers.

i

199

How the GS/OS Loaders work

Apple II computers running under ProDOS 8 have a very simple program loader. The loader
is the part of the boot code that searches the boot disk for the first system file (any file
of ProDOS file type $FF whose name ends with . system) and loads it into location
$2000. If a program wants to load another program, it has to do all the work by making
ProDOS 8 calls.

Some programming environments such as Apple II Pascal and Applesoft BASIC provide
loaders for programs running under them. The Applesoft loader loads either system files,
BASIC files, or binary code files. All these files are loaded either at a fixed address in
memory or at an address specified in the file.
The Apple IIGS GS/OS Loaders under GS/OS can load programs in any available part of
memory, relieving the application writer of deciding where to put the code and how to
make it execute properly at that location. Furthermore, the GS/OS Loaders can load
individual segments rather than whole files, either at program start or during execution.
The GS/OS Loaders load programs or program segments by first calling the Memory
Manager to find available memory. They load each segment independently and perform
relocation during the load as necessary. Therefore, a large application can be broken up
into smaller program segments, each of which is put into a separate location in memory.
The application's segments can also be loaded dynamically, as they are referenced, rather
than at program boot time. Additionally, the GS/OS Loaders can be called by the
application itself to load and unload program (or data) segments.

D e fi n i t i o n s

The GS/OS Loaders process load files, generated from object files by a linker. Definitions
of these and related terms may help make the following discussion clearer.

Object files are the output from an assembler or compiler and are the input to a linker.
A linker is the program that combines object files generated by compilers and assemblers,
resolves all symbolic references, and generates a file that can be loaded into memory and
execu ted .

Load files are the output of a linker and contain memory images, which the GS/OS
Loaders can load into memory. There are several types of load files, reflecting the types of
programs they contain.

200 Apple IlGS GS/OS Reference

The GS/OS Loaders are the part of system software that reads the files generated by the
linker and loads them into memory (performing relocation if necessary).

Relocation is the process of modifying a load file in memory so that it will execute
correctly. It consists of patching operands to reflect the code's current memory location.

Library £Qes are special object files, containing general program segments that the linker
can search.

Rim-time library flies are special load files, containing general program segments that
can be loaded as needed by the GS/OS Loaders and shared between applications.

Object module format (OMF) is the general format used in object files, library files, and
load files.

An OMF file is a file in object module format (an object file, library file, or load file).
A segment is an individual component of an OMF file. Each file contains one or more
segments; object files contain object segments, and load files contain load segments.
A controlling program is a program that uses GS/OS Loader calls to load and execute
another program, and is responsible for shutting down the program when it exits.
Operating systems and shells are controlling programs.

Segments and the GS/OS Loaders

The GS/OS Loaders process only those files that conform to the Apple IIGS definition of a
load file, as generated by the linker. A load file consists of load segments, each of which
can be loaded independently. The load segments are numbered sequentially from 1.

Certain load segments are static segments. They are loaded into memory at program
start (initial load) and must stay in memory until program completion.

Other load segments are dynamic segments. Dynamic segments are loaded not at boot
time but during program execution. This can be done automatically (by means of the
jump table mechanism) or manually (at the specific request of the application). When
dynamic segments are not needed by a program, they can be purged (their contents
deallocated) by the program.

Load segments can have several other attributes; see Appendbc F for a complete list of
a t t r i b u t e s .

Chapter 8 Loading Program Files 201

Segments are classified numerically by kind (the value of the kind field in the segment
header; see Appendix F, "Object Module Format," for more information.)- In addition to
segments containing program code or data, there are several special kinds of load
segments;
■ The jump-table segment (kind = $02), when loaded into memory, becomes part of the

jump table. The jump table provides a mechanism whereby segments in memory can
trigger the loading of other segments not yet in memory.

■ The pathname table segment (kind = $04) contains information about the run-time
library files that are referenced. The pathname table and run-time library files are
described in Appendix F, "Object Module Format."

■ Initialization segments (kind = $10) in a load file are used for code that is to be
executed before all the rest of the load segments are loaded.

■ The direct-page/stack segment (kind = $12) defines the application's direct-page
and stack requirements. This segment is loaded into bank $00 and its starting address
and length are passed to the controlling program. The controlling program in turn sets
the direct register and stack pointer to the start and end of this segment before
transferring control to the program.

If a GS/OS Loader is called to perform the initial load of a program, it loads all the static
load segments and the jump table and pathname table segments (if they exist).

References to dynamic segments

During the initial load, GS/OS Loaders have all the information needed to resolve all̂
intersegment references between the static load segments. But during the dynamic
loading of dynamic load segments, they can only resolve references in the dynamic load
segment to the already loaded static load segments. Therefore, the general rule is that
static segments can be referenced by any type of segment, but dynamic segments can
only be referenced through jsl calls through the jump table.

U n m o u n t e d v o l u m e

If a GS/OS Loader references a file on a volume that is not mounted, GS/OS either retums
error $45 (volNotFound) or displays a mount-volume message (depending on the state
of the system preferences at the time of the call; see "SetSysPrefs" in Chapter 7). If a
mount message is displayed, GS/OS handles the user interface and returns control to
the GS/OS Loader only when the I/O operation is complete or the user has canceled
the request for the mount. For all user-callable GS/OS Loader functions, system prefer
ences are controlled by the user. For the internal jump-table load function, the GS/OS
Loaders set system preferences to display mount messages and then restore them to their
original state.

202 Apple IIGS GS/OS Reference

The GS/OS Loaders and the Memory Manager

The GS/OS Loaders and the Memory Manager work together closely. Depending on how a
GS/OS Loader defines a segment, the Memory Manager needs to allocate a memory block
for that segment with the appropriate properties.

The GS/OS Loaders define load segments as static or dynamic and as absolute (must be
loaded at a specific address), relocatable (can be loaded at any address, but cannot be
moved once loaded), or position-independent (can be loaded anywhere and then moved
anywhere after loading). The Memory Manager uses its own terminology to describe
memory blocks; see the "Memory Manager" chapter in the Apple IIGS Toolbox Reference.
Loader and Memory Manager terminology are related in this way:
■ When a GS/OS Loader loads a static segment, it calls the Memory Manager to allocate a

corresponding memory block that is unpurgeable (purge level = 0; the Memory Manager
cannot remove it from memory) and locked (the Memory Manager cannot move it
unless it is first unlocked).

■ When the loader loads a dynamic segment, the Memory Manager allocates a memory
block that is marked as purgeable (purge level > 0) but locked.

■ When the loader loads a position-independent segment, the Memory Manager allocates
a memory block that is marked as movable (the Memory Manager can change their
locations in memory if they are not locked); all other segments (whether static or
dynamic) are placed in blocks that are fixed (not movable, even if not locked, and of
fixed size). .

The typical load segment, which is relocatable, is loaded into a memory block having
these at t r ibutes:

Locked
Fixed

Purge level = 0 (if static)
Purge level = 3 (if dynamic)
When a GS/OS Loader unloads a segment, it calls the Memory Manager to make the
corresponding memory blocks purgeable.
To unload all of a program's segments (all segments associated with a particular user ID), a
controlling program calls the GS/OS Loader's UserShutdown routine—which in turn calls
the Memory Manager—to purge all the program's dynamic segments and make all its static
segments purgeable. The purpose of this is to keep the essential parts of an application in
memory, in case it needs to be rerun in the near future. Keeping programs dormant in
memory, and executing them again with the GS/OS Loader's Restart routine, can greatly

Chapter 8 Loading Program Files 203

speed up execution of a program selector such as the Finder. However, once the Memory
Manager has actually purged one of the static segments of a dormant program, the
program is incomplete and must be reloaded from file (with InitialLoad) before running.

♦ Note: If many incomplete (partially purged) applications are in memory, the system
may get bogged down with NIL memory handles. To avoid this situation, the GS/OS
Loaders dispose of all NIL memory handles they know about before executing every
InitialLoad or Restart call.

Depending on the org, kind, banksize, and align fields in the segment header (see
"OMF and the GS/OS Loaders," later in this chapter), other memory-block attributes are
possible, as shown in Table 8-1.

A Important Although the Memory Manager does not provide bank alignment, the
GS/OS Loaders have a memory-block attribute that forces alignment
by requesting successive fixed-address blocks at the beginning of
each bank until successful. However, having a bank-aligned load
segment in a load file almost always causes everything purgeable to be
purged. Carefully consider the advantages and disadvantages of bank-
aligned segments before including one in a load file. For more
information, see Apple IIGS Toolbox Reference, Volume 3, and
Apple IIGS Technical Note #78. a

A memory block can be made purgeable (unloaded) by a call to a GS/OS Loader.
However, other memory-block attributes must be changed through Memory Manager calls.
The following memory block information may also be useful to a program:
Star t locat ion
Size of segment
User ID

Purge level: 0 = Unpurgeable
1 = Least purgeable
3 = Most purgeable

Note also that if the memory handle is NIL (its address value is 0), the memory block has
been purged.

204 Apple IIGS GS/OS Reference

Table 8-1 Segment characteristics and memory-block attributes

Segment header attribute

If ORG > 0

If BANKS IZE = $10000
If 0<Align Factor* <= $100
If Align Factor* >$100

Bit 13 of KIND = 0
Bit 12 of KIND = 1

Bit 11 of KIND = 1

Bit 8 of KIND = 1

KIND = 12

Memory-block attribute

Fbced address •

May not cross bank boundary
Page aligned
Bank aligned (forced by GS/OS Loaders; see preceding
important information)
Fixed block (not movable)
May not use special memory
Fixed bank (not fixed address)
Bank-relative (fixed address in any bank); forced by GS/OS
Loaders

Fixed bank (bank $00), page aligned
(Direct-page/stack segment)

*If 0 < BANKSIZE < SIOOOO, Align factor = the greater of banksize or align; if banksize has any
other value (except for SIOOOO), Align factor = align.

OMF and the GS/OS Loaders

Obiect module format (OMF) defines the Internal format for Apple lIGS object files,
library files, and load files. OMF files consist of segments, each of which has a segment
header and a series of OMF records. As Table 8-1 shows, a load segment's characteristics,
the type of memory block it inhabits, and its segment header values are all closely related.
OMF is documented in detail in Appendix F of this manual.
Object module format includes general capabilities beyond the requirements of Ae
Apple liGS computer. The GS/OS Loaders, on the other hand, are designed specifically forthe Apple IIGS. Therefore, there are certain OMF features that the GS/OS Loaders either
do not support or support in a restricted manner. For example,
• The NUMSEX field of the segment header must be 0.
• The NUMLEN field of the segment header must be 4.
. The BANKS I ZE field of the segment header must be <- $10000.
■ The ALIGN field of the segment header must be <- $10000.
If any of the above is not true, the GS/OS Loaders return error moB (segnrent is forên).
The BANKSIZE and align restrictions are enforced by the linker, and violations of them
are unlikely in a load file.

Chapter 8 Loading Program Files

The GS/OS Loaders use banks ize and align to force memory alignment of segments.
Under OMF, align and banks ize can be any power of 2. But the Memory Manager does
not support so general a requirement. Currently, the Memory Manager can only be told that
a memory block must be page-aligned or must not cross a bank boundary. To force bank
alignment where needed, the GS/OS Loaders use this method:
■ Any value of banks ize other than 0 and $10000 results in a memory block that is

either page aligned (if banks ize < =$100) or bank aligned (if banks ize > $100).
Since the linker makes sure that the segment is smaller than banks ize, the
requirement that the segment not extend past the banks ize boundary is met (there
will be wasted space in the memory block, however).

■ Any value of align is bumped to either page alignment or bank alignment.
■ If the value of banksize is other than 0 or $10000 and the value of align is not 0, the

greater of the two determines the alignment to be used.

Restarting, reloading, and dormant programs

By working closely with the Memory Manager and GS/OS, the GS/OS Loaders provide a
mechanism whereby programs can stay in memory after they terminate and can be
relaunched very quicldy if they are called again.

When making the GS/OS Quit call, an application always specifies (1) whether it is
capable of being relaunched from memory, and (2) whether it wishes to quit to another
specific application, and—if so—whether it wants to be relaunched after that
application quits. GS/OS notes those specifications and treats a quitting program
accordingly.
■ If a quitting application is capable of being restarted from memory—that is, if it does

not require initialization data to be loaded from disk—GS/OS puts it into a dormant
state with the GS/OS Loader's UserShutdown call: it keeps all the application's static
segments in memory so that the application can start up very quickly if it is ever called
again. When that application is relaunched from memory, it is said to be restarted.
GS/OS uses the GS/OS Loader's Restart call for this.

■ If an application will be relaunched at a future time, the GS/OS Loaders keep track of
its pathname, so that when the time comes it can be reloaded—loaded and executed
automatically from disk, using the GS/OS Loader's InitialLoad (or InitialLoad2) call.
Of course, if the program is already in memory in a dormant state, it can simply be
r e s t a r t e d .

A dormant application's static segments are not protected; if the Memory Manager needs
memory, it can purge one or more of them. Once that happens, the application is no
longer dormant; it must be reloaded from disk if it is ever relaunched.

206 Apple IIGS GS/OS Reference

♦ Note: In some programming languages it is impractical to make completely restartable
applications; initialization data must be read from disk every time a program is
launched. To permit restartability in such cases, the GS/OS Loaders allow for reload
segments, load segments that are always loaded from disk at program launch, even if
the program is in a dormant state. Therefore, if a program can be designed with all its
initialization information in one or more reload segments, it can call itself restartable
when it quits.

The GS/OS Loaders: ExpressLoad and the System Loader

ExpressLoad complements the standard Apple JIGS System Loader by allowing large
applications to be loaded in a shorter time.

ExpressLoad works as a front end to the System Loader by automatically determining if
the file being loaded is in ExpressLoad format. If the file is in ExpressLoad format, then
ExpressLoad processes the file without passing control to the System Loader. If however,
the file is not in ExpressLoad format, control is passed to the System Loader, where the
file will be processed as normal.

♦ Note: A file in ExpressLoad format can still be loaded by the System Loader.

With one exception, the ExpressLoad call set is the same as the standard System Loader's.
The exception is the GetLoadSeglnfo call. This call is not implemented by ExpressLoad,
since the internal data structures used by the standard System Loader are not the same as
the data structures used by ExpressLoad.

ExpressLoad does not support the load-from-memory operations that can be specified as
part of the InitialLoad2 call. The load_from_memory indication is passed to the standard
System Loader.

The standard System Loader processes files that are stored in OMF. ExpressLoad
processes files that are stored in OMF and contain a special segment named ExpressLoad.
Two ways to build an ExpressLoad file are
■ to use the APW tool Express or the MPWIIGS tool ExpressIiGS to convert an OMF 2.0

file into ExpressLoad format
■ to use the LinkliGS tool to make an ExpressLoad file directly

A Important Only version 2.0 of OMF can be converted to ExpressLoad format, a

Chapter 8 Loading Program Files 207

1

Making GS/OS Loader calls

Because the GS/OS Loaders are an Apple IIGS tool set, their functions are called by
making stack-based calls through the Apple IlGS Tool Locator. The calling sequence for
GS/OS Loader functions is the standard tool-calling sequence:
1. Push space for the output parameters (if any) onto the stack.
2. Push all input parameters in the order specified in the call descriptions.
3. Execute this call block (the syntax in this example is for APW™):

I d x # $ 1 1 + F u n c N u m I 8

j s l D i s p a t c h e r
where FuncNum is the GS/OS Loader function number (the number of the call), $ii is
the tool number for the GS/OS Loaders, and Dispatcher is the Tool Locator entry
point.

4. Upon return from the call, the A register contains the call status (zero if no error, an
error number otherwise), and the carry flag is set if an error has occurred.

5. If there is output, pull each output parameter off the stack.
Table 8-2 lists and briefly describes the GS/OS Loader calls available to applications
(plus its standard tool-set calls, some of which are not available to applications). The
calls in Table 8-2 are in numerical order by call number, except that newer calls that
use GS/OS-specific data structures (such as InitialLoad2) are listed next to their
ProDOS 16-compatible counterparts (such as InitialLoad).
The rest of this chapter consists of detailed call descriptions; they are presented in
alphabetical order by call name.

208 Apple IlGS GS/OS Reference

■ Table 8-2 GS/OS Loader calls

Cal l number Ca l l nan^ Description

$0111 L o a d e r l n i t i a l i z a t i o n Initializes the loader

$0211 LoaderStartup (Does nothing)
$0311 LoaderShutDown (Does nothing)
$0411 LoaderVersion Returns loader version

$0511 LoaderReset (Does nothing)
$0611 LoaderStatus Returns loader status

$0911 Init ialLoad Loads a program into memory
$2011 I n i t i a l L o a d 2 Loads a program into memory
$0A11 R e s t a r t Reexecutes a dormant program in memory
$0B11 LoadSegNum (Load segment by number) Loads a single segment
$0C11 UnloadSegNum (Unload segment by number) Unloads a single

segment
$0D11 LoadSegName (Load segment by name) Loads a single segment
$0E11 UnloadSeg Unloads the segment containing a specific address
$0F11 GetLoadSeglnfo Returns a segment's memory-segment table entry

(except for files compiled into ExpressLoad format)
$1011 Ge tUse r lD Retums the user ID for a given pathname
$2111 GetUserID2 Retums the user ID for a given pathname
$1111 LGetPathname Retums the pathname for a given user ID
$2211 LGetPathname2 Retums the pathname for a given user ID
$1211 UserShutDown Shuts down a program
$1311 RenamePathname Renames a pathname

1

Chapter 8 Loading Program Files 209

$0F11 GetLoadSeglnfo

Description This function returns the memory-segment-table entry corresponding to
the specified load segment. The memory-segment table is searched for
the specified entry; if the entry is not found, error $1101 is retumed. If
the entry is found, the contents (except for link pointers to other
entries) are moved into the user buffer.

A Important ExpressLoad does not support this function; do not
use this function if you are going to compile your
program in ExpressLoad format, a

P a r a m e t e r s Stack before call

Previous contents

userlD Word—User ID of the load segment

fileNum Word—Load-file number
segNum Word—Load-segment number
buffAddr - Longword—User buffer address

< — S P

Stack after call

P r e v i o u s c o n t e n t s

< — S P

N o t e s The output of this call is a filled user buffer.

E r r o r s $1101 Entry not found

210 Apple IIGS GS/OS Reference

$ 1 0 11 G e t U s e r l D

Description This function searches the pathname table for the specified pathname.
The input pathname is a standard Pascal-type string (a byte count
followed by the string of characters). The pathname is first expanded to
a full pathname (in GS/OS string format) before the search. If a match is
found, the corresponding user ID is returned. A controlling program can
use this function to determine whether to perform a Restart or an
InitialLoad call on an application.

P a r a m e t e r s S t a c k b e f o r e c a l l

Word—Space for result
Longword—User buffer address
<—SP

Stack after call

Word—Corresponding user ID
< — S P

E r r o r s $ 1 1 0 1 E n t r y n o t f o u n d

Chapter 8 Loading Program Files 211

$ 2 111 G e t U s e r I D 2

Description

P a r a m e t e r s

E r r o r s

212 Apple IIGS GS/OS Reference

This function is identical to GetUserlD except that the input pathname is
a GS/OS string rather than a Pascal string.

Stack before call

Previous contents

Space

pathnameAddr

Word—Space for result
Longword—User buffer address

Stack after call

Previous contents

user lD

<—SP

Word—Corresponding user ID
<—SP

Entry not found

$0911 I n i t i a l L o a d

A controlling program (such as GS/OS or a shell program) uses this call to
load another program into memory, in preparation for executing it.

Stack before call

Previous contents

Space
Space

Space

Space
user lD

pathnameAddr

flagWord

Word—Space for result
Word—Space for result
Longword—^Space for result

Word—Space for result
Word—The user ID to be assigned

Longword—Address of the load file's pathname
Word—don' t-use-special-memory flag
< — S P

Stack after call

Previous contents

buffSize
dPageAddr
star tAddr

use r lD

Word—Size of direct-page/stack buffer
Word—Address of direct-page/stack buffer

Longword—Starting address of the program
Word—The user ID assigned
< — S P

If a complete user ID is specified, the GS/OS Loaders use that when
allocating memory for the load segments. If the mainiD portion of the
user ID is 0, a new user ID is obtained from the User ID Manager, based on
the type ID portion of the user ID. If the Type portion is 0, an
Application type user ID is requested from the User ID Manager. User IDs
are explained under "Miscellaneous Tools" in the Apple IIGS Toolbox
Reference.

Chapter 8 Loading Program Files

If the don' t-use-special-memory flag is TRUE (nonzero), the
GS/OS Loaders do not load any static load segments into special
memory. (Special memory is the part of memory equivalent to that used
by a standard Apple II computer under ProDOS 8: all of banks $00 and
$01 and parts of banks $E0 and $E1.) However, dynamic load segments
are loaded into any available memory, regardless of the state of the
don' t-use-special-memory flag.

GS/OS is called to open the specified load file using the input pathname.
Note that the input pathname is a Pascal string. If any GS/OS errors occur
or if the file is not a load file type ($B3-$BE), the GS/OS Loaders return
the appropriate error message.

If the load file is successfully opened, the GS/OS Loaders add the load
file information to the pathname table and call the LoadSegNum
function for each static load segment in the load file.

If an initialization segment (kind = $10) is loaded, the GS/OS Loaders
immediately transfer control to that segment in memory. When the
GS/OS Loaders regain control, the rest of the static segments are loaded
normally.
If the direct-page/stack segment (kind = $12) is loaded, its starting
address and length are returned as output.

If any of the static segments cannot be loaded, the GS/OS Loaders abort
the load and return an error.

After all the static load segments have been loaded, execution returns to
the controlling program with the starting address of the first load
segment (not an initialization segment) of the load file. Note that the
controlling program is responsible for setting up the stack pointer and
direct register, and for actually transferring control to the loaded
program.

E r r o r s $ 1 1 0 2 O M F v e r s i o n e r r o r
$ 11 0 4 F i l e i s n o t l o a d fi l e

$1109 Segment number out of sequence
$110A Illegal load record found
$110B Load segment is foreign

214 Apple IIGS GS/OS Reference

$2011

Description

P a r a m e t e r s

N o t e s

I n i t i a l L o a d 2

This function is similar to InitialLoad except that four variations of the
input information are possible.

Stack before call

Word—Space for result
Word—Space for result

Longword—Space for result
Word—^Space for result
Word—The user ID to be assigned

Longword—Input address or parameter block
Word—don' t-use-special-memory flag

Word—Input type
< — S P

Stack after call

Previous contents

buffSize Word—Size of direct-page/stack buffer
dPageAddr Word—Address of direct-page/stack buffer
startAddr - Longword—Starting address of the program

userE) Word—The user ID assigned
< — S P

If inputType = 0, this function is exactly equivalent to
the InitialLoad call.

If inputType = 1, the input load-file pathname is a GS/OS string
rather than a Pascal string.

If inputType = 2 and the System Loader is being used, the input
address points to a parameter block that contains two parameters:
memoryAddress (4 bytes) and f ileLength (2 bytes). The

Chapter 8 Loading Program Files 215

memoryAddress parameter Specifies where a load file resides in
memory and the f iieLength parameter specifies its size in bytes.
In this case, the System Loader loads the file from memory rather than
from a file.

A Important ExpressLoad does not support input type 2. a

This input type is used by GS/OS at system startup to load any load files
that were previously read into memory as binary images. In this mode,
the GS/OS Loaders do not make any GS/OS calls and can therefore be
used when GS/OS is not in memory or has not yet been initialized.
If inputType = 3, the input address points to an entry in the pathname
table. The pathname, user ID, and file number from the pathname table
entry are used as input for InitialLoad. The jump-table load function (an
internal function) uses this entry to load all the static segments in a run
time library.

If inputType = 4, the input address points to a parameter block that
contains two parameters: memoryAddress (4 bytes) and f iieLength
(2 bytes).

A Important ExpressLoad does not support input type 4. a

The memoryAddress parameter specifies where a resource code file
resides in memory and the f iieLength parameter specifies its size in
bytes. In this case, the System Loader loads the file from memory rather
than from a file, performing exactly the same function as a Memory Load
(inputType = 2) except that all the information about the load
segments is purged from the System Loader's tables. The Resource
Manager uses this input type to relocate code resources that have been
read into memory.

E r r o r s $ 1 1 0 2 O M F v e r s i o n e r r o r

$1104 File is not load file
$1109 Segment number out of sequence
$110A Illegal load record found
$110B Load segment is foreign

216 Apple IIGS GS/OS Reference

$1111 LGe tPa thname

Description This function searches the pathname table for the specified user ID and
file number. If a match is found, the address of the pathname in the
pathname table is returned. The output pathname is a Pascal string.
GS/OS uses this call to get the pathname of an existing application so
that it can set the application prefix before restarting it. Note that the
output address is a pointer to a string within a GS/OS Loader internal
data structure, and nothing should be written to that address or the
following addresses. If you need to retain the pointer, use
LGetPa thname2.

P a r a m e t e r s Stack before call

Previous contents

Space Longword—Space for result
u s e r l D

fileNum

Word—^The user ID to find

Word—^The file number to find

<—SP

Stack after call

P r e v i o u s c o n t e n t s

pathnameAddr - Longword—Address of pathname (if found)

<—SP .

E r r o r s $1101 Entry not found
$1103 Pa thname e r ro r

Chapter 8 Loading Program Files 217

$2211 LGetPa thname2

Description

P a r a m e t e r s

This function is identical to LGetPathname except that the output
pathname is a GS/OS string rather than a Pascal string.

Stack before call

Previous contents

Space

u s e r l D

fileNum

Longword—Space for result
Word—The user ID to find

Word—The file number to find

< — S P

Stack after call

Previous contents

pathnameAddr Longword—^Address of pathname (if found)

<—SP

E r r o r s $1101 Entry not found
$1103 Pathname er ror

$0111 L o a d e r l n i t i a l i z a t i o n

Description This routine initializes the GS/OS Loaders. It is called at system
initialization time only. All GS/OS Loader tables are cleared, and no
assumptions are made about the current or previous state of the system.

Parameters There is no input or output to this call.

E r r o r s N o n e

218 Apple IIGS GS/OS Reference

$0511 L o a d e r R e s e t

Description This routine does nothing and need not be called.

Parameters There is no input or output to this call.

E r r o r s N o n e

$ 0 3 11 L o a d e r S h u t D o w n

Description This routine does nothing and need not be called.

Parameters There is no input or output to this call.

E r r o r s N o n e

$0211 LoaderStartup

Description This routine does nothing and need not be called.

Paramete)re There is no input or output to this call.

E r r o r s N o n e

Chapter 8 Loading Program Files 219

$ 0 6 l l L o a d e r S t a t u s

Description This routine returns the status (initialized or not initialized) of the
GS/OS Loaders. It always returns TRUE because the GS/OS Loaders are
always in the initialized state.

P a r a m e t e r s S t a c k b e f o r e c a l l

Word—Space for result
< — S P

Stack after call

Word—Current GS/OS Loader status; always TRUE
< — S P

E r r o r s N o n e

220 Apple IIGS GS/OS Reference

$ 0 4 l l L o a d e r V e r s i o n

Description This routine returns the version number of the GS/OS Loaders. The
version number is in the same format as that returned by the GS/OS call
Ge tVe rs ion .

P a r a m e t e r s S t a c k b e f o r e c a l l

Previous contents

Space Word—^Space for result
< — S P

Stack after call

Previous contents

v e r s i o n Word—^Present GS/OS Loader version

< — S P

This is the format of the version word returned by this call:

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Prototype = 1
Final release = 0

Major release number ■

Minor release number •

Chapter 8 Loading Program Files 221

$0D11 LoadSegName (Load Segment by Name)

This function loads a named load segment into memory.

Stack before call

Previous contents

Space
Space
Space

Space

u s e r l D

filenameAddr

segNameAddr

Word—Space for result
Word—Space for result
Word—^Space for result

Longword—Space for result

Word—The user ID of the caller

Longword—The address of the load filename

Longword—^The address of the load-segment name

<—SP

Stack after call

Previous contents

segNum
fileNum

u s e r l D

segAddr

Word—The load-segment number of the segment
Word—The load-file number of the segment
Word— T̂he user ID assigned

Longword—The starting address of the segment
< — S P

The input pathname is a Pascal string. The loader calls GS/OS to open the
specified load file. If GS/OS has a problem, a GS/OS error code is
returned. If the file is not a load file (types $B3-$BE), error $1104 is
returned.

Next, the load file is searched for a load segment corresponding to the
specified load-segment name. If no segment has the segment name
requested, error $1101 is returned.

222 Apple IIGS GS/OS Reference

Once a GS/OS Loader has located the requested load segment (and
knows its load-segment number), it checks the pathname table to see
whether the load file is represented. If so, it uses the file number from the
table. Otherwise, the GS/OS Loaders add a new entry to the pathname
table with an unused file number. If necessary, the GS/OS Loaders load
the jump-table segment (if any) from the load file.

Next, the GS/OS Loaders attempt to load the load segment by calling the
LoadSegNum function. If LoadSegNum returns an error, then
LoadSegName returns the error. If LoadSegNum is successful,
LoadSegName returns the load-file number, the load-segment number,
and the starting address of the segment in memory.

E r r o r s $ 1 1 0 1 S e g m e n t n o t f o u n d
$ 1104 File is not load file
$ 1107 File version error
$1109 Segment number out of sequence
$110A Illegal load record found
$11 OB Load segment is foreign

Chapter 8 Loading Program Files 223

$0B11 LoadSegNiun (Load Segment by Number)

Description

P a r a m e t e r s

N o t e s

This function loads a specific load segment into memory. This is the
workhorse function of the GS/OS Loaders. Normally, a program calls this
function to load a dynamic load segment manually. If a program calls this
function to load a static load segment, the GS/OS Loaders do not patch
any existing references to the newly loaded segment.

A Important Do not use this function if you want ExpressLoad to be
used. Since ExpressLoad files may have their segments
rearranged, if an ExpressLoad file is loaded by the
System Loader, references to segments by number may
be incorrect. Use the LoadSegName function
instead, a

Stack before call

P r e v i o u s c o n t e n t s

Space - Longword—Space for result

u s e r l D W o r d — ^ T h e u s e r o f t h e c a l l e r

fileNum Word—The load-file number of the segment
segNum Word—The load-segment number of the segment

<—SP

Stack after call

Previous contents

segAddr - Longword—^The starting address of the segment

< — S P

First, the memory-segment table is searched to see if there is an entry for
the requested load segment. If there is already an entry, the handle to the
memory block is checked to verify that it is still in memory. If the block
is still in memory, this function does nothing further and returns without
an error. If the memory block has been purged, the memory-segment
table entry is deleted.

224 Apple IIGS GS/OS Reference

Next, the load-file number is looked up in the pathname table to get the
load-file pathname. From the file's directory entry, the load-file type is
checked; if it is not a load file (types $B3-$BE), error $1104 is returned.
The load file's modification date and time values are compared to the
file date and file time values in the pathname table. If these values do not
match, error $1107 is returned. This indicates that the run-time library file
at the specified pathname is not the run-time library file that was
scanned when the application was linked together.
The GS/OS Loaders then call GS/OS to open the specified load file. If
GS/OS has a problem, a GS/OS error code is returned.
The load file is then searched for a load segment corresponding to the
specified load-segment number. If there is no segment corresponding to
the load-segment number, error $1101 is returned. If the VERSION field
of the segment header contains a value that is not supported by the
GS/OS Loaders, error $1102 is returned. If the segnum field does not
correspond to the load-segment number, error $1109 is returned. If the
NUMSEX and numlen fields are not 0 and 4, respectively, error $110B is
re tu rned .

If the load segment is found and its segment header is correct, a memory
block is requested from the Memory Manager of the size specified in the
LENGTH field in the segment header. If the org field in the segment
header is not 0, a memory block starting at that address is requested.
Other attributes are set according to segment header fields (see "The
GS/OS Loaders and the Memory Manager," earlier in this chapter).
If the input user ID is not 0, it is used as the user ID of the memory block.

A Important Because of the possibility of conflict between user
IDs, do not use 0 as an input user ID. a

If the requested memory is not available, the Memory Manager and the
GS/OS Loaders try several techniques to free up memory:
■ The Memory Manager purges memory blocks that are purgeable.
■ The Memory Manager moves movable segments to enlarge contiguous

m e m o r y.

■ The GS/OS Loaders call their Cleanup routines (an internal function)
to free their own unused internal memory.

Chapter 8 Loading Program Files 225

If all these techniques fail, the GS/OS Loaders return with the last
Memory Manager error.

If enough memory is available, the GS/OS Loaders load the load segment
into memory and process its relocation dictionary, the part of every
relocatable segment that the loader uses to patch the code for correct
execution at its current address. See Appendix F, "Object Module
Format," for more information.

The loader adds a new entry to the memory-segment table and returns
with the memory handle of the segment's memory block.

OMF records Only the following object module format records are supported by the
GS/OS Loaders:
L C O N S T ($ F 2)
D S ($ F 1)
R E L O C ($ E 2)
INTERSEG ($E3)
c R E L O C ($ F 5)
cINTERSEG ($F6)
S U P E R ($ F 7)
E N D ($ 0 0)

Any other records encountered while loading result in error $110A.

E r r o r s $ 11 0 1 S e g m e n t n o t f o u n d
$1102 OMF version error
$1104 File is not load file
$1107 File version error
$ 1109 Segment number out of sequence
$110A Illegal load record found
$110B Segment is foreign

226 Apple IIGS GS/OS Reference

$1311 R e n a m e P a t h n a m e

Descript ion This routine searches the pathname table for a match of the pathname
1 specifed by the oldAddress parameter, and then replaces the matched

pathname with the new pathname specified by the newAddress
parameter. The input pathnames must be type 1 strings.
The GS/OS Loaders call the GS/OS ExpandPath routine for each input
pathname before it is used for string comparison and replacement. Thus,
the input pathnames can be full or partial pathnames of volumes.
subdirectories, or files.

GS/OS calls RenamePathname whenever it must change a pathname; thus.
any files that the loaders are managing also have their pathnames
changed.

P a r a m e t e r s Stack before call

P r e v i o u s c o n t e n t s

oldAddress - Longword—The address of the old pathname

newAddress - Longword—The address of the new pathname

A 1 CO

Stack after call

Previous contents

< — S P

E r r o r s N o n e

Chapter 8 Loading Program Files 227

Description A controlling program (such as GS/OS) uses this call to restart (relaunch) a
dormant application in memory. Only software that is restartable can be
successfully restarted. For a program to be restartable, it must initialize
its variables and not assume that they will be preset at load time. A reload
segment can be used for initializing data because it is reloaded from the
file during a restart. The controlling program is responsible for knowing
whether a given program can be restarted; the GS/OS Loaders do no
checking.

P a r a m e t e r s S t a c k b e f o r e c a l l

Word—Space for result
Word—Space for result

Longword—Space for result

Word—Space for result
Word—The user ID of the program to restart
<—SP

Stack after call

Word—Size of direct-page/stack buffer
Word—^Address of direct-page/stack buffer

Longword—The starting address of the program

Word—The user ID assigned
<—SP

Notes An existing user ID must be specified; otherwise, the GS/OS Loaders
return error $1108. If the user ID is not known to the GS/OS Loaders, error
$1101 is returned.

Applications can be restarted only if all the segments in the memory-
segment table with the input user ID are in memory; these are the
application's static segments. If all are there, the GS/OS Loaders
resurrect the application from its dormant state by calling the Memory
Manager to lock and make unpurgeable all its segments.

228 Apple IIGS GS/OS Reference

The Restart call returns the user ID and the starting address of the first
segment, as well as the direct-page/stack information from the
pathname table. After all the static segments are resurrected, the GS/OS
Loaders look for initialization segments and reload segments; they
execute the former and reload the latter.

If there is a pathname table entry for the user ID but not all the segments
are in memory, the GS/OS Loaders first call UserShutdown, which purges
the user ID from all its tables, and then perform an InitialLoad from the
original load file.

E r r o r s $ 1 1 0 1 A p p l i c a t i o n n o t f o u n d
$1108 Use r ID e r ro r

Chapter 8 Loading Program Files 229

$0E11 UnloadSeg (Unload Segment by Address)

Description This function unloads the load segment that contains the specified input
address.

P a r a m e t e r s S t a c k b e f o r e c a l l

Word—Space for result
Word—Space for result
Word—Space for result

Longword—An address within segment to be unloaded

< — S P

Stack after call

Word—The load-segment number of the segment
Word—The load-file number of the segment
Word—The user ID of the segment
< — S P

Notes The GS/OS Loaders call the Memory Manager to locate the memory block
containing the specified address. If no allocated memory block contains
the address, error $1101 is returned. The user ID associated with the
handle of the memory block returned by the Memory Manager is
extracted, and the memory-segment table is scanned to find the user ID
and handle. If an entry is not found, error $1101 is returned.

If the entry in the memory-segment table is for a jump-table segment, the
specified address should be pointing to the jump-table entry for a
dynamic segment reference. The load-file number and segment number of
the jump-table entry are extracted. If the entry in the memory-segment
table is not for a jump-table segment, the load-file number and segment
number of the memory-segment table entry are extracted.

E r r o r s $ 11 0 1 S e g m e n t n o t f o u n d

230 Apple IlGS GS/OS Reference

$0C11 UnloadSegNum (Unload Segment by Number)

Description This function unloads a specified (by number) load segment that is
currently in memory.

A Important Do not use this function if you want ExpressLoad to be
used. Since ExpressLoad files may have their segments
rearranged, if an ExpressLoad file is loaded by the
System Loader, references to segments by number may
be incorrect. Use the UnLoadSeg function instead, a

P a r a m e t e r s Stack before call

Previous contents

userlD Word—The user of the segment to be unloaded

fileNum Word—The load-file number of the segment
segNum Word—^The load-segment number of the segment

< — S P

Stack after call

Previous contents

<—SP

N o t e s The GS/OS Loaders search the memory-segment table for the input load-
file number and load-segment number. If there is no such entry, error
$1101 is returned.

Next, the Memory Manager is called to make the memory block
purgeable, using the memory handle in the table entry.
All entries in the jump table referencing the unloaded segment are
changed to their unloaded states.
If the input user ID is not 0, it is used as the user ID of the memory block.

A Important Because of the possibility of conflict between user
I D s , d o n o t u s e 0 a s a n i n p u t u s e r I D . a 1

Chapter 8 Loading Program Files 231 'j

If both the load-file number and the load-segment number are specified,
the specific load segment is made purgeable whether it is static or
dynamic. Note that if a static segment is unloaded, the application
cannot be restarted. If either input is 0, only dynamic segments are made
purgeable.
If the input load-segment number is 0, all dynamic segments in the
specified load file are unloaded.
If the input load-file number is 0, all dynamic segments for the user ID are
unloaded.

E r r o r s $ 11 0 1 S e g m e n t n o t f o u n d

232 Apple IlGS GS/OS Reference

$ 1 2 11 U s e r S h u t D o w n

Description This function is called by the controlling program to close down an
application that has just terminated. If the specified user ID is 0, the
current user ID is assumed.

P a r a m e t e r s S t a c k b e f o r e c a l l

Word—Space for result
Word—The user ID of the program to shut down
Word—The quit flag
< — S P

Stack after call

Word—The user ID of the program that was shut down
< — S P

Notes The quit flag corresponds to the quit flag used in the GS/OS Quit call.
■ If the quit flag is 0, all memory blocks for the user ID are discarded

and all the GS/OS Loaders' internal tables are purged of the user ID.
The application cannot be restarted. The user ID is also removed
from the system so that it can be reused.

■ If the quit flag is $8000, all memory blocks for the user ID are
discarded and all the GS/OS Loaders' tables (except the pathname
table) are purged of the user ID. The application can be reloaded
(but not restarted), because its pathname is remembered.

■ If the quit flag is any other value, the memory blocks associated with
the specified user ID (with auxiD cleared) are processed as follows:
□ All memory blocks corresponding to dynamic load segments are

discarded.

□ All memory blocks corresponding to static load segments are
made purgeable.

□ All other memory blocks are purged.

Chapter 8 Loading Program Files 233

i

In addition, all dynamic segment entries in the memory-segment table
and all entries in the jump-table directory for the specified user ID are
removed. The application is now in a dormant state and can be restarted
(resurrected by the GS/OS Loaders very quickly because all the static
segments are still in memory). However, as soon as any static segment is
purged by the Memory Manager for any reason, the GS/OS Loaders must
reload the application from its original load file.

E r r o r s $ 1 1 0 1 U s e r I D n o t f o u n d

234 Apple IIGS GS/OS Reference

Chapter 9 Using the Console Driver

The console is a conceptual component of a computer system; it
consists of the principal conduits by which the user sends commands
to the computer and receives messages from the computer. On the
Apple IIGS, like most personal computers, the console consists of the
keyboard (for input) and the video display screen (for output).
The GS/OS console driver is a loaded driver that allows sophisticated
manipulation of the Apple IlGS text page. It runs in both 40-column and
80-column mode. The console driver supports many advanced features,
while using the standard Apple II BASIC and Pascal control codes.

♦ Note: The console driver is for use only by applications that run in text
mode. The console driver does not support the standard Apple II
Hi-Res or double Hi-Res graphics. If your application uses the
Apple IlGS Super Hi-Res graphics screen, it writes to the screen with
toolbox calls. See the Apple IlGS Toolbox Reference.

i

235

G e n e r a l i n f o r m a t i o n

The GS/OS console driver allows an application to treat both parts of the console
(keyboard and screen) as a single device that can be read from or written to. Because the
console has two parts, the console driver does also: an input routine and an output
routine, shown in Figure 9-1.

Console output

The Console Output routine writes to the screen. It supports uppercase, lowercase,
inverse, and MouseText characters. It also includes a suite of control characters with
functions such as any-direction scrolling, character-set selection, and cursor control.
Finally, it permits areas of the screen to be saved to off-screen buffers, and text port
parameters to be selectively saved and restored—in effect, allowing a simple windowing
system.

All commands to the Console Output routine are sent as control characters. This allows the
programmer to create strings of commands that will be executed one after another, but
that require only a single write call. All operations occur in a rectangular subset of the
hardware screen known as the text port. All text outside the text port is protected; that is,
it will not be affected by any console calls.

Console input

The Console Input routine accepts characters from the keyboard. There are two basic
input modes: raw mode allows for simple keyboard input, whereas the more advanced
user-input mode allows for text-line editing and application-defined terminator keys.
User-input mode also supports features such as the interrupt key, which allows
application-defined editing keystrokes such as the arrow keys to change a setting or using
a key combination to bring up a help screen.

The application can supply a default string to the user input mode. If the default string
contains more characters than the width of the input field, the extra characters are
retained; however, they are displayed only if characters are deleted from the visible part
of the field. Horizontal scrolling of the input field is not supported.
The application can also specify options such as overstrike or insert mode on entry. A
blinking block cursor signifies overstrike mode; a blinking underline cursor specifies
insertion. The cursor blinking rate is based on the current control panel settings.

236 Apple IIGS GS/OS Reference

The user can insert control characters into the input string by pressing
Command-Control-c/j«racter, where character is replaced by any keyboard character.

♦ Note: The Command key is the key historically known as the Apple key or as the
I O p e n - A p p l e k e y .

I Control characters are highlighted on the screen in inverse video, but are returned in
I the input string as codes from $00 to $1F. All normal ASCII characters are returned in theI r a n g e $ 2 0 - $ 7 F.
;; The terminators used by the Console Input routine are more advanced than the newline
ji characters specified in GS/OS (see the description of the NewLine call in Chapter 7). User-
; specified terminators can include not only ASCII codes for the terminator characters, but

also the keyboard modifier bits. For example, the Return and Enter keys can be given
different functions by separately specifying terminators, one with the keypad flag set and
one with it clear.

Chapter 9 Using the Console Driver 237

The Console Output routine

The Console Output routine handles writing to the screen. It supports different screen
sizes and defines areas of the screen called text ports, which can be used to protect parts of
the screen. All commands to the Console Output routine are sent as control characters.

Sc reen s i ze

The default screen size (in columns of width) is always 80 columns. You can change the
screen size by writing the correct screen control code, described in the section "Screen
Control Codes" later in this chapter.

The 40-column screen consists of 40 columns of text in 24 lines. The upper-left corner is 0,0
and the lower-right comer is 39,23.

The 80-column screen consists of 80 columns of text in 24 lines. The upper-left corner is 0,0
and the lower-right corner is 79,23.

The text port

The driver maintains an active text port in which all activity occurs. The default size of
this text port is the entire screen. However, subsequent calls can be made toĵ esize the
port. All text outside the text port is protected—no console driver calls can affect that
t e x t .

Two control commands allow the application to save the current text port's definitions,
start with a new port, and then retrieve the original port. This allows a simple windowing
system. In addition, driver-specific control calls allow the application to read the text
port data stmcture; however, the values in the data structure can be changed only with
control commands (see the section "Screen Control Codes" later in this chapter).

238 Apple IIGS GS/OS Reference

This is the structure of the text port record:
T e x t P o r t R e c = {

b y t e c h .

w i n d L e f t ,

w i n d T o p ,
w i n d R i g h t ,
w i n d B o t t o m ,
w i n d W i d t h ,

w i n d L e n g t h ,
c o n s W r a p ,

c o n s A d v a n c e ,

c o n s L F ,

c o n s S c r o l l ,

c o n s V i d e o ,
c o n s D L E ,

c o n s M o u s e ,
c o n s F i l l }

Here are the definitions for the fields:

w i n d L e f t

w i n d T o p
w i n d R i g h t
w i n d B o t t o m

w i n d W i d t h

w i n d L e n g t h

c o n s W r a p

c o n s A d v a n c e

The current location of the cursor Qiorizontal and vertical, from the
upper-left comer). The cursor is always within the current text port, but is
expressed in absolute screen coordinates.
Default = 0,0

Boundaries of the current text port, in absolute screen coordinates.
windTop must be <= windBottom, and
windLeft must be <= windRight.
Default = full hardware screen

Size of the current text port, calculated as follows:
windWidth = windLeft - windRight + 1
windLength = windTop - windBottom + 1
Default = full hardware screen

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, the cursor wraps
to the first column of the next line after printing in the rightmost column.
Default = TRUE

A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, the cursor moves
one space to the right after printing.
Default = TRUE

Chapter 9 Using the Console Driver

consLF A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. Carriage return characters
always move the cursor to the first column of the text port. If conslf is
TRUE, the cursor will also move to the next line (note that this could
cause a scroll—^see next flag).
Default = TRUE

consScroii A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, the screen will
scroll if the cursor is moved past the top or bottom of the screen.
Default = TRUE

consvideo A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, output is
displayed in normal video. If FALSE, output is displayed in inverse video.
Default = TRUE

consDLE A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, character $10
(DLE) is interpreted as a space expansion character; when it is
encountered in the input stream, the ASCII value of the next character
minus 32 becomes the number of spaces to output.
Default = TRUE

consMouse A Boolean flag: 0 = FALSE, 128 ($80) = TRUE. If TRUE, MouseText is
turned on. When MouseText is on, inverse uppercase characters are
displayed as MouseText.
Default = FALSE

consFiil This is the fill character used for clearing areas of the screen. It is an
actual screen byte—the value of the character as stored in memory—so
the high-order bit must be turned on for normal display. Fot̂ example,
spaces (ASCII $20) should be specified by $A0. The value in this field is
altered whenever inverse mode is changed to normal or vice versa.
Default = $A0 (screen space)

Character set mapping

Output characters go through a number of stages before they are placed in screen memory
and appear on the screen. The console driver always uses the Apple IIGS alternate character
set, which includes uppercase and lowercase characters, punctuation, numbers, inverse
characters, and MouseText characters.

240 Apple IIGS GS/OS Reference

■ Table 9-3 Console driver character mapping—special direct inverse mode

N o r m a l d i s p l a y m o d e I n v e r s e d i s p l a y m o d e

Input values As displayed A s s t o r e d As displayed A s s t o r e d

80-9F Uppercase inverse 0 0 - l F Uppercase normal 80-9F
A O - B F Inverse special 2 0 - 3 F Special characters normal mode A O - B F

C O - D F MouseText characters 40-5F Uppercase normal CO-DF

EO-FF Inverse lower 60-7F Lowercase normal EO-FF

Screen control codes

In any mode, values from $00 to $1F are interpreted as control codes. Some control codes
are one-byte commands; others use from two to four bytes of operands, which follow the
control character. If an output stream ends in the middle of a multibyte sequence, the
console driver simply uses the first bytes of the next output stream. The actual command
is not executed until the entire command string has been read. Here are the defined
cont ro l codes :

$ 0 0 N U L L
No operation is performed.

$01 Save Current Text Port and Reset Default Text Port
Saves the current text port and resets to the default text port. If the system is out of
memory, no error is returned, and the text port is simply reset.

$02 Set Text Port Size
Accepts the next four bytes as absolute screen coordinates + 32. Sets the current
text port to the new parameters. The parameters are in the following order:
windLeft, windTop, windRight, windBottom. Any parameter outside the
screen boundaries is clipped to a legal value. The cursor is set to the upper-left corner
of the new text port.

$03 Clear from Beginning of Line
Clears all characters from the left edge to and including the cursor. Sets them to the
current consFi i i character.

$04 Pop Text Port
Restores the text port to the most recently saved value (see code $01). If no saved
ports exist, resets the text port to the default values. If an 80-column text port is
pushed and subsequently restored in 40-column mode, the text port may be altered
to fit in the 40-column screen (see code $11, Set 40-Column Mode).

242 Apple IIGS GS/OS Reference

,1

Horizontal Scroll

Interprets the next byte as an 8-bit signed integer depicting the number (N) of
columns to shift. equal to zero is a null operation. If N'ls less than zero, the text
port is shifted to the left; N greater than zero shifts to the right. If the shift
magnitude is equal to or greater than windwidth, the text port is cleared.
The shifted characters are moved directly to their destination location. The space
vacated by the shifted characters is set to the current consFiii character (see the
description ofconsFiii earlier in this chapter). Characters shifted out of the text
port are removed from the screen and are not recoverable.
Set Vert ical Posit ion

Interprets the next byte as a text port-relative vertical position + 32. If the destina
tion is outside the current text port, the cursor is moved to the nearest edge.

Ring Bell
Causes the System Beep to be played. It has no effect on the screen.

Backspace
Moves the cursor one position to the left. If the cursor was on the left edge of the
text port and conswrap is TRUE, the cursor is placed one row higher and at the right
edge. If the cursor was also on the topmost row and consScroii is TRUE, the text
port will scroll backward one line.

Tab (no operation)
This command is ignored.

Line Feed

Causes the cursor to move down one line. If the cursor was at the bottom edge of
the tejtt port and consScroil is TRUE, the text port scrolls up one line.

Clear to End of Text Port
Clears all characters from the cursor to the end of the current text port and sets them
to be equal to the current consFiii character.

Clear Text Port and Home Cursor
Clears the entire text port and resets the cursor to windLeft, windTop.

Carriage Return
Resets the cursor to the left edge of the text port; if consLF is TRUE, performs a
line feed (see $0A, Line Feed).

Set Normal Display Mode
After this character, displays all subsequent characters in normal mode.

Chapter 9 Using the Console Driver

Set Inverse Display Mode
After this character, displays ail subsequent characters in inverse mode.

DIE Space Expansion
If consDLE is TRUE, interprets the next character as number of spaces + 32, and the
correct number of spaces is issued to the screen. If consOLE is FALSE, the DIE
character is ignored and the following character is processed normally.

Set 40-Column Mode
Sets the screen hardware for 40-column display. If changing from 80-column display,
copies the first 40 columns of the 80-column display into the 40-column display.
If the current text port does not fit in the 40-column screen, it is adjusted by one of
t w o m e t h o d s :

■ If the text port is 40 columns or narrower, the entire text port (left side, right
side, and cursor) is slid over until the right edge is collinear with the right edge of
the screen.

■ If 41 columns or wider, the port becomes 40 columns and the cursor moves to the
left edge.

Set 80-Column Mode

Sets the screen hardware for 80-column display. If changing from 40-column display,
copies the 40-column data to the left half of the 80-column display and clears the
right half of the screen to the consFiii character.

Clear from Beginning of Text Port
Clears all characters from the beginning of the text port up to and including the
cursor locat ion.

Set Horizontal Position

Interprets the next byte as a text port-relative horizontal position + 32. If the
destination is outside the current text port, the cursor is moved to the nearest edge.
Set Cursor Movement Word

Interprets the next byte as cursor
movement control, and sets the
values of these Boolean flags:

iiilill 11 4 3 2 1 0

consDLE ■

consScroll-

consWrap ■

consAdvance

The functions of the individual flags are described in the section "The Text Port"
earlier in this chapter.

244 Apple IIGS GS/OS Reference

Scroll Down One Line

Scrolls the text port down one line. Does not move the cursor.

Scroll Up One Line
Scrolls the text port up one line. Does not move the cursor.

Disable MouseText Mapping
When MouseText is disabled, uppercase inverse characters are displayed as such (see
the section "Character Set Mapping" earlier in this chapter).

Home Cursor

Resets the cursor to the upper-left corner of the text port.

Clear Line

Clears the line that the cursor is on. Resets the cursor to the leftmost column in the
w i n d o w .

Enable MouseText Mapping
When MouseText is enabled, uppercase inverse letters are displayed as MouseText
symbols (see the section "Character Set Mapping" earlier in this chapter).
Move Cursor Right
Performs a nondestructive forward-space of the cursor. If consWrap is TRUE,
the cursor may go to the next line; if cons Scroll is TRUE, the screen may scroll up
one line.

Clear to End of Line
Clears from the position underneath the cursor to the end of the current line.

Go to X,Y

Adjusts the cursor position relative to the text port. The parameters passed are X+32
and Y+32. If the new locations are outside the current text port, the cursor is placed
on the nearest edge.

Move Cursor Up
Moves the cursor up one line (reverse line feed). If the cursor is already on the
uppermost line of the text port and consScroii is TRUE, it will cause a reverse
scro l l .

Chapter 9 Using the Console Driver 245

The Console Input routine

The console driver's Console Input routine, especially in user input mode, provides a
convenient method for obtaining user input. It is best suited for the fixed-field, fill-in-
the-blanks type of input with simple line-editing commands and program-defined default
strings.

The console driver obtains input directly from the keyboard hardware, or from the
Apple IIGS Toolbox Event Manager if it is active. The Console Input routine monitors
not only the keystrokes but the modifier keys (Shift, Control, Option, and so on) and
can make decisions based on both the keystroke and the current modifiers.

The input port

All information about the current input is contained in the input port, a data structure that
is maintained by the Console Input routine but can be read, modified, and written back
by the application program. The data structure is as follows:

I n p u t P o r t R e c = {
b y t e fi l l C h a r ,

d e f C u r s o r ,
c u r s o r M o d e ,

b e e p F l a g ,
e n t r y T y p e ,

e x i t T y p e ,
l a s t C h a r ,

l a s t M o d ,

l a s t T e r m C h a r ,
l a s t T e r m M o d ,
c u r s o r P o s ,

i n p u t L e n g t h ,
i n p u t F i e l d ,
o r i g i n H ,
o r i g i n X , (w o r d)
o r i g i n V }

246 Apple IlGS GS/OS Reference

The meanings of each field are as follows:

fi l l C h a r The character that fills empty space in the input field. It is displayed by
the Console Output routine so it is usually $20 (normal space) (see the
section "Character Set Mapping" earlier in this chapter). Another useful
fill character is the MouseText "ghost space" character. This can be
displayed by setting f ilichar to $C9. However, since MouseText
characters are only available in normal mode, do not use MouseText fill
characters when the screen is in inverse mode.
Default = Space ($20)

d e f C u r s o r The default cursor-mode setting. The value in this field is placed into the
cursorMode field at the beginning of an input cycle from the user. The
application controls the cursor mode the user starts with by controlling
this setting.
Default = $80 (cursor starts at end of string, control-character entry is
disabled, cursor type = insert).

c u r s o r M o d e Contains three status bits that describe the current cursor-mode setting:

1 ? 6 3 4 | 3 | 2 l l o j

Cursor starting position: -1
Over first character = 1

End of string = 0

Control-character entry: —
Enabled = 1

Disabled = 0

Cursor type: -
Overstrike = 1

Insert = 0

Reserved: must be 0 ||||

If control-character entry is enabled, the user can insert control
characters into the stream by typing Op\\on-Q.on\xo\-character, where
character is replaced by any valid keyboard character.

The value in this field may be different from defCursorMode because
the user can switch between insert and overstrike modes during entry.

b e e p F l a g If this flag is nonzero, the Console Input routine beeps on input errors
1
/ (line too long, and so on).
1
i
i

Default = TRUE

!'

Chapter 9 Using the Console Driver 247

e x i t T y p e

entryType Tells the Console Input routine the status of the current input:
0 = initial entry
1 = interrupt reentry
2 = no-wait mode reentry
On exit, the Console Input routine adjusts this value so that it is correct
for the next entry. If the application wishes to cancel an in-progress input
and start with a new one, it must make the DControl subcall Abort Input.
Default = initial entry

exitType Tells the application which type of exit was made. (0 = input not
terminated yet, either because end-of-field was reached on raw input or a
no-wait exit occurred.) Any other value is the number of the terminator
that halted the input.
(Set on exit from the input cycle.)

lastchar The ASCII value ($00-$7F) of the most recently typed key.
(Set on exit from the input cycle.)

lastMod The value of the modifiers mask of the most recently typed key. See the
section "Terminators" later in this chapter for a description of the
modifier bits.
(Set on exit from the input cycle.)

lastTermChar The ASCII value of the terminator (as specified in the user-supplied
terminator list) that caused the most recent input termination.
(Set on exit from the input cycle.)

l a s t c h a r

l a s t M o d

l a s t T e r m M o d

c u r s o r P o s

i n p u t L e n g t h

The value of the modifiers mask of the terminator that caused the most
recent input termination.
(Set on exit from the input cycle.)

Index of the cursor within the input string. (0 = over the first character.)
The cursor is allowed to move from the beginning of the string to one
position past its end.
Default = position of cursor when input begins

The length of the input string at the current state of editing. This is the
length that is returned in the Transfer Count.
Default = length of default input string

248 Apple IIGS GS/OS Reference

inputFieid Used internally by the UIR. It is useful only when restoring the
InputPortRec. This field is calculated when a new call is made to UIR.
Default = no default

originH Contains the cursor's horizontal position.

o r i g i n X (w o r d)
Contains a variable used by the UIR.

originv Contains the cursor's vertical position.

Using raw mode

Raw mode is the simplest form of user input. The keyboard is simply scanned until (1) a
number of keys equal to request Count has been pressed, or (2) a specified terminator
has been typed. As with other serial input drivers, the terminator is included in the
transferred string. There are no echo, no cursor, and no editing.

Using user input mode

This input mode provides more functions than raw mode. The following steps are required
to use it:

1. If the application wishes to supply a default string, it must do so by using a Control
subcall (see "DStatus" later in this chapter).

2. If modes other than the default modes are desired, the application must read the input
port, adjust it, and write it back.

3. Terminators must be assigned with a SetTerminators call (DControl subcall).
4. The cursor must be positioned to the desired start of the input field with a

Go To X, Y instruction.

A Read call is made to initiate user input mode. If only simple terminators have been
requested, the Console Input routine will return as soon as one has been pressed. If there
are interrupt terminators, the application must make calls to determine the type of
interruption and determine whether more work (repeated read entries) is necessary.

Chapter 9 Using the Console Driver 249

Te r m i n a t o r s

A terminator is a character that, when read, terminates or interrupts a Read call. The
console driver permits more than one terminator character and also can note the state of
modifier keys in considering whether a character is to be interpreted as a terminator.

The console driver keeps track of terminators with a terminator list The terminator list
is set using a control call (see "DStatus" later in this chapter). This is the format of a
terminator list:

T e r m L i s t = {

w o r d t e r m M a s k ,

t e r m C o u n t ,
t e r m L i s t [1 . . . t e r m C o u n t]

}

The fields have the following meanings:

termMask A mask that is added to the input data with an AND operator before it is
compared to the terminator list entries. The high-order byte is the
modifiers mask; it is used to mask out irrelevant modifiers (for example,
if it doesn't matter whether the keystroke was made from the main
keyboard or the keypad). The low-order byte is the ASCII mask; it is
used to simplify ASCII comparisons (for example, if it doesn't matter
whether a character is uppercase or lowercase).

termCount A count of the number of terminators. A count of 0 means terminators are
disabled and there is no list. It specifies the number of entries, so it must
be multiplied by two to get a byte count. The maximum terminator
count is 254.

termList A list of terminator characters and their modifiers. Each entry is in the
same format as termMask; the high byte is the modifiers mask, and the
low byte is the ASCII value of the terminator character. After the
incoming data is combined with the terminator mask in a logical AND
operation, the data is compared with each of the entries in the
terminator list. A match causes a termination. In addition, if the
application supplies a term list entry with bit 13 set, this entry is an
interrupt terminator. The Console Input routine will give up control but is
set up to restart the input. The application can use this capability to
implement help screens or custom editing keys.

250 Apple IIGS GS/OS Reference

□

The terminator mask has the following format:

High byte
15 114 113 112 nil 10 9

Low byte

7 | 6 j 5 | 4 | 3 | 2 | l | 0

Apple key/Command key down = 1 —'

Option key/Function key down = 1 -

Interrupt = 1

Keypad key down = l -J
Caps Lock key down = 1

Control key down = 1 —

Shift key down = 1

ASCII data mask •

Reserved: must be 0

How to disable terminators

The application can disable terminators by doing either of the following:
■ setting the mask to 0
■ setting the count to 0

In addition, if a memory error occurs while new terminators are being received, the
terminator list is dumped.

If an incorrectly formed list (for example, if count = 255) is sent to the Console Input
routine, it is discarded and the original terminators remain in place.

Terminators and newline mode

Newline characters as defined by the Character FST are incompatible with termi
nators as defined by the console driver's user input mode. If you need a combined
newline/termination mode, use only the following combinations:

C h a r a c t e r F S T C o n s o l e d r i v e r

Newline mode enabled Raw input mode, terminators disabled
Newline mode disabled Raw input mode, terminators enabled
Newline mode disabled User input modes

Chapter 9 Using the Console Driver 251

User-input editing commands

The following editing commands are supported by the console user input mode:

< — o r Move cursor backward one position.
Control -H

- » o r Move cursor forward one position.
C o n t r o l - U

Option—> Move cursor to end of next word.

Opt ion-^ Move cursor to beginning of previous word.

Option-> or Move cursor to end of line.

Option-.

Option-< or Move cursor to beginning of line.
Option-,

De le te or Delete character to left of cursor and move cursor and
Cont ro l -D o r string to left (destructive backspace).
Cont ro l -De le te o r

Option-Delete or
Option-D

Control-F or Delete the character underneath the cursor and move the rest of the string
Option-F to the left.

Control-X or Delete entire input string.
Option-X or
Clear

Control-Y or Clear string from cursor to end.
Option-Y

Control-Z or Reset input string to application-specified default.
Option-Z

Cont ro l -E or Toggle between insertion and overstrike characters.
Option-E

Option-Control- Insert control character into input string (if enabled; control-character
character insertion is enabled by setting a bit in cursorMode).

252 Apple IlGS GS/OS Reference

Using no-wait mode

No-wait mode is defined so that drivers will not hold control of the system. When in wait
mode, a Read call does not terminate until the requested number of characters (or a
terminator) is received. When in no-wait mode, the system returns immediately from a
Read call as soon as there is no more input available. In such a case, it is the responsibility
of the application program to continue calling the input routines until the final number of
characters has been transferred.

Device cal ls to the console driver

The GS/OS console driver supports the standard set of device calls:
D I n f o
D S t a t u s

D C o n t r o l
D R e a d
D W r i t e

The standard calls are described in Chapter 7. The rest of this chapter documents the
driver-specific DStatus and DControl subcalls, and describes how the console driver
handles any of the standard device calls differently from the ways documented in
Chapter 7. Any calls or subcalls not discussed here are handled exactly as documented
in Chapter 7.

DStatus ($202D)

This call is used to request status information from the console driver. For DStatus, the
console driver supports most of the standard subcalls and several device-specific subcalls.
Status subcalls are specified by the value of the status code parameter. The following
status codes are supported:

S t a t u s c o d e S u b c a l l n a m e S t a t u s c o d e S u b c a l l n a m e

$ 0 0 0 0 G e t D e v i c e S t a t u s $ 8 0 0 2 G e t T e r m i n a t o r s
$ 0 0 0 1 G e t C o n fi g P a r a m e t e r s $ 8 0 0 3 S a v e Te x t P o r t
$ 0 0 0 2 G e t W a i t S t a t u s $ 8 0 0 4 G e t S c r e e n C h a r
$ 8 0 0 0 G e t T e x t P o r t $ 8 0 0 5 G e t R e a d M o d e
$ 8 0 0 1 G e t l n p u t P o r t $ 8 0 0 6 G e t D e f a u l t S t r i n g

Chapter 9 Using the Console Driver 253

Calls with status codes of less than $8000 are standard Status subcalls; calls with status
codes of $8000 and over are device-specific subcalls. The calls are described more fully in
the following sections.

Standard DStatus subcalls

Standard DStatus subcalls that are not described here function exactly as documented in
GS/OS Device Driver Reference.

GetConfigParameters (DStatus subcall)

The console driver obtains its setup information from battery RAM and therefore uses no
control parameters. This call returns an empty control parameter record (a zero).

The minimum request count is 2. The maximum transfer count is 2.

GetTextPort (DStatus subcall)

statusCode = $8000

status list = a text port record

This subcall copies the contents of the current text port record into the status list buffer.
See the section "The Text Port" earlier in this chapter for more details.

The minimum request count is 0. The maximum transfer count is l6.

GetlnputPort (DStatus subcall)

statusCode = $8001

status list = input port record

This subcall copies the contents of the current input port record into the status list buffer.
See "The Input Port" earlier in this chapter for more details.

The minimum request count is 0. The maximum transfer count is 12.

254 Apple IIGS GS/OS Reference

GetTerminators (DStatus subcall)

statusCode = $8002

status list = terminator list record

This subcall copies the current terminator list into the status list buffer. The format of the
list is count, enable/mask, terminator list. See the section "Terminators" earlier in this
chapter for details.
This call transfers only complete terminator lists. The minimum request count is
(number of entries * 2) + 4. The transfer count is set to this value. The maximum transfer
count is 514: 4 bytes of header and 255 terminator words.

SaveTextPort (DStatus subcall)

statusCode = $8003

status list = text port size and contents
This subcall copies not the text port record but the actual text port screen data into the
status list buffer. The format of the data as written is windwidth, windLength, screen
bytes (the contents of screen memory within the limits of the port). The size of the status
list in bytes is therefore (windwidth times windLength) plus 2.

This call transfers only a complete screen data record. The minimum request count is the
status list size as calculated.

GetScreenChar (DStatus subcall)

statusCode = $8004

status list = 1 byte

This subcall copies the current screen byte (that is, the byte underneath the cursor) to the
status list. Note that this is the actual value of the byte in screen memory, which has a
complex relation to the character's ASCII value. See the section "Character Set Mapping"
earlier in this chapter.

The minimum request count is 1. The maximum transfer count is 1.

Chapter 9 Using the Console Driver 255

n

GetReadMode (DStatus subcall)

statusCode = $8005'

status list = 2 bytes

This subcall copies the current read mode flag into the status list. If zero, input is in user
input mode. If $8000, input is in raw mode. The value of the read mode flag is set by the
DControl subcall SetReadMode, described later in this chapter.

The minimum request count is 2. The maximum transfer count is 2.

GefDefaultString (DStatus subcall)

statusCode = $8006

status list = character string

This subcall copies the current default input string into the status list. This string (set with
the DControl subcall SetDefaultString) is placed in the input field at the beginning of each
cycle of user input. The string can have only standard ASCII ($00-$7F) characters, and can
be no more than 254 characters long.

The request count in this case defines the maximum number of bytes that can be returned.

DControl ($202E)

This call is used to send control information to the console driver. For DControl, the
console driver supports most of the standard subcalls and several device-specific subcalls.
Control subcalls are specified by the value of the control code parameter. The following
control codes are supported:

C o n t r o l c o d e M e a n i n g C o n t r o l c o d e M e a n i n g

$ 0 0 0 0 R e s e t D e v i c e $ 8 0 0 2 R e s t o r e T e x t P o r t
$ 0 0 0 1 F o r m a t D e v i c e $ 8 0 0 3 S e t R e a d M o d e
$ 0 0 0 2 E j e c t M e d i a $ 8 0 0 4 S e t D e f a u l t S t r i n g
$ 0 0 0 3 S e t C o n t r o l P a r a m $ 8 0 0 5 A b o r t l n p u t e t e r s
$ 0 0 0 4 S e t W a i t S t a t u s $ 8 0 0 6 A d d T r a p
$ 8 0 0 0 S e t l n p u t P o r t $ 8 0 0 7 R e s e t T r a p
$ 8 0 0 1 S e t Te r m i n a t o r s

256 Apple IlGS GS/OS Reference

Calls with control codes of less than $8000 are standard Control subcalls; calls with control
codes of $8000 and over are device-specific subcalls. The calls are described more fully in
the following sections.

Standard DControl subcal ls

Standard DControl subcalls that are not described here function exactly as documented in
the GS/OS Device Dnver Reference.

FormatDevice (DControl subcall)

This subcall is not applicable to character devices. It returns with no error. The transfer
count is 0.

EjectMedia (DControl subcall)

This subcall is not applicable to character devices. It returns with no error. The transfer
count is 0 .

SetConfigParameters (DControl subcall)

The console driver obtains its setup information from parameter RAM and has no
configuration parameters. The transfer count is 0.

SetlnputPort (DControl subcall)

controlCode = $8000

control list = input port record

This subcall transfers data from the control list to the input port record. The data must be
in the format of an input port record; see the section "The Console Input Routine" earlier
in this chapter.

The minimum request count is 12. The maximum transfer count is 12.

Chapter 9 Using the Console Driver 257

SetTerminators (DControl subcall)

controlCode = $8001

control list = terminator list record

This subcall copies data from the control list to the terminator list. The format of the list
is described in the section "Terminators" earlier in this chapter. The length of a terminator
list in bytes is (2 * count) + 4, where count is the number of entries in the list. The minimum
list length is 4; the maximum list length is 514 (2 header words plus 255 terminator
characters).

The minimum request count for this subcall is 4. Furthermore, the request count must
match the calculated length based on the entry count parameter in the list. If there is a
match, the transfer count is set to the length of the list. If the length is incorrectly stated,
the previous terminators remain in effect and error $22 (drvrBadParm) is returned.
The driver requests memory from the GS/OS Info Manager to store the terminators;
if the request fails the previous and new lists of terminators are lost and error
$26 (drvrNoResrc) is returned.

RestoreTexffort (DControl subcall)

controlCode = $8002

control list = text port record

This subcall copies data (previously obtained through the DStatus subcall GetTextPort)
from the control list back into screen memory (and thereby onto the screen). The format
of the data is windwidth, windLength, screen bytes (the data to be written to screen
memory within the limits of the port). If the buffer is larger than the current text port, only
the upper-left part of the data (as much as will fit) is transferred to the screen. If the
buffer is smaller than the current text port, only that much of the text port (starting from
the upper-left comer) will.be changed; the rest of it will remain as it was before the subcall
was made.

Only a complete screen record can be transferred. The minimum request count is 4.
Furthermore, the request count must match the calculated length based on the width
and length parameters in the control list. The total data length is therefore
(windwidth * windLength) + 4. If the list is complete, the transfer count is set
to that value.

258 Apple IIGS GS/OS Reference

SetReadMode (DControl subcall)

controlCode = $8003

control list = 2 bytes

This subcall sets the flag that specifies the console driver's read mode. Only the high-order
bit is significant and all other bits must be set to zero. A value of $0000 selects user input
mode; $8000 selects raw mode.

The minimum request count is 2. The maximum transfer count is 2.

SetDefaultString (DControl subcall)

controlCode = $8004

control list = character string

This subcall sets the default string for user input. This string is placed in the input field at
the beginning of each cycle of user input. The string can have only the standard
ASCII ($00-$7F) characters, and can be no more than 254 characters long. Control
characters will be displayed in inverse video. To disable the current default input string,
pass a length of 0 as the request count. The driver requests memory from the GS/OS Info
Manager to store the default string; if the request fails, error $26 (resource not available) is
returned. ,

The minimum request count is 0. The maximum transfer count is 254.

Aboitlnput (DControl subcall)

controlCode = $8005

control list = none

This subcall cancels an input session currently in progress. If entry Type is zero, there is
no input in progress and this call is ignored. Otherwise, entryType is reset to zero, and if
a cursor is on the screen, it is removed.

The minimum request count is 0. The transfer count is 0.

Chapter 9 Using the Console Driver 259

L

AddTrap (DControl subcall)

controlCode = $8006
i

control list = none

This call takes the user-supplied address and installs it in the console driver trap vector.
The trap handler will be called by a jsl instruction. If the handler wishes to handle the call,
it should pull the return address off the stack, handle the call, then exit via an rtl
instruction. When the trap handler is called, the environment is set to the same environ
ment as device drivers. Furthermore, if the trap handler does not wish to handle the call it
must restore all registers and direct-page locations that it has used.
To issue the subcall, you must set the request count to 4 and set the longword pointed to
by the control list pointer to the address of the trap handler. If a trap is already installed,
an error will be returned.

The minimum request count is 4. The transfer count is 4.

ResetTrap (DControl subcall)

controlCode = $8007

control list = none

This call will remove a user-installed trap vector if the vector is installed. The request count
should be set to zero.

The transfer count is 0.

DRead ($202F)

This call reads characters from the keyboard. Depending on read mode, the call either
begins waiting for raw entry values, or activates the user input mode.
In raw mode, the keyboard is scanned until (1) the transfer count equals the request
count, or (2) a terminator is pressed. The terminator character is returned as the last
character of the string.

260 Apple IIGS GS/OS Reference

In user input mode, the request count becomes the length of an edit field on the screen.
This edit field begins at the current cursor location. An optional default string is displayed
in the edit field. The user can edit this field using the standard editing controls, and finish
editing by typing a terminator key. The terminator is treated as an editing key—it is not
included in the returned string.

In either mode, an additional return condition exists if no-wait mode is selected. On exit,
the transfer count reports the length of the final string.

DWrite ($2030)

This call transfers the contents of the buffer, one byte at a time, through the console
driver and to the screen. The entire buffer is transferred, and since all byte values ($00 to
$FF) are defined, there are no possible errors (as long as the driver is open).

Chapter 9 Using the Console Driver 261

Chapter 10 Handling Interrupts and Signals

Interrupt handlers are programs that execute in response to a hardware
interrupt. Interrupts and interrupt handlers are commonly used by device
drivers to operate their devices more efficiently and to make possible
simple background tasks such as printer spooling.
Under GS/OS, a signal is a software message from one subsystem to a
second that something of interest to the second has happened. The most
common kind of signal is a software response to a hardware interrupt,
but signals need not be triggered by interrupts. Signal handlers are
programs that execute in response to the occurrence of a signal. They are
similar to interrupt handlers except that signal handlers can make
operating system calls. The GS/OS Call Manager is responsible for
managing and dispatching to both interrupt handlers and signal handlers.
An interrupt handler is commonly written in conjunction with a driver and
is installed when the driver starts up. A signal handler is commonly written
in conjunction with either a driver or an application, and it is installed by
the driver or application during execution. This chapter discusses
requirements for designing and installing both types of handlers.

263

Interrupts

An interrupt is a hardware signal that is sent from an external or internal device to the
CPU. On the Apple IIGS, when the CPU receives an interrupt the following actions occur:
1. The CPU suspends execution of the current program, saves the program's state, and

transfers control to the Apple IlGS firmware interrupt dispatcher. The firmware
dispatcher sets up a specific firmware interrupt environment.

2. If it is an interrupt that has a GS/OS interrupt handler, the firmware dispatcher passes
control to GS/OS. GS/OS sets up a specific GS/OS interrupt environment and in turn
transfers control to the proper handler.

3. The interrupt handler performs the functions required by the occurrence of the
interrupt. After it has done its job, the interrupt handler returns control to GS/OS.

4. GS/OS restores the firmware interrupt environment and returns control to the firmware
dispatcher. The firmware dispatcher restores the state of the interrupted application
and returns execution to it as if nothing had happened.

In a nonmultitasking system such as GS/OS, interrupts are commonly used by device
drivers to operate their devices more efficiently and to make possible simple background
tasks such as printer spooling.

This section discusses what the sources of interrupts are, how interrupt handlers are
dispatched to, how interrupt handlers function within their execution environment, and
how interrupt sources are connected to interrupt handlers. It also discusses interrupt-
handler lifetime and how GS/OS treats unclaimed interrupts.

Interrupt sources

Each distinct hardware device that can generate an interrupt is known as an interrupt
source. For example, each Apple IlGS expansion slot with a hardware card is an interrupt
source, and internal devices such as the mouse and serial ports are also sources. Every
interrupt source that is explicitly identifiable by the firmware has a unique identifier
known as its vector reference number (VRN). VRNs are used to associate interrupt sources
with interrupt handlers.

VRNs are permanently associated with specific interrupt sources; they will not change with
future revisions to GS/OS or the Apple IlGS computer. If your interrupt handler now
appropriately handles an interrupt source with VRN = w, it will be able to handle VRN = n
on any future versions of GS/OS on any Apple IIGS.
Table 10-1 lists the currently defined VRNs and their associated interrupt sources.

264 Apple IIGS GS/OS Reference

■ Table 10-1 VRNs and interrupt sources

V R N I n t e r r u p t s o u r c e

$ 0 0 0 8 A p p l e Ta l k p o r t
$0009 Se r i a l i npu t po r t
$ 0 0 0 A S c a n l i n e
$000B Sound-chip waveform completion
$ 0 0 0 C V B L
$000D Mouse bu t t on o r movemen t
$000E Quar ter -second t imer
$ 0 0 0 F K e y b o a r d
$0010 ADB response (keyboard)
$ 0 0 11 S R Q (k e y b o a r d)
$0012 Desk Manager
$0013 Flush command (keyboard)
$0014 Microcontroller abort (keyboard)
$0015 Clock chip 1-second timer
$0016 VGC external interrupt source (unused)
$0017 Other interrupt source (slot)

As new interrupt sources (such as internal and external slots, timers, counters, etc.) are
defined in future versions of the Apple IlGS, each will be assigned a unique VRN by Apple
Computer, Inc.

Interrupt dispatching

Interrupt dispatching is the process of handing control to the appropriate interrupt
handler after an interrupt occurs. In the Apple IlGS, most interrupt dispatching and

i interrupt handling are performed by firmware. Although the Apple IlGS hardware generates
a number of distinct interrupt notifications—ABORT, COP, BRK, NMI, and IRQ—the
only interrupt of interest to GS/OS interrupt-handler writers is IRQ (Interrupt Request).
The firmware dispatches each IRQ by polling the interrupt handlers through the firmware
interrupt vectors (one for each VRN defined in Table 10-1) until one of them signals that it

j has handled the interrupt.
I Because of critical timing constraints, the firmware interrupt dispatcher polls theAppleTalk and serial port vectors first, before polling the less time-critical vectors such as
j vertical blanking, quarter-second timer, and keyboard. If none of the firmware handlers
j associated with defined sources accepts the interrupt, the firmware dispatcher polls

through vector $0017 (other interrupt source). If the interrupt still remains unhandled, the

Chapter 10 Handling Interrupts and Signals 265

fkmware dispatcher passes control through the user interrupt vector at $00 03FE. Finally, if
no handlers associated with the user interrupt vector accept the interrupt, it becomes an
unclaimed interrupt, described later in this section.

There are two ways in which GS/OS can get control from the firmware dispatcher during
this process, in order to pass control on to a GS/OS interrupt handler:
1. Through one of the firmware interrupt vectors. When GS/OS gets control this way, it

polls only the interrupt handlers that are associated with the particular vector reference
number (VRN) of that interrupt vector. These handlers are installed with the GS/OS call
Bindint, described later in this section.

2. Through the user interrupt vector ($00 03FE). When GS/OS gets control this way, it
polls all the installed ProDOS 16 interrupt handlers. ProDOS 16 interrupt handlers are
installed with the GS/OS ProDOS 16-compatible call alloc_interrupt, described
in Appendix A.

Within a polling sequence, the polling order is undefined.

Interrupt handler structure and execution environment

A GS/OS interrupt handler consists of code in either a device driver, application, or desk
accessory. The interrupt handler must have a single defined entry point. When an interrupt
occurs, GS/OS sets up a specific execution environment and then calls the interrupt
handler with a jsl instruction to that entry point.

The code beginning at the specified entry point should first determine whether or not the
interrupt is the one to be handled by this interrupt handler. If it is not, the interrupt
handler should restore the execution environment as set up by GS/OS, set the carry flag
(c = 1), and return with an rtl. If the interrupt is the proper one, the interrupt handler
should perform whatever tasks necessary to handle the interrupt, restore the proper
execution environment, clear the carry flag (c = 0), and return with an rtl.

What execution environment GS/OS sets up for an interrupt handler depends on its type.
As far as execution environments are concerned, there are three basic types:
■ GS/OS interrupt handler bound to the AppleTalk or serial port firmware vector
■ GS/OS interrupt handler bound to any other firmware vector
■ ProDOS 16 interrupt handler installed through the user interrupt vector

Table 10-2 shows the execution environment of each of these handlers when it starts
executing. The table also notes which parts of the environment need to be preserved (or
restored on exit). Boldface entries in the table indicate the components of the
environment that the handler must restore before returning.

266 Apple IIGS GS/OS Reference

■ Table 10-2 Interrupt-handler execution environments

G S / O S A p p l e Ta l k O t h e r G S / O S P r o D O S 1 6
C o m p o n e n t o r s e r i a l h a n d l e r h a n d l e r h a n d l e r

U n d e fi n e d

Undefined

Undefined*
Undefined

Handler entry point
Handler entry point

0 (native mode)
0 (16-bit)
0 (16-bit)
l(disabled)t
IS

s p e e d F a s t F a s t F a s t

*0n entry, the 3-byte return address to GS/OS is on top of the stack. When the interrupt handler executes its
RTL, this 3-byte address is popped from the stack.
tAn interrupt handier must never enable interrupts.
*If c = 0 on entry, the interrupt has not yet been handled; if c = 1 on entry, the interrupt has already been
hand led .

Sif the interrupt handler handles the interrupt, it sets c = 0 before retuming. If not, it sets c = 1 before
returning.

Note from Table 10-2 that the carry flag is always set (c = 1) on entry to a ProDOS 16
interrupt handler, whereas it can be either 0 or 1 on entry to a GS/OS interrupt handler.
ProDOS 16 handlers are polled only as long as the interrupt is still unclaimed; as soon as one
handler takes it and clears the carry flag, polling stops. On the other hand, all GS/OS
handlers bound to a particular VRN are polled during an interrupt, even if another handler
with that VRN has already cleared the interrupt. That way, all handlers associated with a
VRN can do updating or other desired tasks at each interrupt.

The first GS/OS handler to respond to an interrupt should perform its normal functions,
including reenabling the interrupt source, clearing the carry flag, and returning. Subsequent
handlers, on seeing that c = 1 on entry, may perform other tasks as desired but should not
themselves reenable the interrupt source, change the value of the carry flag, or permanently
modify the environment.

Registers
A , X , Y U n d e fi n e d U n d e fi n e d
D U n d e fi n e d $ 0 0 0 0
S U n d e fi n e d * U n d e fi n e d *
D B U n d e fi n e d $ 0 0
PB Handler entry point Handler entry point
PC Handler entry point Handler entry point
P register flags
e 0 (n a t i v e m o d e) 0 (n a t i v e m o d e)
m 1 (8 - b i t) 1 (8 - b i t)
X 1 (8 - b i t) 1 (8 - b i t)
i 1 (d i s a b l e d) t 1 (d i s a b l e d) t
c U n d e fi n e d ^ S U n d e fi n e d l ^ S

Chapter 10 Handling Interrupts and Signals 267

T

Here are some other points to remember in designing an interrupt handier:
■ If the interrupt handier needs to use direct-page space, it must save and restore the

contents of any iocations that it uses.
■ An interrupt handier must never enabie interrupts.
■ Because interrupts cannot be disabied for ionger than 0.25 seconds in the Appie JIGS

(an AppieTaik requirement), interrupt handiers must execute in iess than a quarter-
second.

■ Because GS/OS is not reentrant, an Interrupt handier shouid not make OS/OS caiis. If
your interrupt handier needs to make operating system caiis, you shouid make it a
signai handier instead. See "Signais," iater in this chapter.

Connecting interrupt sources to interrupt handlers

You instaii and remove GS/OS interrupt handiers by making the standard GS/OS caiis
Bindint and Unbindint, respectiveiy.

To avoid unciaimed interrupts, make sure that the code that instaiis an interrupt handier
does not enabie the interrupt source untii the interrupt handier is instaiied. Likewise, the
code that removes an interrupt handier must disabie the interrupt source before removing
the handier.

B ind in t ca l l

This caii estabiishes a binding, or correspondence, between a specified interrupt source
and a specified GS/OS interrupt handier. GS/OS adds the interrupt handier to the set of
handiers to be poiied when the specified (by VRN) interrupt occurs. The poiiing order is
undefined within the handiers bound to that interrupt vector.

The interrupt identification number returned by the caii uniqueiy identifies the binding
between interrupt source and interrupt handier. Its only use is in the GS/OS Unbindint caii.
Note that severai interrupt handiers may be bound to the same interrupt source.

For a description of the Bindint caii, see Chapter 7.

Unb ind in t caU

This caii severs the binding previousiy estabiished between an interrupt source and
interrupt handier by a Bindint caii. It makes the interrupt handier unavaiiabie.
For a description of the Unbindint caii, see Chapter 7.

268 Appie IlGS GS/OS Reference

♦ Note: ProDOS 16 interrupt handlers are installed and removed with the ProDOS l6 calls
ALLOC_iNTERRUPT and DEALLOC_iNTERRUPT. See Appendix A.

Interrupt handler lifetime

The lifetime of an interrupt handler is the time during which its code is resident in memory
and capable of being executed. During its lifetime, the interrupt handler may be installed
(able to handle its interrupts) or removed (still resident in memory but unable to handle its
interrupts).
The interrupt handler is installed when the device driver or application makes a Bindint
call for it, and removed when the device driver or application makes an Unbindint call. The
program that performs the Bindint call must perform an Unbindint call before the lifetime
of the interrupt handler ends. There is no automatic mechanism for removing GS/OS
interrupt handlers when an application quits, and a dispatch to the previous entry point of
an installed but now completely gone interrupt handler could cause a system crash or loss
of da ta .

♦ Note: Drivers can make Bindint and Unbindint calls; this is an exception to the rule
that drivers cannot make operating system calls.

A GS/OS interrupt handler has a lifetime equivalent to the code containing it. For
example, if the interrupt handler is part of a device driver, it lives as long as the device
driver is in memory and capable of being executed. Thus, the lifetime of a GS/OS
interrupt handler may span several GS/OS applications. In this case, the lifetime ends
when the user executes a non-GS/OS application of the hardware reboots.

Unclaimed interrupts

If none of the interrupt handlers on an Apple IIGS accepts a given interrupt, it is known as
an unclaimed interrupt. Possible causes of unclaimed interrupts include the following:
■ software problems, such as a failure to bind the interrupt handler before enabling the

interrupt source it handles
■ interrupt-related hardware problems, such as failure by the interrupting device to

maintain an "I am the source of the interrupt" flag after signalling an interrupt to the
processor

Chapter 10 Handling Interrupts and Signals 269

f

■ hardware failures such as intermittent shorts of the interrupt line to ground
■ random transient phenomena such as cosmic-ray or subatomic-particle bombardment

An unclaimed interrupt is a serious problem but shouldn't cause a system failure if the
interrupt was due to a random transient phenomenon. Therefore, GS/OS maintains an
unclaimed interrupt counter that is initialized to 0 at GS/OS startup time. Whenever an
unclaimed interrupt occurs, GS/OS increments the counter. Whenever an interrupt is
serviced by an interrupt handler, GS/OS sets the counter back to 0. If the counter ever
reaches 65,536, GS/OS might cause a system failure.

Signals

A signal is a message from one software subsystem to a second that something of interest
to the second has occurred. When a signal occurs, GS/OS typically places it in the signal
queue for eventual handling. As soon as it can, GS/OS suspends execution of the current
program, saves the program's state, removes the signal from the queue, calls the signal
handler in the receiving subsystem to process the signal, and finally restores the state and
returns to the suspended program.

The most important feature of signal handlers is that they are allowed to make GS/OS
calls. That is why the signal queue exists; GS/OS removes signals from the queue and
executes their signal handlers only when GS/OS is free to accept a call.

The most common kind of signal is a software response to a hardware interrupt. For
example, a modem driver may use a loss q/" corner interrupt to trigger a corresponding
signal, whose signal handler calls GS/OS to close a file of terminal input data. Similarly, a
spooling printer driver may translate a line completion interrupt into a corresponding
signal whose signal handler uses GS/OS calls to read the next line from a spool file and
move it into the printer's output buffer.

In principle, however, signals need not be triggered by interrupts: a signal can indicate, for
example, a message received condition on a network interface or a new volume mounted
condition on a disk drive.

♦ Note: Signals are not meant to provide a general mechanism for interprocess
communication in a multitasking environment. Their principal capability is
synchronization of handler execution with time periods when the operating system is
able to accept calls.

270 Apple IIGS GS/OS Reference

i

Signals are analogous to interrupts but are handled with less urgency. If immediate
response to an interrupt request is needed, and if the routine that handles the interrupt
needn't make any operating system calls, then it should be an interrupt handler. On the
other hand, if a certain amount of delay can be tolerated, the full range of operating
system calls are available to a handler if it is a signal handler.

This section discusses what signal sources are, how GS/OS dispatches to signal handlers,
how signal handlers function within their execution environment, how signal sources are
connected with signal handlers, and how the occurrence of a signal is announced.

Signal sources

A signal source is software; it is a routine that announces the occurrence of a signal when
it detects the prerequisite conditions for that signal. For example, a modem device driver
may contain an interrupt handler capable of detecting the conditions needed to announce
the loss 0/corner signal. In that case the interrupt handler's primary purpose is to be a
signal source. The most common class of signal sources is probably interrupt handlers
within device dr ivers.

Signal sources announce signals to GS/OS by making the system service call SIGNAL
(described in the GS/OS Device Driver Reference. When a signal source announces a signal
to GS/OS, it passes along the information needed to execute the source's signal handler.
(That information was sent to the signal source when the signal was armed; see "Arming
and Disarming Signals," later in this chapter.) GS/OS accepts that information and either
executes that signal's signal handler immediately or saves the information for later; GS/OS
then returns control to the process that announced the signal.

♦ Note: A signal source that announces a signal as the result of an interrupt should
generate no more than one signal per interrupt, to avoid the possibility of overflowing
the signal queue.

Signal dispatching and the signal queue

Signal dispatching is the process of calling signal handlers. GS/OS dispatches signals only
when it is not busy processing a GS/OS call, so that signal handlers are always able to make
system calls.

Chapter 10 Handling Interrupts and Signals 271

when a signal occurs, if GS/OS is not busy handling a GS/OS call and if the system is in a
noninterrupt state, the GS/OS Call Manager executes the signal handler immediately. On
the other hand, if a GS/OS call is in progress when the signal occurs, the signal cannot be
dispatched; the Call Manager instead places the signal in the signal queue. Signals are
placed in the queue in order of signal priority; queued signals with higher priority numbers
are placed in front of signals with lower priorities, meaning that they will be executed first.

The signal queue can hold a maximum of 16 signals. If a signal arrives and the queue is full,
the queue overflows, and the signal call returns an error.

GS/OS dispatches a queued signal by pulling it off the front of the queue (that is, by
taking the oldest signal with the highest priority) and calling the signal's handler. To
process signals as quickly as possible, minimize the time during which interrupts are
disabled, and assure that all signals are eventually handled, GS/OS uses the signal-
dispatching strategy described in Table 10-3.

■ Table 10-3 GS/OS signal-dispatching strategy

S i t u a t i o n A c t i o n t a k e n

GS/OS is exiting from a system call; system is Execute all queued signals,
in noninterrupt state.
GS/OS is exiting from a system call; system is Execute only the first queued signal,
in interrupt state.
Signal arrives while GS/OS is inactive and the Execute all queued signal?, including the one
system is in noninterrupt state. being signaled.
Signal arrives while GS/OS is inactive and the Queue the arriving signal and execute only the
system is in interrupt state. first queued signal.
Signal arrives while GS/OS is active. Do not execute any signals and queue the

arriving signal.

In addition, to make absolutely sure that no signals are left unexecuted, GS/OS uses the
VBL interrupt to execute all remaining signals in the queue every 0.5 seconds.

Signal handler structure and execution environment

A signal handler is a subroutine somewhere in memory that is called by GS/OS in response
to the signal that it handles. The signal handler must have a single defined entry point.
When it dispatches to the signal handler, GS/OS saves the state of the current application

272 Apple IIGS GS/OS Reference

i and sets up a specific signal handler environment; GS/OS then calls the signal handler with
a JSL instruction to its entry point. The features of the signal handler environment are
shown in Table 10-4. Boldface entries in the table indicate the components of the
environment that the handler must restore before returning.

■ Table 104 Signal-handler execution environment

C o m p o n e n t S t a t e

Registers
A U n d e fi n e d

X U n d e fi n e d

Y U n d e fi n e d

D C u r r e n t d i r e c t p a g e
S C u r r e n t s t a c k p o i n t e r
D B R U n d e fi n e d

P registerflags
e 0 (n a t i v e m o d e)
m 0 (1 6 - b i t)
X 0 (l 6 - b i t)
i 1 (d i s a b l e d y

S p e e d H i g h

! *A signal handler must never enable interrupts.

Here are some other points related to signal handler design:
■ Signal handlers must return with an RTL.

i ■ Because interrupts cannot be disabled for longer than 0.25 seconds on the Apple IlGS
(an AppleTalk requirement), and because signal handlers may run in an interrupt
environment (during which interrupts are disabled), signal handlers must execute in less
that a quarter-second.

■ Signal handlers must never enable interrupts.
■ An interrupt may preempt execution of a signal handler, but a signal handler is never

preempted to execute another signal handler, even one of higher priority. Any signal
handler that you write can count on execution without interference from another signal
handler.

■ The lifetime of a signal handler is the same as the lifetime of the software that contains
it. Therefore, if your signal handler is part of a device driver, it can span several

I a p p l i c a t i o n s .

; C h a p t e r 1 0 H a n d l i n g I n t e r r u p t s a n d S i g n a l s 2 7 3
j

Arming and disarming signals

A program needs to arm, or install, a signal in order to use it. Arming a signal is the process
of providing its signal source with the information needed to execute its signal handler.
This information includes the signal handler's code entry point and the signal's priority.
Arming implies that the signal handler is ready to process occurrences of the signal.
When the program no longer needs to use the signal, it must disarm (remove) it. Disarming
a signal is the process of telling the signal source that the signal handler will no longer
process occurrences of the signal.

Therefore, every signal source must support the ArmSignal and DisarmSignal functions for
its signal. How the source implements the functions is source-specific; however, it must at
least save the information passed to it by ArmSignal and maintain a flag noting whether
the signal is currently armed or disarmed. Two standards exist for ArmSignal and
DisarmSignal calls: one for signal sources in device drivers and one for all other signal
s o u r c e s .

Arming device driver signal sources

To arm a signal that is generated by a device driver, the caller (application or device
driver) performs an ArmSignal subcall of the GS/OS call DControl, passing the following
information to the driver that contains the signal source:
■ The signal code, an arbitrary value defined by the signal source to identify the signals

that the source generates. The signal code is used only in the DisarmSignal call.
■ The signal priority to be given to signals from this source; $0000 is the lowest priority

and $FFFF is the highest.
■ The signal-handler address, the entry point of the handler for signals generated by this

s o u r c e .

The driver receives the call (from the device dispatcher) as an Arm_Signal subcall of the
driver call Driver_Control. The format in which these parameters are passed, and the
procedure for making the ArmSignal subcall, are documented under "DControl" in the
GS/OS Device Driver Reference; the format in which the driver receives the parameters is
documented under "Driver_Control" in the GS/OS Device Driver Reference.

A Important Before it arms a given signal, the program making the ArmSignal call
must ensure that the signal handler for that signal is ready to process
the signal, a

274 Apple IIGS GS/OS Reference

The ArmSignal subcall can return error number $22 (drvrBadParm) or error number $29
(drvrBusy, which is this case means that the signal is already armed).

Disarming device driver signal sources
To disarm a signal that is generated by a device driver, the caller (application or device
driver) performs a DisarmSignal subcall of the GS/OS call DControl, passing the following
information to the driver that contains the signal source:
■ The signal code, the value assigned by the caller when the signal was armed (with the

ArmSignal call).
The driver receives the call (from the device dispatcher) as a Disarm_Signal subcall of the
driver call Driver_Control. The format in which the parameter is passed, and the procedure
for making the DisarmSignal subcall, are documented under "DControl" in the GS/OS
Device Driver Reference; the format in which the driver receives the parameters is
documented under "Driver_Control" in the GS/OS Device Driver Reference.

A Important The program making the DisarmSignal call must not disable or remove
the signal handler from memory until after the call is made, a

The Disarm Signal subcall can return error $22 (drvrBadParm, which in this case means
that the signal was never armed).

Arming other signal sources

A signal source that is not part of a device driver must have an ArmSignal entry point that
behaves essentially like the ArmSignal subcall of DControl. The application or device
driver calls the entry point by using a JSL instruction, as shown in this APW assembly-
language example:
pea parameter_blockI-16 ;push high word of param block ptr
pea pa rame te r_b lock ; push l ow wo rd o f pa ra b l ock p t r
j s l a r m _ s i g n a l _ e ; l o n g j u m p t o a r m p r o c e d u r e
The parameter block should have the following form:
d c 1 2 ' s i g n a l _ c o d e '
d c 1 2 ' p r i o r i t y '
d c 1 4 ' h a n d l e r _ a d d r e s s '

These parameters have the same format and meaning as those described under "Arming
Device Driver Signal Sources," earlier in this section.

I C h a p t e r 1 0 H a n d l i n g I n t e r r u p t s a n d S i g n a l s 2 7 5

L

•!

On an AraiSignal call, a non-device-driver signal source must return with the cany flag clear
(c = 0) if no error occurred, or with the flag set (c = 1) and the error code in the
accumulator if an error occurred. The call should support these errors:

C o d e M e a n i n g

A = $0001 Invalid signal code
A = $0002 Signal already armed

Disarming other signal sources

A signal source that is not part of a device driver must have a DisarmSignal entry point that
behaves essentially like the DisarmSignal subcall of DControl. The application or device
driver calls the entry point, as shown in this APW assembly-language example:
p e a s i g n a l _ c o d e ; p u s h s i g n a l c o d e o n t o s t a c k
j s l d i s a r m _ s i g n a l _ e / c a l l d i s a r m p r o c e d u r e f o r t h e s p e c i fi c s i g n a l

On a DisarmSignal call, a nondevice-driver signal source must return with the carry flag clear
(c = 0) if no error occurred, or with the flag set (c = 1) and the error code in the
accumulator if an error occurred. The call should support this error:

C o d e M e a n i n g

A = $0001 Invalid signal code

276 Apple IIGS GS/OS Reference

Part n The File System Level

Appendixes

System Loader calls
(Chapters)

^^^hifehiudidadiii^

(Clui]̂ teisll-i5)~;

ProDOS 16 calls
(Appendix A)

FST-spedfic
information on
ProDOS 16 calls
(Appendix B)

Chapter 11 File System Translators

This chapter describes how GS/OS is able to communicate with many
different types of files and devices, in a manner that is transparent to the
application. The operating system does this by supporting
■ a generic GS/OS file interface (the abstract file system, described in

Chapter 1) with which applications communicate
■ individual file system translators (FSTs) that act as intermediaries

between the GS/OS file interface and specific file systems and
devices

This chapter discusses FSTs in general; the following chapters in Part II
describe the individual FSTs supplied with GS/OS.

♦ Note: The file system translators in GS/OS handle both standard
GS/OS (class 1) calls and ProDOS l6-compatible (class 0) calls. Only
the standard GS/OS calls are described in this chapter and the rest of
Part II; for information on how FSTs handle ProDOS 16-compatible
calls, see Appendbc B.

279

The FST concept

Every file system, such as ProDOS or Macintosh HPS, stores directories, subdirectories,
files, and possibly other data structures on disk volumes in a format unique to that file
system. Furthermore, each file system provides a slightly different set of system calls for
accessing its files. The uniqueness of these data structures and system calls makes it very
difficult for an application program that uses one file system to also access a volume
created under another file system. Thus, application programs are nearly always written to
run with one particular file system.

A file system translator (FST) is a GS/OS software module that accepts GS/OS calls
made by applications and translates those calls into a form acceptable to the particular
file system the FST supports. Likewise, the FST takes data read from a device and
converts it to a form consistent with the generic GS/OS file interface (the abstract file
system, described in Chapter 1). This makes it possible to write an application in which
the same set of file I/O calls can access files on volumes created by any file system for
which there is an FST. Application programs can thus transparently access files from any
file system, using standard GS/OS system calls.

♦ Note: FSTs provide only the file access capabilities of GS/OS (see Chapter 4), which
are similar to those of ProDOS 16. Because all FSTs use the same standard set of calls,
they cannot implement all access capabilities and all calls for all file systems.
Moreover, some FSTs cannot even support all of the capabilities provided by GS/OS.
The High Sierra FST, for example, does not permit calls that write to dislc.

Figure 11-1 shows the conceptual position of FSTs in the GS/OS hierarchy. They make up
the file system level, which mediates between the GS/OS Call Manager at the application
level and individual device drivers at the device level. When an FST receives a call, the call
has already been processed by the GS/OS Call Manager. The FST either processes the call
further and returns successfully or encounters an error condition and returns unsuccessfully
with an error code. FSTs call the Device Dispatcher, which performs the actual I/O with
calls to the device drivers. In addition, FSTs depend on various services provided by the
Call Manager, such as pathname prefix management and error handling.

To GS/OS, all FSTs are equal. Any FST can be removed from the system by the user, and
any FST can be added. The user adds or removes FSTs from GS/OS by moving FST files
into or out of the subdirectory system/fsts on the boot disk.

280 Apple IIGS GS/OS Reference

Figure 11-1 The file system level in GS/OS

t)
Block

device

Application program

0

Device Dispatcher

TI
IT

B l o c k

device

0
Character

device

B lock Block Character Character
device device device device
dr iver dr iver dr iver d r i v e r

Character
device

File system
level

Chapter 11 File System Translatot;s 281

Calls handled by FSTs

GS/OS calls can be classified by the part of the operating system that handles them. File
calls are handled by FSTs, device calls are handled by the Device Manager, and other calls
are handled by the GS/OS Call Manager itself. Table 11-1 lists all the GS/OS calls handled
by FSTs.

■ Table 11-1 GS/OS calls handled by FSTs

Call no. Call name Call no. Call name Cal l no. Call name

$2001 Crea te $2010 Open $2018 S e t E O F

$2002 Destroy $2012 Read $2019 GetEOF
$2004 ChangePath $2013 W r i t e $201C GetDirEntry
$2005 S e t F i l e l n f o $2014 Close $2020 G e t D e v N u m b e r
$2006 G e t F i l e l n f o $2015 Flush $2024 F o r m a t

$2008 Vo l u m e $2016 S e t M a r k $2025 EraseD isk
$200B ClearBackupBit $2017 GetMark $2033 FSTSpecific

As an application writer, you can expect that every FST will in some way support each of
the calls listed in Table 11-1. Depending on the file system accessed, the call may be
meaningful, it may do nothing and return no error, or it may do nothing and return an error.
See the description of each FST for details.

All of the calls listed in Table 11-1 are described in Chapter 7, "GS/OS Call Reference,"
although only the generic FSTSpecific call is described in that chapter. FSTSpecific is a call
whose function is completely definable by each FST. For example, the High Sierra FST (see
Chapter 13, "High Sierra FST") uses the call to control file type emulation. FSTSpecific is
described in detail for each FST that uses it, in the chapter that describes that FST.

Programming for multiple file systems

when you first write an application for GS/OS, it may seem strange not to know what file
system your own application's files will be stored on. In reality, it makes your job simpler,
but you may have to be careful in the beginning to avoid making some common incorrect
assumptions.

282 Apple IIGS GS/OS Reference

Don't assume file characteristics

File-system independence is a cornerstone of the GS/OS design. To be most useful and
efficient, and to avoid file system-specific problems, your application should also be as
file system-independent as possible.

In general, you will be working with file information in the format returned by the GS/OS
call GetFilelnfo, rather than in the format of any real file system. For example, don't
assume file-typing conventions other than the file type and auxiliary type provided in the
GS/OS abstract file system; it is the job of each FST to translate that information into the
file-type format for each file system.

Remember that different file systems use different block sizes. Don't simply assume that
a block is 512 (or 256, or 520, or 1024) bytes; if you need to know the exact size of a
block on a volume, use tlie GS/OS Volume call to the device holding that volume.

When you manipulate filenames and pathnames, observe the following guidelines:
■ Don't assume any fixed limit on name length.
■ Don't assume other restrictions, such as a limited ASCII character set.
■ Always allow for the GS/OS pathname syntax: both colons and slashes are valid

separators, and colons can only be separators. In addition, all eight bits of each byte
of a pathname are significant. Using all eight bits of each byte may be particularly
difficult for text-based applications, which have no way to force the standard Apple II
character set to display characters such as sigma or the copyright symbol. You might
want to use special typographical conventions for these special characters, or you
might choose not to create files with such characters in their names. You could present
the user with a list of existing filenames (with some substitution for the characters that
are unavailable), thus providing the user with a method to retrieve such files.

■ Don't preprocess pathnames, that is, pass user-entered pathnames directly to GS/OS
with no application preprocessing. If you prevent users from entering non-ProDOS
pathnames, it might help prevent illegal pathname syntax errors, but it also keeps users
from creating files on non-ProDOS disks with anything but ProDOS pathname syntax.
It also can keep them from accessing files on non-ProDOS disks that they created with
another GS/OS application.

Detailed filename and pathname rules are presented in Chapter 1.
In general, go through the GS/OS file system level (by making standard GS/OS calls) as
much as possible, rather than performing file-system-specific or device-specific
operations that may require the presence of a particular FST, device driver, or device. Use
the file-system independence and device independence of GS/OS to your own advantage.

Chapter 11 File System Translators 283

Use GetDirEntry

If your program needs to catalog a volume, don't read directory files directly—that is,
don't use the Read call to find out what is in a directory. GetDirEntry gives you the
information in a standard format for all file systems, whereas with Read you need to know
the exact format of a directory file for the specific file system you are accessing. And,
because the files of interest may be in any of a number of file systems, it is far simpler to
use GetDirEntry and let GS/OS take care of the details for you.

Don't build your own deivice list

Some applications construct a list of on-line devices only when they start up. This works
fine if the list never changes, but under GS/OS new devices can be added dynamically
during execution. Therefore, instead of constructing your own device list, scan the device
list each time you need to use it. For example, use repeated DInfo or Volume calls with
consecutive device numbers until an error is returned (such as an invalid device number),
signaling that there are no more on-line devices.

Handle errors properly

Your application's normal error-handling routines may be adequate for processing errors
under GS/OS, as long as you remember always to check for errors. A typical file-system-
specific error might occur, for example, from attempting to save a file from a file system
that normally allows saving, such as ProDOS, to a High Sierra disc. As long as your program
is prepared to receive and act on any file error that GS/OS can generate, there should be
no problem. Remember also that, because different file systems have different size limits
on parameters, error $53 (parameter out of range) may be a very common occurrence.

When you receive a GS/OS error, you can use the Window Manager routine ErrorWindow
to display the error message for that error. For more information about ErrorWindow, see
the Apple IIGS Toolbox Reference, Volume 3.

On the other hand, you may needlessly restrict your application's capabilities if you
assume an error will occur when it may not. For example, if your program is written
assuming a read-only file system, it may unnecessarily prevent a user from saving a file to a

284 Apple IIGS GS/OS Reference

different file system that is not read-only. In general, it is probably better to let GS/OS
decide what file permissions and file calls are appropriate and then act on the returned
errors if necessary.

Furthermore, what you do when an error occurs can be significant. For example, if a user
attempts to save a very large file to a volume whose file system does not support the size
of that file, your application should put up a directory dialog box to let the user save the
data to another file system, rather than simply abort the save and lose the data.

Remember also that GS/OS allows access to character devices with file calls. Therefore,
calls such as Read or SetMark may be applied to devices Gike a printer) for which they
have no meaning. Thus your error handling should allow not only for different file systems,
but for completely different devices as well. In fact, it is common for character devices to
return status information with error codes; if your file-access routines do not check for
typical character-device errors, you may lose critical information.

Optimize file access

The file system translators written for GS/OS are designed to make file reads and writes as
fast and efficient as possible. You may be able to read a file under GS/OS faster than you
can under the file's native operating system. Furthermore, the disk caching available under
GS/OS makes reading faster still.

As much as possible, consecutive file blocks are written to consecutive sectors on disk for
fast access. More important, though, FSTs are optimized for large, multiblock transfers;
for the application writer, this means that it is best to read and write data in chunks as
large as possible. If you are interested in speed, try also to avoid newline read mode
(which forces every character to be examined in turn) and the Flush call (which is slowed
by the careful checking and updating it must perform).
For the fastest possible multiblock copying, use the GS/OS call BeginSession to defer
block writes temporarily while copying, and then use EndSession to flush the cache when
you are done copying. BeginSession and EndSession are most useful when doing multiple-
file copies, because directory blocks are not written to disk as every file is copied. See
the descriptions of BeginSession, EndSession, and SessionStatus in Chapter 7, "GS/OS
Call Reference."

Chapter 11 File System Translators

Present and future FSTs

GS/OS applications can read files from any file system for which there is an installed
GS/OS file system translator. Currently, Apple Computer, Inc., defines the following file
systems, each specified by its own file system ID. The list of potential FSTs is shown in
Table 11-2.

■ Table 11-2 File system IDs

File system ID Description File system ID Description

$0000 Reserved $0008 Apple CP/M
$0001 ProDOS/SOS $0009 Reserved

$0002 DOS 3.3 $000A MS/DOS

$0003 DOS 3.2 or 3.1 $000B High Sierra
$0004 Apple II Pascal $000C ISO 9660
$0005 Macintosh (MPS) $000D AppleShare
$0006 Macintosh (HFS) $OOOE-$FFFF Reserved

$0007 L isa

As new file systems are defined, Apple Computer assigns them unique file system IDs. In
theory, then, all of the above file systems (and any future systems) can be accessed
through GS/OS once FSTs are written for them. In practice, new FSTs will be created as
dictated by demand and time constraints. The currently existing FSTs are described
individually in subsequent chapters. Future releases of GS/OS will include file system
translators for other file systems.

D isk in i t i a l i za t ion and FSTs

Disk initialization is a complex issue under an operating system that supports multiple file
systems and many different types of devices.
For example, a system can be configured with several FSTs. A user might wish to write any
one of the file systems on a disk. Also, a disk drive might support multiple low-level
formatting styles.

286 Apple IIGS GS/OS Reference

Your application can use the GS/OS call Format or EraseDisk to initialize disks. The
Format call formats the disk and writes out the new file system; the EraseDisk call simply
writes out a new file system without formatting the disk. Either call causes GS/OS to put
the initialization dialog box on the screen, allowing the user to select among valid file
system and formatting choices (given the current system configuration of FSTs and
device drivers). After the user makes the desired choices, the appropriate EST then
initializes the disk as requested.

♦ Note: Because the initialization dialog box allows the user to cancel, it is probably not
necessary for your application also to make the user confirm that a format or erasure is
d e s i r e d .

For both calls, the return parameter fileSysiD indicates which file system (if any) the
user chose. Format and EraseDisk are described in more detail in Chapter 7, "GS/OS Call
Reference."

Chapter 11 File System Translators 287

Chapter 12 The ProDOS FST

The ProDOS file system translator (ProDOS FST) provides a transparent
application interface to the ProDOS file system. The ProDOS FST can
access any block device whose GS/OS device driver can perform
512-byte block reads and writes. This chapter describes the ProDOS FST
and shows only those aspects of the FST's call handling that are different
from the descriptions in Chapter 7.

♦ Note: The file system translators in GS/OS handle both-standard
GS/OS (class 1) calls and ProDOS l6-compatible (class 0) calls. Only
the standard GS/OS calls are described in this chapter and the rest of
Part II; for information on how FSTs handle ProDOS 16-compatible
calls, see Appendix B.

289

The PfoDOS file system

The ProDOS file system is the native file system for most of the Apple II family of
computers. All applications that run under either ProDOS 8 or ProDOS 16 create and read
ProDOS files (if they create files at all).

The ProDOS file system is characterized by a hierarchical structure, 512-byte logical
blocks, a 16 MB maximum file size, and a 32 MB maximum volume size. ProDOS files are
either standard (sequential) files or directory files; no random-access, record-based file
types are recognized as such by ProDOS.
ProDOS filenames can be up to 15 characters long. They can consist of the numerals 0-9,
the uppercase letters a-z, and the period (.), in any combination (except that the first
character must be a letter). A ProDOS volume name is like a filename but is preceded by a
slash (/) or a colon (:). A ProDOS pathname consists of a sequence of slash-separated
filenames, starting with a volume name.
The ProDOS file system is described in the ProDOS 8 Technical Reference Manual and the
Apple IIGS ProDOS 16 Reference.

GS/OS and the ProDOS FST

The GS/OS abstract file system described in Chapter 1 is closely related to the ProDOS file
system. Therefore, the ProDOS file system duplicates many features of the abstract file
system exactly, and many GS/OS calls to the ProDOS FST behave exactly as described in
Chapter 1. Here are the principal differences:
■ ProDOS 8 and ProDOS 16 do not create or recognize extended files, which are

equivalent to the resource forks of Macintosh files. However, the ProDOS FST under
GS/OS can store and retrieve extended files in ProDOS format by defining a new
storage type ($0005). It also can extend an existing file by setting the extend bit in
the storage type ($8005) during a Create call.
When a file is stored in this format, a GS/OS application can retrieve its resource
fork and its data fork. Applications under ProDOS 8 and ProDOS 16, however,
cannot access the file at all; attempts to open the file result in error $4B (unsupported
storage type).

290 Apple IlGS GS/OS Reference

■ Under GS/OS, a ProDOS pathname can have either slashes 00 or colons (:) as filename
separators. The GS/OS Call Manager converts both types of separators to an internal
format before passing on the pathname to the ProDOS FST.

■ Because ProDOS files and volumes have maximum sizes smaller than those supported
by GS/OS, parameters related to size (such as eof, position, blockCount,
requestcount, and transferCount) may not be accepted by the ProDOS FST if
they are too large. In such cases the ProDOS FST returns error $53 ̂aramRangeErr).

■ In GS/OS, the f iieType field is 2 bytes long. Since the ProDOS file system can only
handle a 1-byte auxiliary type, any value greater than $FF results in error $53
(paramRangeErr). If this error is returned by the ProDOS FST, validate the range of
each parameter within the range limit listed in the ProDOS 8 manual.

■ In GS/OS, the auxType field is 4 bytes long. Since the ProDOS file system can only
handle a 2-byte auxiliary type, any value greater than $FFFF results in error $53
(paramRangeErr). If this error is returned by the ProDOS FST, validate the range of
each parameter within the range limit listed in the ProDOS 8 manual.

■ Because several file-entry fields in ProDOS directories on disk are smaller than their
equivalent parameters in the GS/OS calls that access file entries, the high-order parts of
some of those parameters are always zero when a file entry is read, and must also be
zero when a file entry is stored. See the individual call descriptions in the following
section "ProDOS FST Calls."

Chapter 12 The ProDOS FST 291

ProDOS FST Cal ls

The following sections describe how the ProDOS FST handles certain GS/OS calls
differently from the general procedures described in Chapter 7. Calls listed in Table 12-1
are described in these sections. Calls not listed in the table are handled exactly as
described in Chapter 7.

■ Table 12-1 GS/OS calls handled differently by the ProDOS FST

C a l l n u m b e r n a m e

$ 2 0 1 C G e t D i r E n t r y
$ 2 0 0 6 G e t P i l e l n f o
$ 2 0 0 5 S e t F i l e l n f o
$ 2 0 3 3 F S T S p e c i fi c

GetDirEntry ($201C) for ProDOS FST

GetDirEntry returns file information contained in a volume directory or subdirectory
entry. Under the ProDOS FST, the following fields have limitations different from the
general values permitted by GS/OS;

f ileType Only the low-order byte contains information.

EOF Only the three low-order bytes contain informat ion.

blockCount Only the two low-order bytes contain information.

auxType Only the two low-order bytes contain information.

optionList After the required size words, the next word contains $0001
as the ProDOS FST ID. For more information about this
parameter, see Chapter 6.

resourceEOF Only the three low-order bytes contain information.

resourceBiockCount Only the two low-order bytes contain information.

292 Apple IIGS GS/OS Reference

GetFflelnfo ($2006) for ProDOS FST

GetFilelnfo returns certain file attributes for an existing block file. Under the ProDOS FST,
the following fields have limitations different from the general values permitted by
GS/OS:

f ileType Only the low-order byte contains information.

auxType Only the two low-order bytes contain information.
storageType Only the low nibble of the low byte contains information.
optionList After the required size words, the next word contains $0001

as the ProDOS FST ID. For more information about this

parameter, see Chapter 6.
EOF Only the three low-order bytes contain information.
blocksUsed Only the two low-order bytes contain information.

SetFUelnfo ($2005) for ProDOS FST

SetFilelnfo assigns certain file attributes to an existing block file. Under the ProDOS FST,
the following fields have limitations different from the general values permitted by
GS/OS:

fi l e T y p e

a u x T y p e

o p t i o n L i s t

Only the low-order byte can be nonzero; otherwise, error $53
(paramRangeErr) is returned.

Only the two low-order bytes can be nonzero; otherwise, error $53
(paramRangeErr) is returned.

After the required size words, the next word contains $0001 as the
ProDOS FST ID. For more information about this parameter, see
Chapter 6.

Chapter 12 The ProDOS FST

FSTSpeciflc ($2033) for ProDOS FST

Description FSTSpecific is a call that can be defined individually for any file system
trans la to r.

Parameters This is the FSTSpecific parameter block;

O f f s e t N o . S i z e a n d t y p e

Word input value (minimum = 1)

1 Word input value

2 Word input value

3 Subcall-specific parameter or parameters

The following parameters have particular values for this call.

pCount Word input value: Number of parameters in this parameter block.
Minimum = 3; maximum = 3.

fileSysiD Word input value: File system ID of the FST to which the call is
directed. For ProDOS, fiieSysio = $0001.

commandNum Word input value: Number that specifies which particular subcall
of FSTSpecific to execute, as follows:
$0001 SetTimeStamp
$8001 GetTimeStamp
$0002 SetCharCase

$8002 GetCharCase

See the individual subcall descriptions later in this chapter.

(subcall-specific) Word or longword input or result value: Depends on the
specific subcall. See the individual subcall descriptions later in this chapter.

Errors (none except general GS/OS errors)

294 Apple IIGS GS/OS Reference

SetTimeStamp (ProDOS FSTSpecific subcall)

Description

P a r a m e t e r s

C o m m e n t s

The SetTimeStamp subcall allows the user to set the time stamp option.

This is the FSTSpecific parameter block for the SetTimeStamp subcall:

O f f s e t No. Size and type

p C o u n t Word input value (minimum = 1)

fileSyslD -I j Word input value
c o n u n a n d N u m Word input value

timeOption -| 3 Word input value
The following parameters have particular values for this subcall.
commandNum For SetTimeStamp, commandNum = $0001..

timeOption Word input value: Specifies the time stamp option to use, as
fo l lows :

This call affects the performance of the ProDOS EST. By default, the
ProDOS FST time stamps all files and all subdirectories to the root level.
This means that a change to a file in a subdirectory is reflected in the
modification date of each parent subdirectory all the way to the root
level of the volume.

Chapter 12 The ProDOS FST 295

GetTimeStamp (ProDOS FSTSpecific subcall)

Description The GetTimeStamp subcall allows the user to get the time stamp option.

Parameters This is the FSTSpecific parameter block for the GetTimeStamp subcall:

O f f s e t N o . S i z e a n d t y p e

Word input value (minimum = 1)

1 Word input value

2 Word input value

3 Word input value

The following parameters have particular values for this subcall.

commandNum For GetTimeStamp, commandNum = $8001.

timeOption Word input value: Specifies the time stamp option to use, as
f o l l o w s :

$0000 Time stamp files only (Fastest)
$0001 Time stamp files + parent directories (Slower)
$0002 Time stamp files + all directories to the root (Slowest)

SetCharCase (ProDOS FSTSpecific subcall)

Description The SetCharCase subcall allows you to change the way that the ProDOS
FST saves and returns filenames. If you wish, the ProDOS FST can save
the filename in uppercase and lowercase. A subdirectory name saved with
lowercase letters may not be accessible under versions of ProDOS 8 older
than 1.8; to avoid this problem, use version 1.8 or greater of ProDOS 8, or
rename the subdirectory with all uppercase.

296 Apple IIGS GS/OS Reference

P a r a m e t e r s This is the FSTSpecific parameter block for the SetCharCase subcall:

O f f s e t No. Size and type

p C o u n t Word input value (minimum = 1)

fileSysiD - I Word input value

- coitunandNum - 2 Word input value

- caseOption - 3 Word input value

The following parameters have particular values for this subcall.

commandNum For SetCharCase, commandNum = $0002.

caseOption Word input value: Specifies the case option to use, as follows:
$0000 Turn off upper/lowercase
$0001 Turn on upper/lowercase

GetCharCase (ProDOS FSTSpecific subcall)

Description-

P a r a m e t e r s

The GetCharCase subcall allows you to get the current case settings.

This is the FSTSpecific parameter block for the GetCharCase subcall:

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 1)

fiieSysiD -i j Word input value
c o m m a n d N u m Word input value

caseResuit -| 3 Word output value
The following parameters have particular values for this subcall.

commandNum For GetCharCase , commandNum = $8002.

caseResuit Word output value: Indicates the current case setting, as follows:
$0000 Lowercase is disabled
$0001 Lowercase is enabled

Chapter 12 The ProDOS FST 297

Chapter 13 The High Sierra FST

This chapter describes the GS/OS High Sierra file system translator (High
Sierra FST). The High Sierra FST provides transparent application access
to compact read-only optical discs (CD-ROM) and other media upon
which High Sierra or ISO 9660-formatted files may reside.
The High Sierra and ISO 9660 file formats are not documented here. See
the publications listed under "CD-ROM and the High Sierra/ISO 9660
Formats" in this chapter for more information. For information on the
Apple extensions to ISO 9660, see Appendix C.

♦ Note: The file system translators in GS/OS handle both standard
GS/OS (class 1) calls and ProDOS l6-<ompatible (class 0) calls. Only
the standard GS/OS calls are described in this chapter and the rest of
Part II; for information on how FSTs handle ProDOS l6-compatible
calls, see Appendbt B.

299

CD-ROM and the High Sierra/ISO 9660 formats

Compact discs provide a new and promising method of information storage and retrieval.
Compact discs can hold vast amounts of information on a medium that is durable and
inexpensive to manufacture. The information can be played back using existing, well-
established technology based on CD music players.

A single CD-ROM disc holds about 550 megabytes of information. This large capacity is
CD-ROM's main advantage, but it comes at a price. CD-ROM players have much slower
access times than magnetic disk drives; it can take up to one second to find a byte of
information on a CD-ROM disc, compared to less than a tenth of a second on a large-
capacity hard disk.
CD-ROM's biggest disadvantage, however, is that—at present—its optical storage
technology is read-only. Users can read from a CD, but they cannot write to it (hence the
name QD-ROM).

The High Sierra Group format (named for the location of an ad hoc committee's
original meeting place) and the ISO 9660 format (the International Standards
Organization's version of High Sierra) are two nearly identical CD-ROM file formats that
support the large files a compact disc can hold. They also attempt to minimize the
penalties caused by slow access. Here are some of the highlights of the formats that are
relevant to GS/OS:

■ Logical sectors contain 2048 bytes (2 KB) of data. A logical sector can contain 1, 2, or
4 logical blocks.

« r «

■ Files can contain data in any form or for any purpose; High Sierra/ISO 9660 specifies
nothing about file contents.

■ File identifiers can consist of three parts: a filename, a filename extension, and a
version number. Directories have the filename part only. Under High Sierra,
nondirectory files need one or more of the three parts (except that a file cannot be
identified by a version number alone). Under ISO 9660, a nondirectory file must
include all three parts.
The filename is 0 or more characters (uppercase a-z, digits o-9, or underscore); it
must be followed by a period. The filename extension is 0 or more characters, and it
must be followed by a semicolon. The version number is 1 to 6 digits. The sum of the
filename and extension must be between 2 and 31 characters, including the period.
Under ISO 9660, then, the smallest possible legal filename takes the form a .; i
o r . A ; 1 .

300 Apple IIGS GS/OS Reference

♦ Note: See the section "Apple Extensions to ISO 9660," later in this chapter, for
information on how to devise High Sierra/ISO 9660 filenames that can be
translated to other file systems with different conventions.

■ High Sierra/ISO 9660 is hierarchical; files may be placed in subdirectories. To speed
access to files deep within subdirectories, a Path Table can be loaded into RAM for
fast searching. The Path Table is an index to all subdirectories on disc. In addition,
directory entries are kept small (and therefore easy to search fast) by putting auxiliary
directory information—̂such as creation dates and access permissions—into extended
attribute records (XARs), stored separately.

■ Both ISO 9660 and High Sierra support associated files (equivalent to resource forks
of GS/OS extended files); however, the High Sierra FST supports associated files for
ISO 9660-formatted files only.

■ High Sierra/ISO 9660 supports hidden files.
The High Sierra/ISO 9660 format from which Apple's High Sierra FST was designed is
defined in these two documents:

■ Working Paper for Information Processing—Volume and File Structure of Compact
Read-Only Optical Discs for Information Interchange, published by the CD-ROM Ad
Hoc Advisory Committee, May 28,1986. This is the original High Sierra Group
proposal.

■ ISO 9660: Information Processing— Volume and File Structure of CD-ROM for
Information Interchange, published by the International Standards Organization, first
edition, 1988. This is the ISO 9660 standard, a slightly modified version of the High
Sierra Group format.

♦ Note: Although High Sierra and ISO 9660 were developed specifically for compact
disc storage, nothing in either format requires the files to be on CD-ROM. It is
possible to have High Sierra/ISO 9660 files on any storage medium that can be
formatted to accept them.

j C h a p t e r 1 3 T h e H i g h S i e r r a F S T 3 0 1

i
I

Limitatioiis of the High Sierra FST

wI'^ 'ween CD-ROM driveis and GS/OS, the High
fi S i e r r a / I S O 9 6 6 0 fi l e s y s t e m , n o r c a n i t

Annî "r, u T?i GS/OS application calls. The High Sierra FST provided byApple has the following features:
■ It supports associated files (GS/OS extended files) for ISO 9660-formatted

discs only.
■ It permits only a single volume descriptor—the Standard File Structure Volume

Uescnptor— p̂er physical volume.■ It does not support multivolume sets (named and logically linked groups of volumes
occupying more than one disc).

■ It does not support multi-extent files (files occupying more than one disc).
■ It does not support random-access, record-based files; that is, it can read such files

as streams of bytes, but it cannot access individual records directly.
■ It maps the existence bit of the file flags into the invisibility bit of the GS/OS

access word.

■ It ignores the file permissions field in the extended attribute record.
■ It is a read-only implementation.

This last limitation imposes strong restrictions on GS/OS system calls that write data to
the disc. Those calls always return a write-protect error, after identifying that the file or
device requested is present and is in High Sierra or ISO 9660 format.
In accessing files on a CD-ROM disc, remember that, under High Sierra or ISO 9660, block
size is not fixed across volumes. If necessary, you can use the GS/OS Volume call to get
the block size for a particular volume. Block counts retumed by other calls are always in
terms of blocks of the size retumed by the Volume call.
An associated fUe in ISO 9660 is analogous to the resource fork of a GS/OS extended file.
If an ISO 9660 file named MyFiie has an associated file, the associated file has these
characteristics:
■ It is also named MyFiie (its file identifier is identical).
■ Its associated bit (in the file flags byte of the directory record) is set.
■ Its directory entry resides immediately before the other My File's directory entry.

Thus, GS/OS refers to the first MyFiie (whose associated bit is set) as the resource fork
of the extended file MyFiie, and the immediately following MyFiie (whose associated
bit is clear) as the data fork of MyFiie. Only data files can have associated files;
directories cannot.

302 Apple IIGS GS/OS Reference

High Sierra/ISO 9660 does not provide an explicit file-typing convention. This can be
a problem because many applications select a particular file type as a filter when calling
the Standard File Tool Set to display files to the user. In such a case, files from a
High Sierra/ISO 9660 disc would never be selectable.
To remedy this problem, the High Sierra FST, through the call FSTSpecific, defines and
implements a convention by which High Sierra/ISO 9660 filenames can be used to convey
file type information. See the discussion under "FSTSpecific,"
addition, Apple Computer, Inc., has defined a protocol that extends ISO 9660 lo storefile type and other information needed by either ProDOS or Macintosh HFS files. See the
next section, "Apple Extensions to ISO 9660.

Apple extensions to ISO 9660

on CD-ROM without loss o nee ̂ jg the ISO 9660 specification. Discs created
Computer has defined a ...q jises They retain the filename as well as theu s i n g t h e A p ^ e — r e s o u r c efile type/auxiliary type ̂ the original files from which they were
(Macintosh) information needed to reconstruct luc 5
made.

. .iA^ fnr file tvoing and icons, the extra information isBecause ISO 9660 does not pro ̂ directory record. Filenames are preserved
stored in a special data Macintosh filenames to valid ISO 9660 names, and
through transformations of ProDOS or Macuu
back again.

.J J- oc nrotocol in detail. Please see Appendix C, "AppleThis section does . ̂ ĝ te or work with ProDOS or Macintosh files
Extensions to ISO 9660," if you need w create .stored as ISO 9660 files. Here are the highlights of the protocol
■ P - t o c o . — - v o l u m e .

COMPOTER, , TVPE = .■ followed by 4

bytes of protocol flags. The current vet̂on of he Jpe desatphon gwes the versionnumber of the protocol and indicates whether the drsc s hies should be transformed to
ProDOS filenames when read.
The presence of the protocol identifier indicates that the Apple extensions have been
applied to the disc's files.

Chapter 13 The High Sierra FST 303

■ The SystemUse field: The SystemUse field in the file's directory record is an
optional field. The Apple extensions use that field to store the extra file information.
If the SystemUse field is present, and if it begins with the proper signature word, the
subsequent information in the field can be interpreted as ProDOS or Macintosh HPS
information.

■ ProDOS filename transformations: If you (through an authoring tool) are creating
ISO 9660 files from ProDOS files, you can transform ProDOS filenames to valid ISO
9660 filenames in such a way that users (through a receiving system) can access the files
using their original ProDOS filenames. Take the following steps:
1. Replace all periods in the ProDOS filename with underscores. If the file is a

directory file, that completes the transformation.
2. If the file is not a directory file, append the characters .; 1 to the filename. It is

now a valid ISO 9660 filename.

The receiving system performs the above transformation on user-supplied filenames
before searching for them on disc and reverses the transformation before presenting
filenames to the user.

If the transformation is to be done, it must be applied to all files on a disc.
■ HPS filename transformations: Unlike with ProDOS, it is not possible to make a

simple, reversible transformation from all valid Macintosh HPS filenames to valid ISO
9660 filenames. To make the transformation as consistent as possible, however, Apple
recommends the following guidelines:
□ Convert all lowercase characters to uppercase.
□ Replace all illegal characters, including periods, with underscores.
a If the filename needs to be shortened, truncate the rightmost characters.
o If the file is not a directory file, append the characters .; 1 to the filename.
Such a transformation is not perfectly reversible, but its results are at least consistent
across all files and discs.

High Sierra FST calls

Table 13-1 lists all the GS/OS system calls supported by the High Sierra PST. Those listed
under Meaningful in the table perform meaningful tasks; the others always return an error
(with the exception of Plush; see the call description later in this chapter).

304 Apple IIGS GS/OS Reference

Table 13-1 High Sierra FST calls

Not meaolngM

$ 2 0 0 6 G e t F i l e l n f o
$ 2 0 0 8 Vo l u m e
$2010 Open
$ 2 0 1 2 R e a d
$ 2 0 1 4 C l o s e
$ 2 0 1 6 S e t M a r k
$ 2 0 1 7 G e t M a r k
$ 2 0 1 9 G e t E O F
$ 2 0 1 0 G e t D i r E n t r y
$2020 GetDevNumber
$2033 FSTSpecific

$2001
$2002
$2004
$2005
$2013
$2015
$2018
$200B
$2024
$2025

Create

Destroy
ChangePath
SetFilelnfo
W r i t e

Flush

SetEOF

ClearBackupBit
F o r m a t

EraseDisk

WUhU,e exception ofHusM,.he
nothing and return error $2B (write-protected). msa aibu
the carry flag cleared (no error).
The following sections describe the calls i„

listed here.

i

Chapter 13 The High Sierra FST 305

GetFflelnfo ($2006) for High Sierra FST

GetFilelnfo returns certain attributes of an existing block file. The file may be open or
c losed .

Parameters access The only possible values for this parameter under High Sierra/ISO 9660
are $01 (read-permission only) and $05 (read-permission only, file invisible).

f iieType This Output word value equals $000F if the file is a directory;
otherwise, it is $0000 (unknown)—unless the filename extension matches an
entry in the file type mapping table. See Appendix C, "Apple Extensions to
ISO 9660"; see also the call FSTSpecific, described later in this chapter.

modD ate Time This output double longword value always has the same value as
c r e a t e D a t e T i m e .

auxType This output longword value is always $0000 unless the Apple extensions
to ISO 9660 have been applied. See Appendix C.

optionList This is a longword input pointer to a data area to which results can
be returned. If an Extended Attribute Record (XAR) exists for the file, the
High Sierra FST returns the contents of the XAR in the data area pointed to.
If an XAR does not fit in the allotted space, the High Sierra FST returns as
much of the data as possible and generates error $4F (buffer too small).

Errors In addition to the standard GS/OS GetFilelnfo errors, the High Sierra FST
can return these errors from a GetFilelnfo call:

$4E inva l i dAccess access no t a l l owed
$ 4 F b u f f To o S m a l l b u f f e r t o o s m a l l

306 Apple IIGS GS/OS Reference

Volume ($2008) for High Sierra FST

Given the name of a block device, Volume returns the name of the volume mounted in the
device and other information about the volume.

Parameters freeBiocks This longword output value is aways $0000.

f iieSysiD This word result value describes the file system of the volume
being accessed. For High Sierra, fiieSysiD = $000B; for ISO 9660,
f ileSysID = $000C.

Chapter 13 The High Sierra FST 307

open ($2010) for High Sierra FST
This call causes the FST to establish an access path to a file. Once an access path is
established, the user may perform file reads and other related operations on the file.
A file can be opened more than once as long as it is not opened for write access, and each
open assigns a different reference number. Because High Sierra/ISO 9660 files are read
only, it is always possible to have multiple open copies of a document.

Parameters requestAccess If this word input parameter is included, and if its value is
anything other than $0000 (use default permissions stored with file) or
$0001 (read-access requested), the High Sierra FST returns error $4E (access
not allowed).

f ileType This word output value equals $000F if the file is a directory;
otherwise, it is $0000 (unknown)—unless the filename extension matches an
entry in the file-type mapping table. See Appendix C, "Apple Extensions to
ISO 9660"; see also the FSTSpecific call, described later in this chapter.

auxType This longword output value is always $0000 unless the Apple extensions
to ISO 9660 have been applied. See Appendk C.

modDateTime This double longword output parameter always has the same
value as createOateTime.

opt ionList This is a longword input pointer to a data area to which results can
be returned. If an Extended Attribute Record (XAR) exists for The file, the
High Sierra FST returns the contents of the XAR in the data area pointed to.
If an XAR does not fit in the allotted space, the High Sierra FST returns as
much of the data as possible and generates error $4F (buf f TooSmall).

f ileType This output word value equals $000F if the file is a directory;
otherwise, it is $0000 (unknown)—unless the filename extension matches an
entry in the file type mapping table. See Appendix C, "Apple Extensions to
ISO 9660"; see also the call FSTSpecific, described later in this chapter.

auxType This output longword value is always $0000 unless the Apple extensions
to ISO 9660 have been applied. See Appendix C.

Errors In addition to the standard GS/OS GetFilelnfo errors, the High Sierra FST
can return these errors from a GetFilelnfo call:

$ 4 E i n v a i i d A c c e s s a c c e s s n o t a l l o w e d
$ 4 F b u f f To o S m a l l b u f f e r t o o s m a l l

308 Apple liGS GS/OS Reference

Read ($2012) for High Sierra FST

This call attempts to transfer the requested number of bytes, starting at the current mark,
from a specified file into a specified buffer. The file mark is updated to reflect the
number of bytes read.

The High Sierra FST allows applications to read directory files as well as data files (but
only with standard GS/OS calls; ProDOS 16 Read calls to directories retum error $4E—
invalidAccess). Even SO, as a reminder that directory structures differ for different
file systems, the High Sierra FST always returns error $66 (FSTCaution) after a successful
read of a directory.

Also, the High Sierra FST does not allow Read calls and Ge0irEntry calls with the same file
reference number: if an open file has previously been accessed by GetDirEntry, and a Read
call is made with the same reference number, the High Sierra FST retums error $4E
(invalidAccess). To avoid that error, open the directory twice.

Errors In addition to the standard GS/OS Read errors, the High Sierra FST can
retum these errors from a Read call:

$4E invalidAccess access not allowed
$66 FSTCaution directory read successfully

i

Chapter 13 The High Sierra FST 309

GetDirEntry ($201C) for High Sierra EST
This call returns information about a directory entry in the volume directory or a
subdirectory. Before executing this call, the application must open the directory or
subdirectory. The call allows the application to step forward or backward through file
entries or to specify absolute entries by entry number.

The High Sierra FST does not allow Read calls and GetDirEntry calls with the same file
reference number. If an open file has previously been accessed by Read, and a GetDirEntry
call is made with the same reference number, the High Sierra FST returns error $4E
(invaiidAccess). To avoid that error, open the directory twice.

Parameters f iieType This output word value equals $000F if the file is a directory;
otherwise, it is $0000 (unknown)—unless the filename extension matches an
entry in the file-type mapping table. See Appendix C, "Apple Extensions to
ISO 9660"; see also the FSTSpecific call, described later in this chapter.

modDateTime This double longword output parameter always has the same
v a l u e a s c r e a t e O a t e T i m e .

auxType This longword output value is always $0000 unless the Apple extensions
to ISO 9660 have been applied. See Appendix C.

fileSysiD This word result value describes the file system of the directory
being accessed. For High Sierra, f iieSysiD = $000B; for ISO 9660,
fiieSysiD = $000C. If any other type of directory is accessed, the High
Sierra FST returns error $52 (unsupported volume type).

optionList This is a longword input pointer to a data area to which results can
be returned. If an Extended Attribute Record (XAR) exists for the file, the
High Sierra FST returns the contents of the XAR in the data area pointed to.
If an XAR does not fit in the allotted space, the High Sierra FST returns as
much of the data as possible and generates error $4F (buf fTooSmaii).

Errors In addition to the standard GS/OS Read errors, the High Sierra FST can
return these errors from a GetDirEntry call:
$ 4 F b u f f T o o S m a l l b u f f e r t o o s m a l l
$52 unknownvo i unknown vo lume type

310 Apple IIGS GS/OS Reference

FSTSpecific ($2033) for High Sierra FST

Description FSTSpecific is a call that can be defined individually for any file system
translator. The High Sierra FST uses the call FSTSpecific to control file
type mapping. It simulates file types in High Sierra/ISO 9660 files (which
do not have file types) by mapping filename extensions to specific
GS/OS file types. FSTSpecific maintains a table in memory that controls
which extensions correspond to which file types.

The default table contains only two entries; it equates filenames with
extensions of .txt and .bat to GS/OS file type $04 (text file).

FSTSpecific uses a command number as one of its parameters and
therefore functions as four different calls. The four calls are:

MapEnable Enables or disables file type mapping
GetMapSize Returns size, in bytes, of current file type map
GetMapTable Retums the current file type map
SetMapTable Replaces the current file type map

♦ Note: This mapping is independent of and unrelated to the file typing
.implemented by the Apple extensions to ISO 9660 described in
Appendix C.

P a r a m e t e r s This is the FSTSpecific parameter block:

O f f s e t No. Size and type

p C o u n I

fi l e S y s I D

Word input value (minimum = 3)
Word input value

- commandNum - 2 Word input value
^06 _ _ ^ Subcall-specific parameter or parameters

pCount Word input value: Number of parameters in this parameter block.
Minimum = 3; maximum = 3.

fileSysiD Word input value: File system ID of the FST to which the
call is directed. For High Sierra, fileSysiD = $000B; for ISO 9660,
fileSysID = $000C.

Chapter 13 The High Sierra FST 311

a

1

commandNum Word input value: A number that specifies which particular subcall
of FSTSpecific to execute, as follows:
$0000 MapEnable
$0001 GetMapSize
$0002 GetMapTable
$0003 SetMapTable
See the individual subcall descriptions later in this chapter.

(subcall-specific) Word or longword input or result value: Depends on the
specific subcall. See the individual subcall descriptions later in this chapter.

Errors (none except general GS/OS errors)

What a map table is

The map table is the data structure that records which filename extensions are to be
assigned to which file types. The format of a map table is as follows:

Length of table, including terminator

First map record (variable length)

record 1 j Next map record

Last map record

record n | Terminator (0 byte)

312 Apple IIGS GS/OS Reference

A map record consists of a text string (with MSBs ofO, followed by a 0 byte, followed by
a file type byte. The text string can be any length and can include any legal characters for a
High Sierra filename (text must be uppercase, for example). In APW assembly language, a
map table can be defined as follows:
m a p T a b l e d c 1 2 ' e n d - m a p T a b l e + 1 ' ; L e n g t h o f t a b l e ,

d c c ' . T X T ' , h ' 0 0 0 4 ' / R e c o r d 0 .

d c c ' . T Y P E ' , h ' 0 0 7 f ' / R e c o r d 1 .
e n d d c h ' O O ' / T e r m i n a t o r .

MapEnable (High Sierra FST FSTSpeciflc subcall)

P a r a m e t e r s

The MapEnable subcall toggles file mapping on or off.

This is the FSTSpecific parameter block for the MapEnable subcall:

O f f s e t

p C o u n t

fi l e S y s I D

e n a b l e

N o . S i z e a n d t y p e

Word input value (minimum = 3)

I Word input value

commandNum -I 2 Word input value

3 Word input value

The following parameters have particular values for this subcall.

commandNum For MapEnable, commandNum = $0000.

enable Word input value: Specifies whether file type mapping is enabled or
disabled, as follows:

$0000 File type mapping disabled

$0001 File type mapping enabled

Chapter 13 The High Sierra FST 313

GetMapSize (fflgh Sierra FST FSTSpecific subcaU)

The GetMapSize subcall returns the size of the current file map.

P a r a m e t e r s This is the FSTSpecific parameter block for the GetMapSize subcall:

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 3)

fi l e S y s I D I Word input value
- commandNum - 2 Word input value

- mapsize - 3 Word result value

The following parameters have particular values for this subcall.

commandNum For GetMapSize, commandNum = $0001.

mapSize Word result value: Indicates the size (in bytes) of the current
map table.

GetMapTable (ffigh Sierra FST FSTSpecific subcall)

The subcall GetMapTable returns a pointer to the current map table.

Parameters This is the FSTSpecific parameter block for the GetMapTable subcall:

O f f s e t

p C o u n t

No. Size and type

Word input value (minimum = 3)

fi l e S y s I D I Word input value

commandNum -I 2 Word input value

b u f f e r P t r 3 Longword input pointer

314 Apple IIGS GS/OS Reference

The following parameters have particular values for this subcall.

commandNum For GetlVIapTable, commandNum = $0002.

buf ferPtr A longword input pointer to a memor>' area large enough to hold the
map table that will be returned by the call.

SetMapTable (High Sierra FST FSTSpecific subcaU)

The subcall SetMapTable sets the current map table to the one pointed to by the input
pointer.

P a r a m e t e r s This is the FSTSpecific parameter block for the SetMapTable subcall:

O f f s e t

p C o u n t

fi l e S y s I D

c o m m a n d N u m

No. Size and type

Word input value (minimum = 3)

1 Word input value

2 Word input value

m a p P t r 3 Longword input pointer

The following parameters have particular values for this subcall.

commandNum For SetMapTable, commandNum = $0003-

mapPtr Longword input pointer to the new map table. As long as there is space
in memory for the new table, it will replace the old one. If there is not
enough space, error $54 (outofMem) is returned and the original table
remains in effect. No validity checking is done on the table.

Chapter 13 The High Sierra FST 315

chapter 14 The Character FST

The Character file system translator (Character FST) provides a file-
system-like interface to character devices such as the console, printers,
and modems. The Character FST works with both generated and loaded
drivers.

♦ Note: The file system translators in GS/OS handle both standard
GS/OS (class 1) calls and ProDOS 16-compatible (class 0) calls. Only
the standard GS/OS calls are described in this chapter and the rest of
Part II; for information on how FSTs handle ProDOS 16-compatible
calls, see Appendk B.

I

Character devices as fi les

The Character FST enables applications to read from and write to character devices as if
they were files. That is, your application can open, read, write, and close a printer, modem,
console, or other character device exactly as it performs those actions on a block device.

Not all GS/OS calls can be made to character devices, of course, and those that do may
not always function exactly the same as for block devices. This chapter discusses those
calls that do apply to character devices and notes any character device-specific features
they have.

♦ Note: Although GS/OS lets you treat character devices as files in some ways, you
cannot create, destroy, or rename character files with GS/OS calls. The system and the
user control the existence and the names of character devices.

The Character FST allows multiple Open calls, with both read and write access, to a
character file. Block-device FSTs, on the other hand, can allow multiple Opens for read
access only.

Character FST cal ls

This section describes how the Character FST handles certain GS/OS calls differently from
the general procedures described in Chapter 7. Calls listed in Table 14-1 are supported by
the Character FST.

All other GS/OS calls return error $58 (notBiockDev).

The following descriptions explain how the Character FST responds to some of these calls
differently from the standard procedures documented in Chapter 7. Any of the supported
calls not described here function exactly as documented in Chapter 7.

■ Table 14-1 GS/OS calls supported by the Character FST

C a l l n u i n b e r C a l l n a m e C a l l n u m b e r C a l l n a m e

$ 2 0 1 0 O p e n $ 2 0 1 4 C l o s e
$ 2 0 1 2 R e a d $ 2 0 1 5 H u s h
$ 2 0 1 3 W r i t e $ 2 0 1 1 N e w l i n e

318 Apple IIGS GS/OS Reference

open ($2010) for Character FST

The Open call establishes an access path to a character file. With the request Access
parameter, an application can request limited access rights to the character file.

Parameters pCount Maximum value = 3. Unlike with block devices, you cannot use the
Open call to a character device to get information normally returned by
GetFilelnfo.

pathname This input pointer must point to a character device name.
requestAccess The following values are allowed:

$00 open with available permissions
$01 open for read access only
$02 open for write access only
$03 open for both read and write access

In addition to the standard GS/OS Open errors, the Character FST can
retum these errors from an Open call:
$24 drvrPriorOpen character device already open
$26 drvrNoResrc resources not available
$28 drvrNoDevice no device connected
$2F * drvrof fLine device off line or no media present

E r r o r s

Chapter 14 The Character FST

Fl

Read ($2012) for Character FST

The Read call attempts to transfer the requested number of bytes from the specified
character file into the application's data buffer.

Parameters pCount Minimum = 4; maximum = 4.

cachePriority Not used. Data transfers with character devices are
not cached.

Errors In addition to the standard GS/OS Read errors, the Character FST can
return these errors from a Read call:

$23 drvrNotopen character device not open
$2F drvrof fLine device off line or no media present

Write ($2013) for Character FST

The Write call attempts to transfer the requested number of bytes from the application's
data buffer to the specified character file.

Parameters pCount Minimum = 4; maximum = 4.

cachePriority Not used. Data transfers with character devices are
not cached.

Errors In addition to the standard GS/OS Write errors, the Character FST can
return these errors from a Write call:

$23 drvrNotOpen character device not open
$2F drvrOffLine device off line or no media present

320 Apple IIGS GS/OS Reference

Close ($2014) for Character FST

The Close call terminates access to the character file. Close also involves flushing the file
(see the Flush call), to ensure that all data has been transferred before a character file is
closed.

Errors In addition to the standard GS/OS Close errors, the Character FST can
return these errors from a Close call:

$23 drvrNotOpen character device not open
$2F drvrOf f Line device off line or no media present

Flush ($2015) for Character FST

The Flush call completes any pending data transfer to the character file. If the character
device is synchronous, all data transfer is by definition completed when the Write call
returns, so the Flush routine simply returns with no error. If the device is asynchronous (for
example, if it is interrupt-driven or has direct memory access), the Flush routine waits until
all data has been transferred and then returns. If the file is multiply opened, all output
access paths to the character file (not just the one with the specified refNum) are
flushed.

Errors In addition to the standard GS/OS Flush errors, the Character FST can
return these errors from a Flush call:

$23 drvrNotOpen character device not open
$2F drvrOf f Line device off line or no media present

Chapter 14 The Character FST 321

L ^

Chapter 15 The AppleShare FST

The AppleShare FST is the implementation of AppleShare for GS/OS. It is
meant to supersede AppleShare IIGS, the implementation of AppleShare
for ProDOS 16. When GS/OS is running, GS/OS makes calls directly to the
AppleTalk routines via the AppleShare FST.
The AppleShare FST works only with file servers that support AppleTalk
Filing Protocol (AFP) version 2.0 or greater, such as the AppleShare File
Server version 2.0.

This chapter describes the AppleShare FST and shows only those aspects
of the FST's call handling that are different from the descriptions in
Chapter 7.

Pathname syntax

There are two kinds of restrictions on pathname syntax: those imposed by GS/OS, and
those imposed by the FST (because of naming restrictions in AFP).

GS/OS may impose a maximum length on pathnames, but does not impose a restriction
on the span of a pathname. The span of a pathname is the maximum number of characters
in a filename; that is, the maximum number of characters between pathname separators,
including volume names.
The AppleShare FST does not impose a maximum length on pathnames, but restricts the
maximum span to 31 characters. AFP volume names are normally less than 28 characters,
but GS/OS does not check the extent of the span. A volume name with a length of
28-31 characters causes GS/OS to return error $45 (voiNotFound).
GS/OS allows the slash (/) or the colon (;) to be a separator; the first slash or colon that
appears in the pathname identifies the separator. A colon can never be used in a filename.
A slash cannot be used in a filename if the separator is also a slash. The AppleShare FST
does not permit a NULL byte in a pathname. All other characters are permitted.

♦ Note: The high bit of a character is significant. Characters with values greater than or
equal to 128 are considered extended ASCII characters and are typically displayed as
special symbols on Apple IIGS, Macintosh, and IBM systems.

A number that appears as the first filename in a partial pathname is assumed by GS/OS to
be a prefix designator. Since numbers are valid filenames in AFP, a prefbc designator
should always be used explicitly with a partial pathname that begins with a number, as in
the following example:
0; 5 5 5; He 11 o is a valid pathname to the file named He 11o in a folder named 5 5 5 in

the volume corresponding to prefbc designator o.
555: Hello causes an invalid path syntax error since GS/OS assumes that 555: is a

prefbc designator for prefix 555, which is invalid.

Macintosh and GS/OS file types

AppleShare file servers supporting AFP version 2.0 or greater maintain both Macintosh file
type and creator information as well as the ProDOS file type and auxiliary type. Since each
operating system has distinct file type information, a workstation can set one kind of file
type for Macintosh and another for ProDOS.

324 Apple IlGS GS/OS Reference

The AppleShare FST uses the ProDOS file type and auxiliary type fields; it depends on the
server to derive appropriate type information for Macintosh files. The AppleShare File
Server version 2.0 does this using a convention also used by Apple File Exchange and the
MPW IIGS cross-development tools.

ProDOS files are distinguished by a Macintosh creator of pdos.
The file type conversions are shown in Tables 15-1 and 15-2. If more than one rule applies,
the one closest to the top of the table is used.

■ Table 15-1 FroDGS-to-Macintosh file type conversion

P r o D O S P r o D O S M a c i n t o s h M a c i n t o s h

file type auxiliary type c r e a t o r file type

$00 $0000 p d o s B I N A

$B0 (SRC) (Any) p d o s T E X T

$04 (TXT) $0000 p d o s T E X T

$FF (SYS) (Any) p d o s P S Y S

$B3 (S16) (Any) p d o s P S 1 6

$uv $wxyz p d o s $70 $uv $wx $yz'

*$70 is a lowercase p.

■ Table 15-2 Macintosh-to-ProDOS file type conversion

M a c i n t o s h M a c i n t o s h P r o D O S P r o D O S

c r e a t o r fiie type file type auxiliary

(Any) B I N A $00 $0000
(Any) T E X T $04 (txt) $0000
p d o s P S Y S $FF (sYs) $0000
p d o s P S 1 6 $B3 (s 16) $0000
p d o s $XYAA* $XY $0000
p d o s $70 $uv $wx $yzt $uv $wxyz
(Any) (Any) $00 $0000

* Where X and Y are hex digits (that is, 0-9 or A-F), and A is a space,

t $70 is a lowercase p.

Chapter 15 The AppleShare FST 325

i^.. ,

As Table 15-2 shows, the ProDOS file type sys (= $FF) has a Macintosh file type of psys.
The ProDOS file type si6 (= $B3) has a Macintosh file type of ps 16. The ProDOS
unknown file type (= $00) has a Macintosh file type of bina. ProDOS text files
(txt = $04) wî an auxiliary type of $0000 (that is, normal ASCII text, no records) has
a Macintosh file type of text. T̂ ese special cases allow Macintosh to display unique
icons for these file types.

Macintosh files with creator pdos and a file type of the form $XY (where XY are any two
hex digits followed by two spaces) will get the ProDOS file type $XY and auxiliary type
$0000. Macintosh files with creator pdos and a file type of the form $70uvwxyz ($70 is a
lowercase p) have the ProDOS file type $uv and auxiliary type $wxyz (note the order of
the bytes: on the Macintosh they are stored high-low instead of low-high).
APW source files that have the ProDOS file type $B0 are given the Macintosh file type
TEXT so that they can be edited more easily.

♦ Note: The conversions shown in Tables 15-1 and 15-2 do not necessarily translate back
and forth. That is, if you convert a ProDOS file type and auxiliary type to a Macintosh
creator and type as shown in Table 15-1, and then convert it back to a ProDOS file
type and auxiliary type as shown in Table 15-2, you do not always get the original
ProDOS file type and auxiliary type. For example, the auxiliary types for SYS and Sl6
files are reset to $0000, and SRC (APW source) files are changed to TXT (plain text)
files. This situation typically occurs when a file is copied from one server to another
using a Macintosh.

Access privileges

In a shared-file environment, you must decide what use is going to be made of the
contents of your application's files, and open those files in a way that doesn't interfere
with other users' access to those files. The standard GS/OS Open call allows you to specify
the access you would like to have to the file in the requestAccess parameter, as
described in Chapter 4. However, the access returned by the Open call indicates only the
access you would get to the file under the best possible conditions. The actual access you
get when opening the file is controlled by the following factors:
■ your setting of the requestAccess parameter in the Open call
■ the access privileges to ancestor and parent directories, set either by your application

or by other applications using by the FSTSpecific call SetPrivileges

326 Apple IIGS GS/OS Reference

With a standard GS/OS Open call, all of the parameters after the resource number are file
information. If you use a standard GS/OS Open call with the pcount parameter set to
greater than 4 —that is, you are asking for file information to be returned—and you don't
have privileges to see the object you are opening (if the object is in a drop box, for
example), the call returns error $4E (invaiidAccess), since you don't have access to the
file information you requested.

If you specify a requestAccess parameter of $0000

If you specify a requestAccess parameter of $0000 (as permitted), GS/OS takes the
following actions:
1. GS/OS attempts to open the file as read/write, deny read/write.
2. If this fails, an attempt is made to open the file as read-only, deny write.
3. If this fails, an attempt is made to open the file as write-only, deny read/write.
4. If this also fails, error $4E (invaiidAccess) is returned.

A Important Because the AppleShare EST tries all of these combinations, you
usually don't want to use a standard GS/OS Open call with a
requestAccess parameter equal to $0000. If you do use that
parameter, you won't know what access you really got to the file until
you actually try to read or write to the file.

Constructing multi-user applications

A multi-user application allows several users to access and possibly change common data
at the same time. A typical example is a database program that lets several users view and
edit records at the same time. In this case, the read/write protections are applied to
individual records instead of the entire file.

To apply read/write protections to individual records, you use AppleShare FSTSpecific
calls to take the following steps:
1. Use the AppleShare FSTSpecific subcall SpecialOpenFork to open the appropriate fork

of the file. With this call you not only provide the access you want to the file, but the
access you will allow others to the file. For example, a database file might be opened
for read/write, deny nothing. This way, all users can open the file and read and write to
it at the same time.

328 Apple IIGS GS/OS Reference

♦ Note: Buffering is disabled by default for the SpecialOpenFork call to prevent
inconsistencies between the contents of the buffer and the file.

2. Use the FSTSpecific subcall ByteRangeLock to prevent one workstation from writing to
the file and corrupting information being read or written by another workstation. The
ByteRangeLock subcall takes an open file reference number, some flags, an offset into
the file, and a length specifying the number of bytes to be locked or unlocked. When a
range of bytes is locked, no other workstation can read or write those bytes; in fact, the
same workstation using a different reference number cannot access those bytes.

For example, to add a new record to a database, you would take the following steps:
1. Call SpecialOpenFork to open the appropriate fork of the file and specify read/write

access, but do not deny other users read/write access to the file (you will be locking
the appropriate range of bytes).

2. Call ByteRangeLock to lock the header of the file and read it in to determine where to
place the new record.

3. Call ByteRangeLock to lock the range where the new record will be located.
4. Update the header to indicate that the new record has been allocated, write out the

header, and call ByteRangeLock to unlock it.
5. Write the new record to the range you have locked, and call ByteRangeLock to unlock

the range.

Remember that you should have locked any range of bytes that you are reading or writing,
and that you should reread a range of bytes if you have unlocked and locked it again.

Interrupts and AppleTalk calls

If interrupts are disabled when the FST has to make an AppleTalk call, GS/OS returns error
$27 (drvriOError) instead of making the call. In most cases, this error is propagated
back to the user. Note that some calls (such as GetMark) may not require an AppleTalk call
to be made and will complete correctly with interrupts disabled; other calls (such as Read
and Write with small request counts, or GetDirEntry) might not complete with interrupts
disabled (depending on the current mark, any data that is buffered, and so on).

A Important Do not make system calls with interrupts disabled, a

Chapter 15 The AppleShare FST 329

Using the option list

This is the optionList parameter block:

O f f s e t

b u f f e r S i z e

d a t a S i z e

fi l e S y s I D

fi n d e r l n f o

Size and type

Word input value (minimum = 5)

Word input value

Word input value

32 bytes

p a r e n t D i r l D Longword input value

a c c e s s R i g h t s Longword result value

buf ferSize Word input value: Specifies the size of the buffer. For AppleShare, the
length must be greater than or equal to $002E.

dataSize Word input value: Specifies the length of the parameter block. For
AppleShare, the length is $002A.

f ileSysiD Word input value: The file system ID of the FST to which the call is
directed. For AppleShare, thefiieSysiD parameter must always
be $000D.

f inderlnfo 32 bytes: The Finder information for a file is described in Inside Macintosh.

parentDirID Longword input value: ID of the parent directory.

accessRights Longword result value: For directories, this field is in the same format as
that used in the GetPrivileges and SetPrivileges calls. For files, the field is
set to all O's.

330 Apple JIGS GS/OS Reference

♦ Note: The accessRights field was included to allow applications like the Finder
to determine what access a user has to a folder without having to do a separate
GetPrivileges call.

Controlling directory and file buffers
when buffering is off, each Ge0irEntry call immediately causes an enumerate of one
entry from the server. When a Ge®irEntry call is made with buffering on, the requested
entry is returned from the buffer if possible. Otherwise, the buffer is filled with as many
entries from the server as possible, including the requested entry; then the requested entry
is returned.

The buffer is not prefilled when the folder is opened. The number of entries kept in the
buffer is variable and depends on the size of the long and short names of the files and
d i r e c t o r i e s .

■ When buffering is off, every Read and Write call transfers data direcdy between the
user's data buffer and the server.

■ When buffering is on, and a read or write larger than the buffer size is made, any
unwritten data in the buffer is written and the read/write is made directly between the
user's data buffer and the server.

■ When buffering isi pn and a read or write smaller than the buffer size is made, the block
containing the first byte to be read or written is read into the buffer. If the block was
already in the buffer, no read is done. If a different block is in the buffer, any
unwritten data is written and the new block is read into the buffer. The read or write
then proceeds to the end of the buffer. If the read or write extends past the end of the
buffer, any unwritten data is written and the next block is read into the buffer. The
read or write then is completed by reading or writing between the buffer and the
s e r v e r .

Unbuffered reads with zero or one newline characters are handled directly by the server
(that is, the read to the server requests the same number of bytes as the user requested).
Unbuffered reads with two or more newline characters are read one character at a time
from the server (until a newline is encountered or all bytes have been read or the EOF is
reached); because this takes considerable time, you usually should not read two or more
newline characters with buffering off.

Chapter 15 The AppleShare FST 331

Buffered reads with one or more newline characters become reads of one block at a time.
Each block is read into the buffer and the bytes are then copied to the user's data buffer
one at a time (while being compared against all the newline characters). Buffered reads
with no newline characters are as described earlier in this section.

ProDOS 16 and ProDOS 8 compatibility

The AppleShare EST is compatible with the ProDOS 16 and ProDOS 8 implementations of
AppleShare. All calls added to the ProDOS 8 MLI to support AppleShare are still usable
from ProDOS 8. The Ramoispatch vector at $E11014 continues to support full native-
mode calls from either ProDOS 8 or GS/OS. In addition, device-specific calls for the
AppleShare EST allow uniform access to the AppleShare file-system features such as byte
range locking.
The ProDOS 16-compatible open call works in the same fashion as the open call for
AppleShare for ProDOS 16; for more information on the ProDOS 16-compatible open
call, see Appendix A.

A Important Use the standard GS/OS Open call whenever possible, since that call
allows the read/write access to be established, a

The AppleShare FST reports errors $46 (f lleNotFound) and $44 (pathNotFound)
correctly; that is, when a file is not found, the FST checks for the existence of the parent
and issues error $44 (pathNotFound) if the parent does not exist. This differs from
ProDOS 16, which reported the pathNotFound error for both error conditions.

Calls to the AppleShare FST

The following sections describe how the AppleShare FST handles certain GS/OS calls
differently from the general procedures described in Chapter 7. Calls not listed in these
sections are handled exactly as described in Chapter 7.

332 Apple IIGS GS/OS Reference

Create ($2001) for AppleShare FST

The ProDOS file type and auxiliary type are set to the values given in the call; by default,
the Macintosh creator is set to pdos and the Macintosh file type is derived according
to the rules given in the section "Macintosh and GS/OS File Types" earlier in this chapter.
All files are created as extended files (that is, they have both a data and a resource fork),
since there is no way to distinguish between a fork of length 0 and a fork that does not
e x i s t .

In a standard GS/OS Create call, the eof and resourceEOF parameters are ignored.
Because the definition of the call states that the forks' EOFs are set to 0, it is impossible
with AFP to allocate space in a fork past its EOF.

Only the low byte of the file type and the low word of the auxiliary type are used. If the
high byte of the file type or the high word of the auxiliary type is nonzero, error $53 •
(paramRangeErr) is returned.

SetFilelnfo ($2005) for AppleShare FST

The ProDOS file type and auxiliary type are set to the values specified in the call; by
default, the Macintosh creator is set to pdos and the Macintosh file type is derived
according to the rules given in the section "Macintosh and GS/OS File Types" earlier in this
chapter.
The opt ionList parameter only uses the finder info field (the other fields cannot be
set); any data past the f inderinfo field is ignored.
If the f iieSysiD parameter is not the same as AppleShare's file system ID ($0D), then
the opt ionList parameter is ignored. All FSTs return their file system ID in the first word
of the opt ionList parameter and ignore that parameter if the fiieSysiD parameter
does not match theirs. Thus, your application can always get and set the optionList
parameter as part of the copying process, even when it is copying from one file system to
a n o t h e r.

Only the low byte of the file type and low word of the auxiliary type are used. If the high
byte of the file type or high word of the auxiliary type is nonzero, error $53
(paramRangeErr) is returned.

Chapter 15 The AppleShare FST 333

L

GetFilelnfo ($2006) for AppleShare FST

Director ies wi th nei ther seeFi les nor seeFolders access wi l l have the read bi t in their
access word cleared; files and directories with seeFiles or seeFolders access have
their read bit set. If the file's resource fork is not empty, the storageType parameter is
returned as $05 (extended); otherwise it is returned as $01, $02, or $03 (seedling, sapling,
or tree), depending on the length of the data fork.

Open ($2010) for AppleShare FST

Directories with neither seeFiles nor seeFolders access have the read bit in their
access word cleared; files and directories with seeFiles or seeFolders access have
their read bit set. If the file's resource fork is not empty, the storageType parameter is
returned as $05 (extended); otherwise it is returned as $01, $02, or $03 (seedling, sapling,
or tree), depending on the length of the data fork.

The standard GS/OS Open call used with the AppleShare FST prevents one user from
writing data that another user is reading, but does not allow multiple users to read a file
without explicitly asking for read-only access. The actions that GS/OS takes depend on
the value specified for the requestAccess parameter, as detailed in the section
"Access Privileges" earlier in this chapter.

334 Apple IIGS GS/OS Reference

Read ($2012) for AppleShare FST

The Read call is not supported for directories, and an attempt to read a directory returns
error $4E (invaiidAccess). ProDOS directories will not be synthesized. Use the
GetDirEntry call to enumerate directories.

If you attempt to read part of the range that has already been locked by another
workstation, GS/OS returns error $4E (invaiidAccess) and sets the transfer count to
indicate the number of bytes transferred before the locked range was encountered.

♦ Note: If you get this error because of a locked range, don't assume that the locked
range starts immediately after the bytes that were already transferred into your buffer.

Regardless of the value in the cache priority field, data is not put in the system cache. By
default, the FST maintains a buffer containing the last block that was read from or written
to. This block buffer can be controlled on a file-by-file basis by the FSTSpecific call
B u f f e r C o n t r o l .

If buffering is disabled and newline mode has been enabled with more than one newline
character, the read is completed one byte at a time because the server's newline
mechanism provides for only one newline character.

A Important Reading a file with buffering disabled and more than one newline
character imposes tremendous overhead; avoid it if at all possible, a

i

Write ($2013) for AppleShare FST

Regardless of the value in the cache priority field, data will not be put in the system cache.
By default, the FST maintains a block buffer containing the 512 bytes of the block that
contains the current mark. This block buffer can be controlled on a file-by-file basis by the
FSTSpecific call BufferControl.

Writes to directories are not allowed; GS/OS retums error $4E (invaiidAccess).

!

Chapter 15 The AppleShare FST 335

aose ($2014) for AppleShare FST

In response to a Close call, the file is always closed and the reference number for that file is
always invalidated, even if there is an error. This is because any error an application gets
may not be correctable by the application or the user. For example, the data to be flushed
before the close might be locked by another workstation, or the connection with the
server might be lost. In such situations, GS/OS indicates that the error occurred and cleans
up the system as much as possible.

SetEOF ($2018) for AppleShare FST

If a fork is extended, the additional bytes that are allocated might not all be set to 0.

In a standard GS/OS SetEOF call, if the base indicates that the EOF should be set to EOF
minus displacement, the server's current EOF is determined and the EOF is set in relation
to that. This may be different from the workstation's assumption of the EOF if another
workstation has modified the fork's EOF. This may also delete data that another
workstation has written between the time when the current EOF was determined and the
time when the new EOF was set.

GetEOF ($2019) for AppleShare FST

The fork's EOF is determined from the server; this may not match the workstation's
assumption of the EOF if another workstation has modified the fork's EOF. Note that
another workstation could change the EOF after completion of this call, making the
results inaccurate.

336 Apple llGS GS/OS Reference

GetDirEntry ($201C) for AppleShare EST

GetDirEntry is not supported for files. It returns the error $4E (invaiidAccess).

Directories enumerated by GetDirEntry that have neither seeFiies nor seeFoiders
access will have the read bit in their access word cleared. Directories with seeFiies or
seeFoiders access will have the read bit set.

The EST internally maintains the directory entry number (the entryNum parameter) to
allow forward and backward scanning of the directory. By default, several entries are
buffered for better performance (this can be disabled by using the FSTSpecific call
BufferControl). Error $6l (endofoir) is returned when an entry is requested that does
not exist in the buffer (or when buffering is disabled for the directory), and that entry
cannot be read from the server.

Since AppleShare is a shared-file system, the entry number may change for a file even while
the directory is being scanned, because other users can add or delete files in the directory.
Also, if the base and displacement fields are both 0, the total number of entries is
re tu rned .

♦ Note: Because other users can create and delete files while you are enumerating the
directory, more or fewer entries may actually be returned if the directory is
enumerated.

The best way to enumerate a directory is to open the directory aiid make successive
GetDirEntry calls with base and displacement both set to $0001. When you get error $6l
(endofpir), you are finished enumerating, and should remove duplicate entries from
your list.

Chapter 15 The AppleShare EST 337

ReadBlock ($0022) for AppleShare FST

This call returns error $88 (appieshareNetError) for AppleShare devices, in order to
be compatible with System Disk 3.2. Remember, the preferred method for identifying a
network volume is to make a Volume call and check if the fiieSysiD parameter = $0D.

WriteBlock ($0023) for AppleShare FST

This is an invalid operation for an AppleShare device. This call always returns an error. The
current error code is error $4E (invaiidAccess). This is different from error $88
returned under version 3.2, and it may change in the future.

Format ($2024) for AppleShare FST

This is an invalid operation for an AppleShare device. This call always returns an error. The
current error code is $2B (drvrWrtProt). This is different from error $88 returned under
version 3.2, and it may change in the future.

338 Apple IIGS GS/OS Reference

EraseDisk ($2025) for AppleShare EST

This is an invalid operation for an AppleShare device. This call always returns an error. The
current error code is $2B (drvrWrtProt). This is different from error $88 returned under
version 3.2, and it may change in the future.

GetBootVol ($2028) for AppleShare FST

If GS/OS is booted over AppleTalk, this command returns the name of the user volume on
the server the user logged onto during booting. All system files should be present on this
volume, just like any other boot volume.

GetFSTInfo ($2028) for AppleShare FST

The f ileSysiD parameter is returned as $0D (AppleShare). The attribute parameter is
returned as $0000 (System Call Manager should not put pathnames all in uppercase, do not
clear high bits of pathname, this is a block FST, formatting is not supported). The
biocksize parameter is currently returned as 512; this value is useful only in determining
the number of bytes used, the number of bytes free, and the total number of bytes on a
volume (since these values are given in blocks).

Chapter 15 The AppleShare FST

FSTSpeclfic ($2033) for AppleShare FST
The FSTSpecific call can be defined individually for any file system translator.

Descriptioii The Appleshare FST uses the commandNum parameter of the FSTSpecific
call to make several different calls. The calls, their functions, and their
command numbers are shown in Table 15-3.

Parameters This is the FSTSpecific parameter block:

O f f s e t No. Size and type

p C o u n t

fi l e S y s I D

Word input value (minimum = 3)

1 Word input value

- commandNum - 2 Word input value

3 Subcall-specific parameter or parameters

pCount Word input value: The number of parameters in this parameter block.
The number varies for each subcall, as described later in this chapter.

fileSysiD Word input value: The file system ID of the FST to which the call is
directed. For AppleShare, thefiieSysiD parameter must always be
$000D.

commandNum Word input value: A number that specifies which particular subcall
of FSTSpecific to execute, as shown in Table 15-3. For details about each
subcall, see the individual subcall descriptions later in this chapter.

(subcall-specific) One or more word or longword input or result values: These
depend on the specific subcall; see the individual subcall descriptions later
in this chapter.

$45 vo lNotFound

$52 unknownVol

$53 paramRangeErr
$54 outOfMem

a pathname specifies a volume name that does not
match any mounted AppleShare volume (even if a
volume by that name exists for a different file
system)
a reference number for a file opened by another
FST was used, or a pathname used a device name
for a device other than an AFP (AppleShare) driver
command number out of range
out of memory

340 Apple IIGS GS/OS Reference

Table 15-3 AppleShare FSTSpecific subcalls

S u b c a l l c o m m a n d N u m D e s c r i p t i o n

(Invalid number) $0000
BufferContro! $0001 Turns buffering on or off for a specified file or

directory
ByteRangeLock $0002 Locks a specified range of bytes
SpecialOpenFork $0003 Opens a specified fork of a file, allows you to

specify the type of access you want to the file, and
allows you to specify the access you will allow others
to the file

GetPrivileges $0004 Retrieves the access privileges of a specified
directory

SetPrivileges $0005 Sets the access privileges for a specified directory
Userlnfo $0006 Returns the user name and primary group name of

a u s e r

CopyFile. $0007 Causes a file on a server to be copied by the server
GetUserPath $0008 Returns a pointer to a GS/OS string containing the

pathname of the user's directory on the user volume
OpenDesktop $0009 Retums a desktop reference number
CloseDesktop $000A Frees all resources allocated when a specified

desktop reference number was opened
GetComment $000B Retums the comment associated with a specified

file, directory, or volume
SetComment $000C Specifies the comment for a specified file, directory,

or volume

GetSrvrName $000D Returns the server name and zone name for a
specified volume

(rese rved) $OOOE-$FFFF

Chapter 15 The AppleShare FST 341

BiifferControl (AppleShare FSTSpecific subcall)

Description This subcall turns buffering on or off for a specified file or directory.

O f f s e t N o . S i z e a n d t y p e

Word input value (minimum = 3)

1 Word input value

2 Word input value

3 Word input value

4 Word input value

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 3; maximum = 4.

commandNum For BufferControl, commandNum = $0001.

refNum Word input value: The reference number of a file or directory whose
buffering is to be enabled or disabled (reference number $0000 is invalid).

flags Buffer Disable flags (default = $0000)
Bit 15 set Disable buffering

clear Enable buffering
B i t s 0 - 1 4 r e s e r v e d

E r r o r s $ 4 3 i n v a l i d R e f N u m i n v a l i d r e f e r e n c e n u m b e r

342 Apple IIGS GS/OS Reference

ByteRangeLock (AppleShare FSTSpecific subcaU)

This subcall locks a specified range of bytes to prevent one workstation
from writing to the file and corrupting information being read or written
by another workstation.

O f f s e t

p C o u n t

fi l e S y s I D

c o m m a n d N u m

r e f N u m

l o c k F l a g

No. Size and type

Word input value (minimum = 7)

1 Word input value

2 Word input value

3 Word input value

4 Word input value

lockoffset -j 5 Longword input value

lockLength -I 6 Longword input value

l o c k S t a r t 7 Longword output value

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 7; maximum = 7.

commandNum For ByteRangeLock, commandNum = $0002.

refNum Word input value: The reference number of the file to lock.

Chapter 15 The AppleShare EST 3̂

lockFiag Determines the lock status and the type of offset for the file, as
fol lows:

Bit 15 s e t Lock range
clear Unlock range

Bi t 14 s e t Offset relative to EOF
c lear Offset relative to start of file

Bits 0-13 reserved

For this parameter, the following constants can be combined:
lockRange = $8000
re la t iveToEOF = $4000

lockOf f set Longword input value: The offset into the file (may be negative if
relative to the end of the file).

lockLength Longword input value: Length of the range to be locked.

♦ Note: You can lock a range past the EOF of the file to extend the size
of the file.

lockstart Longword output value: Actual start of the locked range (in relation
to the beginning of the file) as returned by the server.

E r r o r s $ 4 3 i n v a i i d R e f N u m i n v a l i d r e f e r e n c e n u m b e r
$4D outofRange position out of range; user already has

some or all of range already locked, or is
unlocking a range not locked by that user

$4E invaiidAccess access denied; some or all of range has
been locked by another user

$53 paramRangeErr invalid parameter

344 Apple IIGS GS/OS Reference

SpedalOpenFork (AppleShare FSTSpecillc subcall)

Description This subcall opens a specified fork of a file, allows you to specify the
type of access you want to the file, and allows you to specify the access
you will allow others to the file.

♦ Note: Buffering is disabled by default for the SpedalOpenFork call to
prevent inconsistencies between the buffer's and the file's contents.

O f f s e t

p C o u n t

r e f N u m

No. Size and type

Word input value (minimum = 5)

fileSysiD - 1 Word input value

commandNum - 2 Word input value

3 Word output value

p a t h P t r Longword input pointer

a c c e s s W o r d

f o r k N u m

5 Word input value

5 Word input value

pCount Word input value: The number of parameters in this parameter block.
Minimum = 5; maximum = 6.

commandNum For SpedalOpenFork, commandNum = $0003.
refNum Word output value: The reference number returned by GS/OS to the

access path. Use this reference number as you would a reference number
returned by an Open call.

pathPtr Longword input pointer: Pointer to GS/OS string representing the
pathname of the file to be opened.

Chapter 15 The AppleShare FST 345

accessword Word input value: The access mode giving the read/write
permissions desired and to be denied to others. If the bit is set, the
condition is asserted.

Bit 0 Request read access
Bit 1 Request write access
Bits 2, 3 Reserved
Bit 4 Deny read to others
Bit 5 Deny write to others
Bits 6-15 Reserved

♦ Note: This parameter has the same meaning as in the ProDOS 8
SpecialOpenFork command.

f orkNum Word input value: Resource number, as follows (default $0000):
$0000 Causes the data fork to be opened
$0001 Causes the resource fork to be opened

Errors $4E invaiidAccess access denied; file is being read by
another user

346 Apple IIGS GS/OS Reference

GetPrivileges (AppleShare FSTSpecific subcall)

This subcall retrieves the access privileges of a specified file or directory.

O f f s e t No. Size and type

p C o u n t

fi l e S y s I D

Word input value (minimum = 4)

1 Word input value

commandNum -I 2 Word input value

pathnamePtr -I 3 Longword input pointer

accessRights -I 4 Longword output value

ownerNamePtr -I 5 Longword input pointer

groupNamePtr - 6 Longword input pointer

The following parameters have particular values for this subcall.
pCount Word input value: The number of parameters in this parameter block.

Minimum = 4; maximum = 6.

commandNum For GetPrivileges, commandNum = $0004.
pathnamePtr Longword input pointer: Pointer to GS/OS string that contains

the pathname of the directory whose access privileges are to be retrieved.

Chapter 15 The AppleShare FST 347

1"

accessRights Longword output value: Four bytes that define the access
privileges. For each of these bytes, bit 0 is search access (see folders), bit 1
is read access (see files), and bit 2 is write access (make changes).

User sununary byte 7 6 5 4 3 2 1 0

f olderOwner (set if you are folder owner) ■

makeChanges allowed (write access)—'
seeFiles allowed (read access)

seeFolders al lowed (search access) -

WorMbyte 7 6 5 4 3 2 1 0

makeChanges allowed (write access)—•

seeFiles allowed (read access) —'

seeFolders allowed (search access) •

Group byte 7 6 5 4 3 2 1 0

m a k e C h a n g ehanges allowed (write access) -

seeFiles allowed (read access)

^Folders allowed (search access) •

Owner byte 7 6 5 4 3 2 1 0

makeChanges allowed (write access)—'
seeFiles allowed (read access) —'

seeFolders allowed (search access) ■

348 Apple IIGS GS/OS Reference

ownerNamePtr Longword input pointer: Pointer to GS/OS result buffer where
the owner name will be returned as a GS/OS string. If the directory is owned
by the guest user (usually displayed as <Any user>), the owner name is
returned as a null string.

groupNamePtr Longword input pointer: Pointer to GS/OS result buffer where
the group name will be retumed as a GS/OS string. If the directory has no
group associated with it, the group name is retumed as a null string.

Errors $4B badstoreType pathname specifies a file instead of a
directory

Chapter 15 The AppleShare EST 349

SetPrivileges (AppleShare FSTSpecific subcall)

This command sets the access rights, owner name, and group name fields
for a specified file or directory.

The string <Any User> is not a valid user name (unless you have a
registered user by that name).

O f f s e t No. Size and type

p C o u n t Word input value (minimum = 4)

fi l eSys iD - j Wo rd i npu t va l ue

cominandNum - 2 Word input value

pathnamePtr -J 3 Longword input pointer

accessRights -j 4 Longword input value

ownerNamePtr -I 5 Longword input pointer

groupNamePtr -I 6 Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 4; maximum = 6.

commandNum For SetPrivileges, commandNum = $0005.

pathnamePtr Longword input pointer: Pointer to GS/OS string that contains
the pathname of the file or directory whose access privileges are to be set.

350 Apple IIGS GS/OS Reference

accessRights Longword input value: The access privileges, as follows:

User summaiy byte

reserved ■

World byte 7 6 5 4 3 2 1 0

makeChanges allowed (write access)

seeFiles allowed (read access)

seeFolders allowed (search access) •

Group byte 7 6 5 4 3 2 1 0

makeChanges allowed (write access)
seeFiles allowed (read access) -•

seeFolders allowed (search access) •

Owner byte 7 6 5 4 3 2 1 0

makeChanges allowed (write access)—I
seeFiles allowed (read access) -•

seeFolders allowed (search access) •

srNamePtr Longword input pointer: Pointer to owner name. Setting the
owner name to the null string assigns the directory to the guest user (usually
known as <Any User>). The pointer points to a structure similar to a
GS/OS output buffer where the first word (normally the total buffer length)
is ignored, the next word is the string length, and the rest of the buffer is the
string itself. This structure definition allows you to do a GetPrivileges call,
modify the data, and do a SetPrivileges call using the same pointer.

Chapter 15 The AppleShare FST

groupNamePtr Longword input pointer: Pointer to group name. Setting the
group name to the null string causes no group to be associated with the
directory (and therefore the group's access rights are ignored). The pointer
points to a structure similar to a GS/OS output buffer where the first word
(normally the total buffer length) is ignored, the next word is the string
length, and the rest of the buffer is the string itself. This structure definition
allows you to do a GetPrivileges call, modify the data, and do a
SetPrivileges call using the same pointer.

Errors $4B badstoreType the pathname specifies a file instead of a
directory

$4E invaiidAccess the specified user is not the current owner
of the directory

$7E unknownuser the Specified user name is not the name of
a registered user

$7F unknownGroup the Specified group name is not the name
of a registered group

352 Apple lies GS/OS Reference

Userlnfo (AppleShare FSTSpecific subcall)

This command retums the user name and primary group name of a user.

O f f s e t

p C o u n t

fi l e S y s I D

d e v N u m

No. Size and type

Word input value (minimum = 4)

1 Word input value

commandNum -I 2 Word input value

3 Word input value

userNamePtr -I 4 Longword input pointer

groupNamePtr -I 5 Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 4; maximum = 5.

commandNum For Userlnfo, commandNum = $0006.

devNum Word input value: Device number of a volume on the desired server
whose user info is to be returned.

userNamePtr Longword input pointer: Pointer to GS/OS result buffer where
the user name will be returned as a GS/OS string. If the user is logged on as a
guest, the user name is returned as a null string.

groupNamePtr Longword input pointer: Pointer to GS/OS result buffer where
the primary group name will be retumed as a GS/OS string. If the user has no
primary group, this name is retumed as a null string.

(none except general GS/OS errors)

Chapter 15 The AppleShare FST 353

I

CopyFile (AppleShare FSTSpecific subcall)

This command causes a file on a server to be copied by the server. The
copy may be between different volumes as long as both volumes are on
the same server.

O f f s e t

p C o u n t

fi l e S y s I D

c o m m a n d N u m

Size and type

Word input value (minimum = 4)

Word input value

Word input value

s r c P t r 3 Longword input pointer

d e s t P t r 4 Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 4; maximum = 4.

commandNum For CopyFile, commandNum = $0007.

srcPtr Longword input pointer: Pointer to GS/OS string that contains the
source pathname.

destPtr Longword input pointer: Pointer to GS/OS string that contains the
destination pathname.

$4A badF i l eFo rma t
$53 paramRangeErr

the server does not support this call
one of the volumes is not a server volume
or the volumes are not on the same server

354 Apple IIGS GS/OS Reference

GetUserPath (AppleShare FSTSpecific subcall)

Descrlptioii

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 3; maximum = 3.

commandNum For GetUserPath, cotnmandNum = $0008.

prefixPtr Longword output pointer: OS/OS returns a pointer to a string that
contains the pathname of the user's directory on the user volume, using
colons as separators and without a trailing colon.

This subcall returns a pointer to a OS/OS string that contains the
pathname of the user's directory on the user volume.
The path is constructed on each call. The string's contents will not change
until the next call to GetUserPath. The string is suitable for use as a
parameter to a SetPrefix call.

O f f s e t

p C o u n t

fi l e S y s I D

No. Size and type

Word input value (minimum = 3)

Word input value

c o m m a n d N u m Word input value

Longword output pointer

A Important Do not modify the string. This is not a pointer to a
result buffer. The data pointed to is kept inside the
AppleShare FST, which is why you should not
modify it. a

$60 da taUnava i l no user volume is mounted or the user
name could not be determined

Chapter 15 The AppleShare FST 355

OpenDesktop (AppleShare FSTSpecific subcall)

This subcall takes a pathname of a volume or a pathname of a file or
folder and returns a desktop reference number for the volume. That
number must be supplied for all other desktop database calls.

O f f s e t

p C o u n t

fi l e S y s I D

c o m m a n d N u m

No. Size and type

Word input value (minimum = 4)

1 Word input value

2 Word input value

dtRefNum -I 3 Word input value

pathnamePtr -I 4 Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 4; maximum = 4.

commandNum For OpenDesktop, commandNum = $0009-

dtRefNum Word Output value: Desktop reference number of the desktop for
the vo lume.

pathnamePtr Longword input pointer: Pointer to GS/OS string containing the
pathname of the volume whose desktop will be opened, or the pathname of
a file or folder on the volume whose desktop will be opened.

(none except general GS/OS errors)

356 Apple IIGS GS/OS Reference

CloseDesktop (AppleShare FSTSpecific subcall)

This command takes a desktop reference number and a volume name or
pathname and frees all resources allocated when that reference number
was opened.

O f f s e t

p C o u n t

fi l e S y s I D

c o m m a n d N u m

No. Size and type

Word input value (minimum = 4)

1 Word input value

2 Word input value

dtRefNum -I 3 Word input value

p a t h n a m e P t r Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 4; maximum = 4.

commandNum For CloseDesktop, commandNum = $000A.

dtRefNum Word input value: Desktop reference number of the volume whose
desktop will be closed.

pathnamePtr Longword input pointer: Pointer to GS/OS string containing the
pathname of the volume whose desktop will be closed, or the pathname of
a file or folder on the volume whose desktop will be closed.

(none except general GS/OS errors)

Chapter 15 The AppleShare EST 357

GetComment (AppleShare FSTSpecific subcall)

This command takes a desktop reference number and a pathname and
returns the comment associated with the file, directory, or volume. If no
comment has been stored, a null string is returned for the comment.

O f f s e t

p C o u n t

fi l e S y s I D

c o m m a n d N u m

d t R e f N u m

No. Size and type

Word input value (minimum = 5)

1 Word input value

2 Word input value

3 Word input value

pathnamePtr -I 4 Longword input pointer

commentPtr -I 5 Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 5; maximum = 5.

commandNum For GetComment, commandNum = $000B.

dtRefNum Word input value: Desktop reference number of the volume.

pathnamePtr Longword input pointer: Pointer to GS/OS string containing the
pathname of the file, directory, or volume whose comment is retrieved.

commentPtr Longword input pointer: Pointer to GS/OS result buffer where the
comment will be returned as a GS/OS string; the string in this case will not be
longer than 199 characters.

(none except general GS/OS errors)

358 Apple IIGS GS/OS Reference

SetComment (AppleShare FSTSpecific subcall)

This subcall sets the comment for a specified file, directory, or volume.

O f f s e t N o . S J z e a n d t y p e

p C o u n t

fi l e S y s I D

c o m m a n d N u m

d t R e f N u m

p a t h n a m e P t r -

c o m m e n t P t r H

Word input value (minimum = 4)

1 Word input value

2 Word input value

3 Word input value

4 Longword input pointer

5 Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 4; maximum = 5.

commandNum For SetComment, commandNum = $000C.

dtRefNum Word input value: Desktop reference number of a file or directory.
pathnamePtr Longword input pointer: Pointer to GS/OS string containing the

pathname of the file, directory, or volume whose comment will be set.
commentPtr Longword Input pointer: Pointer to GS/OS string defining the

comment. If the string is null, or not supplied (that is, if pCount = 4),
then the comment is removed. If the comment string is longer than
199 characters, it is truncated to 199 characters without an error.

(none except general GS/OS errors)

Description

E r r o r s

Chapter 15 The AppleShare FST 359

GetSrvrName (AppleShare FSTSpecific subcall)

Description This subcall takes a pathname and returns the server name and zone name
for that volume. If either the srvrNamePt r parameter or
srvrZonePtr parameter is null ($0000 0000), the string is not returned.
If the server name or zone name is unknown, it is returned as a null string.

Size and type

Word input value (minimum = 4)

Word input value

Word input value

pathnamePtr -j 3 Longword input pointer

$ 0 A I I
srvrNamePtr - 4 Longword input pointer

$ 0 E I I
srvrZonePtr - 5 Longword input pointer

The following parameters have particular values for this subcall.

pCount Word input value: The number of parameters in this parameter block.
Minimum = 4; maximum = 5.

commandNum For GetSrvrName, commandNum = $000D.

pathnamePtr Longword input pointer: Pointer to GS/OS string containing the
pathname of the volume whose server name and zone name is to be
re tu rned .

srvrNamePtr Longword input pointer: Pointer to GS/OS result buffer where
the server name will be returned as a GS/OS string.

srvrZonePtr Longword input pointer: Pointer to GS/OS result buffer where
the server zone will be returned as a GS/OS string.

Errors (none except general GS/OS errors)

O f f s e t

p C o u n t

fi l e S y s I D

c o m m a n d N u m

360 Apple IIGS GS/OS Reference

Appendixes

Appendix A GS/OS ProDOS 16 CaJls

This appendix provides a detailed description of all the GS/OS
ProDOS 16 calls, arranged in alphabetical order by call name. These
calls are provided only for compatibility with ProDOS l6. For the
standard GS/OS calls, see Chapter 7, "GS/OS Call Reference," in Part I
of this book.

The descriptions in this appendix follow the same conventions as those
for the standard GS/OS calls.

3 ^

L.

$0031 A1L0C_EVTERRUPT

This function places the address of an interrupt handler into GS/OS's
interrupt vector table.

For a complete description of GS/OS's interrupt-handling subsystem, see
Chapter 10. See also the dealloc_interrupt call in this appendbc.

O f f s e t

i n t N u m

Size and type

Word result value

i n t C o d e Longword input pointer

intNum Word result value: An identifying number assigned by GS/OS to the
binding between the interrupt source and the interrupt handler. Its only use
is as input to the dealloc_interrupt call.

intCode Longword input pointer: Points to the first instruction of the interrupt
handler routine.

$25 I rqTab leFu l l
$53 paramRangeErr

interrupt vector table full
parameter out of range

364 Apple IIGS GS/OS Reference

CHANGE PATH

Description

P a r a m e t e r s

This call changes a file's pathname to another pathname on the same
volume, or renames a volume.

CHANGE_PATH cannot be used to change a device name. You must use
the configuration program to change device names.

O f f s e t Size and type

p a t h n a m e Longword input pointer

n e w P a t h n a m e Longword input pointer

pathname Longword input pointer: Points to a Pascal string that represents the
name of the file whose pathname is to be changed.

newPathname Longword input pointer: Points to a Pascal string that represents
the new pathname of the file whose name is to be changed.

Comments A file may not be renamed while it is open.
A file may not be renamed if rename access is" disabled for the file.

A subdirectory s may not be moved into another subdirectory ? if s = t or
if tis contained in the directory hierarchy starting at s. For example,
"rename /v to /v/w" is illegal, as is "rename /v/w to /v/w/x".

$10 devNotFound
$ 2 7 d r v r l O E r r o r
$2B drv rWr tPro t
$40 badPathSyntax
$44 pathNotFound
$45 volNotFound
$46 fileNotFound
$47 dupPathname
$4A badFi leFormat
$4B badStoreType

device not found

I/O error

write-protected disk
invalid pathname syntax
path not found
volume not found
file not found

duplicate pathname
version error

unsupported storage type

Appendix A GS/OS ProDOS l6 Calls 365

$ 4 E i n v a l i d A c c e s s
$ 5 0 fi l e B u s y
$52 unknownVol
$53 paramRangeErr
$57 dupVolume
$58 no tB lockDev
$5A damagedBitMap

file not destroy-enabled
file open
unsupported volume type
parameter out of range
duplicate volume
not a block device

block number out of range

366 Apple IlGS GS/OS Reference

$000B CLEAR_BACKUP_Brr

This call alters a file's state information to indicate that the file has been
backed up and not altered since the backup. Whenever a file is altered,
GS/OS sets the file's state information to indicate that the file has been
altered.

O f f s e t Size and type

p a t h n a m e Longword input pointer

pathname Longword input
pathname of the file or

$ 2 7 d r v r l O E r r o r
$28 drvrNoDevice
$2B d rv rWr tP ro t
$2E d rv rD iskSwi t ch
$40 badPathSyntax
$44 pathNotFound
$45 volNotFound
$ 4 6 fi l e N o t F o u n d
$4A badFi leFormat
$52 unknownVol
$58 notBlockDev

pointer: Points to a Pascal string that gives the
directory whose backup status is to be cleared.

I/O error
no device connected

write-protected disk
disk switched
invalid pathname syntax
path not found
volume not found

file not found
version error

unsupported volume type
not a block device

Appendix A GS/OS ProDOS 16 Calls

$ 0 0 1 4 C L O S E

This call closes the access path to the specified file, releasing all resources
used by the file and terminating further access to it. Any file-related
information that has not been written to the disk is written, and
memory-resident data structures associated with the file are released.
If the specified value of the f iieRefNum parameter is $0000, all files at
or above the current system file level are closed.

O f f s e t

fi i e R e f N u m

Size and type

Word input value

f IieRefNum Word input value: The identifying number assigned to the file by
the OPEN call. A value of $0000 indicates that all files at or above the current
system file level are to be closed.

$ 2 7 d r v r l O E r r o r
$ 2 B d r v r W r t P r o t

$ 2 E d r v r D i s k S w i t c h
$43 Inva l i dRe fNum
$ 4 8 v o l u m e F u l l
$5A damagedBitMap

I /O er ror

write-protected disk
disk switched

invalid reference number

volume full
block number out of range

368 Apple IIGS GS/OS Reference

C R E AT E

This call creates a standard file, an extended file, or a subdirectory on a
volume mounted in a block device. A standard file is a ProDOS-like file

containing a single sequence of bytes; an extended file is a Macintosh
like file containing a data fork and a resource fork, each of which is an
independent sequence of bytes; a subdirectory is a data structure that
contains information about other files and subdirectories.

This call cannot be used to create a volume directory; the format call
performs that function. Similarly, it cannot be used to create a character-
device fi le.

This call sets up file system state information for the new file and
initializes the file to the empty state.

P a r a m e t e r s O f f s e t Size and type

p a t h n a m e Longword input pointer

f A c c e s s Word input value

fi l e T y p e Word input value

a u x T y p e Longword input value

s t o r a g e T y p e

c r e a t e D a t e

c r e a t e T i m e

Word input value

Word input value

Word input value

pathname Longword input pointer: Points to a Pascal string representing the
pathname of the file to be created. This is the only required parameter.

Appendix A GS/OS ProDOS 16 Calls 369

f Access Word input value: Specifies how the file may be accessed after it is
created and whether or not the file has changed since the last backup.

The most common setting for the access word is $00C3.

Software that supports file hiding (invisibility) should use bit 2 of the flag
to indicate whether or not to display a file or subdirectory.

f iieType Word input value: Used conventionally by system and application
programs to categorize the file's contents. The value of this field has no
effect on GS/OS's handling of the file, except that only certain file types
may be executed directly by GS/OS.

auxType Longword input value: Used by system and application programs to
store additional information about the file. The value of this field has no
effect on GS/OS's handling of the file. By convention, the interpretation of
values in this field depends on the value in the f iieType field.

St orageType Word input value: The value of this parameter determines
whether the file being created is a standard file, extended file, or
subdirectory file, as follows:
$0000-$0003* create a standard file

$0005 create an extended file

$8005 convert existing standard file to contain a resource fork
$000D create a subdirectory file

■ Îf this field contains $0000, $0002, or $0003, GS/OS interprets it as $0001
and actually changes it to $0001 on output. All other values are invalid.

370 Apple IIGS GS/OS Reference

createDate Word input value: This parameter specifies a date that GS/OS
saves as the file's creation date value. If this word is $0000, GS/OS gets the
date from the system clock.

1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

Year (1-1901,2 = 1902,...)-'
Month (1 - January, 2 - February,

Day of the month (1,2, ..., 31) -

createTime Word input value: This parameter specifies the time that GS/OS
saves as the file's creation time value. If this word is $0000, GS/OS gets the
time from the system clock.

115114 1131121111101 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0

Hour (0-23)-

Minute (0-59)

I Comments The create call applies only to files on block devices.
The storage type of a file cannot be changed after it is created. For

I example, there is no direct way to add a resource fork to a standard file
I or to remove one of the forks from an extended file.
I All FSTs implement standard files, but they are not required to implement

extended files.

I E r r o r s $ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
I $ 2 7 d r v r l O E r r o r I / O e i T O r
I $ 2 B d r v r W r t P r o t w r i t e - p r o t e c t e d d i s k

$40 badPathSyntax invalid pathname syntax
I $ 4 4 p a t h N o t F o u n d p a t h n o t f o u n d
j $ 4 5 v o i N o t F o u n d v o l u m e n o t f o u n d
5 $ 4 6 f i i e N o t F o u n d fi l e n o t f o u n d

i'i

' ! A p p e n d i x A G S / O S P r o D O S l 6 C a l l s 3 7 1
j,

t
I

'1

$47 dupPathname
$ 4 8 v o l u m e F u l l
$ 4 9 v o l D i r F u l l
$4B badStoreType
$ 5 2 u n k n o w n V o l
$53 paramRangeErr
$ 5 8 n o t B l o c k D e v
$5A damagedBitMap

duplicate pathname
volume full

volume directory full
unsupported (or incorrect) storage type
unsupported volume type
parameter out of range
not a block device

block number out of range

372 Apple IIGS GS/OS Reference

$0032 DEALLOC_INTERRUPT

Description This function removes a specified interrupt handler from the interrupt
vector table. See also the alloc_interrupt call in this appendix.

P a r a m e t e r s o f f s e t s i z e a n d t y p e

Word input value

intNum Word input value: Interrupt identification number of the binding that is
to be undone between interrupt source and interrupt handler.

parameter out of range

[A p p e n d i x A G S / O S P r o D O S 1 6 C a l l s 3 7 3

n

E r r o r s $ 5 3 p a r a m R a n g e E r r

$ 0 0 0 2 D E S T R O Y

Description This call deletes a specified standard file, extended file (both the data
fork and resource fork), or subdirectory and updates the state of the file
system to reflect the deletion. After a file is destroyed, no other
operations on the file are possible.
This call cannot be used to delete a volume directory; the format call
reinitializes volume directories. Similarly, this call cannot be used to
delete a character-device file.

It is not possible to delete only the data fork or only the resource fork of
an extended file.

Before deleting a subdirectory file, you must empty it by deleting all the
files it contains.

P a r a m e t e r s O f f s e t Size and type

p a t h n a m e Longword input pointer

C o m m e n t s

E r r o r s

pathname Longword input pointer: Points to a Pascal string that represents the
pathname of the file to be deleted.

A file cannot be destroyed if it is currently open or if the access
attributes do not permit destroy access.

$10 devNotFound
$ 2 7 d r v r l O E r r o r
$ 2 B d r v r W r t P r o t
$40 badPathSyntax
$44 pathNotFound
$45 vo lNo tFound
$ 4 6 fi l e N o t F o u n d
$4B badStoreType
$ 4 E i n v a l i d A c c e s s
$ 5 0 fi l e B u s y
$52 unknownVol
$53 paramRangeErr
$ 5 8 n o t B l o c k D e v
$5A damagedBitMap

device not found
I/O error

write-protected disk
invalid pathname syntax
path not found
volume not found
file not found

unsupported storage type
file not destroy-enabled
file open
unsupported volume type
parameter out of range
not a block device
block number out of range

374 Apple IIGS GS/OS Reference

$ 0 0 2 C D . I N F O

Description

P a r a m e t e r s

devNum Word input value: A device number. GS/OS assigns device numbers in
sequence (1, 2,3, and so on) as it loads or creates the device drivers. There
is no fixed correspondence between devices and device numbers. To get
information about every device in the system, make repeated calls to
D_iNFO with devNum values of 1,2,3, and so on until GS/OS returns error
$53 (paramRangeErr).

devName Longword input pointer: Points to a buffer in which GS/OS returns a
Pascal string containing the device name of the device specified by device
number. The maximum size of the string is 31 bytes, so the maximum size of
the returned value is 33 bytes. Thus, the buffer size should be 35 bytes.

E r r o r s $ 1 1 i n v a l i d O e v N u m i n v a l i d d e v i c e n u m b e r
$53 paramRangeErr parameter out of range

This call returns general information about a device attached to the
system.

O f f s e t

d e v N u m

Size and type

Word input value

d e v N a m e Longword input pointer

Appendix A GS/OS ProDOS l6 Calls 375

$0025 E R A S E D I S K

Description This call puts up a dialog box that allows the user to erase a specified
volume and choose which file system is to be placed on the newly erased
volume. The volume must previously have been physically formatted. The
only difference between erase_disk and format is that
ERASE_DISK does not physically format the volume. See the format
call later in this appends.

P a r a m e t e r s O f f s e t S i z e a n d t y p e
$ 0 0 r I

devName - Longword input pointer

$ 0 4 I I
volName - Longword input pointer

$08 _ fiieSysiD - Word result value

devName Longword input pointer: Points to a Pascal string that represents the
device name of the device containing the volume to be erased.

voiName Longword input pointer: Points to a Pascal string that represents the
volume name to be assigned to the newly erased volume.

fiieSysiD Word result value: If the call is successful, this field identifies the
file system with which the disk was formatted. If the call is unsuccessful,
this field is undefined.

$0000 Reserved $0008 Apple CP/M
$0001 ProDOS/SOS $0009 Reserved

$0002 DOS 3.3 $000A MS/DOS

$0003 DOS 3.2 or 3.1 $000B High Sierra
$0004 Apple II Pascal $000C ISO 9660

$0005 Macintosh (MPS) $000D AppleShare
$0006 Macintosh (HPS) $OOOE-$OOOP Reserved

$0007 Lisa

376 Apple IIGS GS/OS Reference

E r r o r s $ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
$11 invalidDevNum invalid device request
$ 2 7 d r v r l O E r r o r I / O e i T O r
$28 drvrNoDevice DO device connected
$2B drvrWrtProt write-protected disk
$53 paramRangeErr parameter out of range
$5D osunsupported file system not available
$64 invalidFSTiD invalid FST ID

Appendbc A GS/OS ProDOS 16 Calls 377

$ 0 0 0 E E X PA N D _ PAT H

Description This call converts the input pathname into the corresponding full
pathname with colons (ASCII $3A) as separators. If the input is a full
pathname, expand_path simply converts all of the separators to
colons. If the input is a partial pathname, expand_path concatenates
the specified prefix with the rest of the partial pathname and converts
the separators to colons.

If bit 15 (MSB) of the flags parameter is set, the call converts all
lowercase characters to uppercase (all other bits in this parameter must
be cleared). This call also performs limited syntax checking. It returns an
error if it encounters an illegal character, two adjacent separators, or any
other syntax error.

P a r a m e t e r s O f f s e t Size and type

input Path -| Longword input pointer

o u t p u t P a t h Longword input pointer

fl a g s Word input value

inputPath Longword input pointer: Points to a Pascal input string that is to be
expanded.

outputPath Longword input pointer: Points to a buffer in which GS/OS returns
a Pascal string that contains the expanded pathname.

flags Word input value: If bit 15 is set to 1, this call returns the expanded
pathname in uppercase characters. All other bits in this word must be 0.

$40 badPathSyntax invalid pathname syntax
$ 4 F b u f f To o S m a i l b u f f e r t o o s m a l l

378 Apple IIGS GS/OS Reference

$ 0 0 1 5 F L U S H

Description This call writes to the volume all file state information that is buffered in
memory but has not yet been written to the volume. The purpose of this
call is to assure that the representation of the file on the volume is
consistent and up to date with the latest GS/OS calls affecting the file.
Thus, if a power failure occurs immediately after the flush call
completes, it should be possible to read all data written to the file as well
as all file attributes. If such a power failure occurs, files that have not
been flushed may be in inconsistent states, as may the volume as a whole.
A value of $0000 for the f iieRefWum parameter indicates that all files at
or above the current system file level are to be flushed.

P a r a m e t e r s O f f s e t S i z e a n d t y p e
$00 _ fiieRefNum - Word input value

f lleRefNum Word input value: The identifying number assigned to the file by
the OPEN call. A value of $0000 indicates that all files at or above the current
system file level are to be flushed.

E r r o r s $ 2 7 d r v r i O E r r o r I / O e r r o r
$2B "drvrwrtProt write-protected disk
$2E d rv rD iskSwi tch d isk sw i tched
$43 invalidRefNum invalid reference number
$ 4 8 v o l u m e F u l l v o l u m e f u l l
$5A damagedBitMap block number out of range

Appendix A GS/OS ProDOS 16 Calls

$0024 F O R M A T

Description This call puts up a dialog box that allows the user to physically format a
specified volume and choose which file system is to be placed on the
newly formatted volume.

Some devices do not support physical formatting. In this case the
FORMAT call writes only the empty file system, and in effect is just like
the ERASE_DiSK Call. See the erase_disk call earlier in this chapter.

P a r a m e t e r s o f f s e t S i z e a n d t y p e
$ 0 0 r I

devName - Longword input pointer

$ 0 4 I I
volName - Longword input pointer

$08 _ fiieSysiD - Word result value

devName Longword input pointer: Points to a Pascal string that represents the
device name of the device containing the volume to be formatted.

voiName Longword input pointer: Points to a Pascal string that represents the
volume name to be assigned to the newly formatted blank volume.

fiieSysiD Word result value: If the call is successful, this field identifies the
file system with which the disk was formatted. If the call is unsuccessful,
this field is undefined. The file system IDs are as follows:
$0000 reserved $0008 Apple CP/M
$0001 ProDOS/SOS $0009 reserved

$0002 DOS 3.3 $000A MS/DOS

$0003 DOS 3.2 or 3.1 $000B High Sierra
$0004 Apple II Pascal $000C ISO 9660

$0005 Macintosh (MPS) $000D AppleShare
$0006 Macintosh (HPS) $OOOE-$OOOP reserved

$0007 Lisa

380 Apple IIGS GS/OS Reference

$10 devNotFound
$11 inval idDevNum
$ 2 7 d r v r l O E r r o r
$28 drvrNoDevice
$2B d rv rWr tP ro t
$53 paramRangeErr
$5D osUnsupported
$64 inva l idFSTID

device not found

invalid device number request
I/O error

no device connected

write-protected disk
parameter out of range
file system not available
invalid FST ID

Appendix A GS/OS ProDOS 16 Calls

$0028 GET_BOOT_VOL

This call returns the volume name of the volume from which the file
GS/OS was last loaded and executed. The volume name returned by this
call is equivalent to the prefix specified by */.

O f f s e t Size and type

d a t a B u f f e r Longword input pointer

E r r o r s

dataBuf fer Longword input pointer: Points to a buffer in which GS/OS returns
a Pascal string containing the boot volume name.

$ 4 F b u f f To o S m a l l buffer too small

382 Apple IIGS GS/OS Reference

$0020 GET_DEV_NUM

This call returns the device number of a device identified by device name
or volume name. Only block devices may be identified by volume name,
and then only if the named volume is mounted. Most other device calls
refer to devices by device number.

GS/OS assigns device numbers at boot time. The numbers are a series of
consecutive integers beginning with 1. There is no algorithm for
determining the device number for a particular device.
Because a device may hold different volumes and because volumes may
be moved from one device to another, the device number returned for a
particular volume name may be different at different times.

P a r a m e t e r s O f f s e t Size and type

d e v N a m e Longword input pointer

d e v N u m Word result value

E r r o r s

devName Longword input pointer: Points to a Pascal string that represents the
device name or volume name (for a block device).

devNum Word result value: The device reference number of the specified device.

$10 devNotFound
$11 inval idDevNum
$40 badPathSyntax
$45 volNotFound

device not found

invalid device number request
invalid pathname syntax
volume not found

Appendix A GS/OS ProDOS 16 Calls 383

L

$001C

Description

P a r a m e t e r s

GET_DIR_ENTRY

This call returns information about a directory entry in the volume
directory or a subdirectory. Before executing this call, the application
must open the directory or subdirectory. The call allows the application
to step forward or backward through file entries or to specify absolute
entries by entry number.

r e f N u m

Size and type

Word input value

fl a g s Word result value

b a s e Word input value

d i s p l a c e m e n t Word input value

n a m e B u f f e r Longword input pointer

e n t r y N u m Word result value

fi l e T y p e Word result value

e n d O f F l l e Longword result value

b l o c k C o u n t Longword result value

384 Apple IIGS GS/OS Reference

Double longword result value

Double longword result value

$28
a c c e s s

$2A

a u x T y p e
-

$2E fi l e S y s I D -

Word result value

Longword result value

refNum Word input value: The identifying number assigned to the directory or
subdirectory by the open call.

flags Word result value: Flags that indicate various attributes of the file.

File is an extended file = 1 -I
File is not an extended file = 0

Reserved -J

Appendix A GS/OS ProDOS 16 Calls

base Word input value: A value that tells how to interpret the displacement
field, as follows:
$0000 displacement gives an absolute entry number
$0001 displacement is added to current displacement to get next

entry number
$0002 displacement is subtracted from current displacement to get

next entry number

displacement Word input value: In combination with the base parameter, the
displacement specifies the directory entry whose information is to be
returned. When the directory is first opened, GS/OS sets the current
displacement value to $0000. The current displacement value is updated on
every get_dir_entry call.
If the base and displacement fields are both 0, GS/OS returns a 2-byte value
in the entryNumber parameter that specifies the total number of active
entries in the subdirectory. In this case, GS/OS also resets the current
displacement to the first entry in the subdirectory.
To step through the directory entry by entry, you should set the base and
displacement parameters to $0001.

nameBuf fer Longword input pointer: Points to a buffer in which GS/OS returns
a Pascal string containing the name of the file or subdirectory represented in
this directory entry.

entryNum Word result value: The absolute entry number of the entry whose
information is being returned. This field is provided so that a program can
obtain the absolute entry number even if the base and displacement
parameters specify a relative entry.

f ileType Word result value: The value of the file type field of the directory
entry.

endOfFiie Longword result value: Value of the EOF field of the directory entry.
biockCount Longword result value: The value of the blocks used field of the

directory entry.

createTime Double longword result value: The value of the creation date/time
field of the directory entry.

modTime Double longword result value: The value of the modification
date/time field of the directory entry.

386 Apple IIGS GS/OS Reference

access Word result value: Value of the access attribute field of the directory
entry.

auxType Longword result value: Value of the auxiliary type field of the directory
entry.

fiieSysiD Word result value: File system identifier of the file system on the
volume containing the file. Values of this field are described under the
VOLUME call.

E r r o r s $ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
$ 2 7 d r v r i O E r r o r I / O e r r o r
$4A badFileFormat version error
$4B badstoreType unsupported storage type
$4F buffTooSmaii buffer too small
$52 unknownvoi unsupported volume type
$53 paramRangeErr parameter out of range
$58 notBiockDev not a block device
$6l endOfDir end of directory

Appendix A GS/OS ProDOS 16 Calls 387

$ 0 0 1 9 G E T. E O F

This function returns the current logical size of a specified file. See also
the SET_EOF call in this appendix.

O f f s e t Size and type

Word input value

Longword result value

refNum Word input value: The identifying number assigned to the file by the
OPEN call.

eof Longword result value: The current logical size of the file, in bytes.

$ 4 3 i n v a l i d R e f N u m inval id reference number

388 Apple IIGS GS/OS Reference

$0006 GET_FILE_INFO

Description This call returns certain file attributes of an existing open or closed
block file.

A Important A get_file_info call following a set_file_info
call on an open file may not retum the values set by the
SET_FiLE_iNFO Call. To guarantee recording of the
attributes specified in a set_file_info call, you
must first close the file, a

See also the set_file_info call in this appendix.

O f f s e t S i z e a n d t y p eO f f s e t

$00 C"
p a t h n a m e Longword input pointer

f A c c e s s

fi l e T y p e

Word result value

Word result value

a u x T y p e Longword result value

$oc _ s t o r a g e T y p e Word result value

$0E _ c r e a t e D a t e Word result value

$10 _ c r e a t e T i m e Word result value

$12 r m o d D a t e Word result value

$14 7" m o d T i m e Word result value

$16

b l o c k s U s e d Longword result value

Appendix A GS/OS ProDOS 16 Calls 389

pathname Longword input pointer: Points to a Pascal string representing the
pathname of the file whose file information is to be retrieved.

f Access Word result value: Value of the file's access attribute, which is
described under the create call.

f iieType Word result value: Value of the file's file type attribute.
auxType Longword result value: Value of the file's auxiliary type attribute.
storageType Word result value: Value indicating the storage type of the file,

as follows:

$01 standard file
$05 extended fi le

$0D volume directory or subdirectory file
createDate Word result value: Value for the file's creation date attribute,

which is described under the create call.

createTime Word result value: Value for the file's creation time attribute,
which is described under the create call.

modDate Word result value: Value for the file's modification date attribute. The
format is the same as that of the createDate parameter.

modTime Word result value: Value for the file's modification time attribute. The
format is the same as that of the createTime parameter.

blocksUsed Longword result value: For a standard file, this field gives the total
number of blocks used by the file. For an extended file, this field gives the
number of blocks used by the file's data fork.

For a subdirectory or volume directory file, this field is undefined.

Errors $10 devNotFound dev ice not found
$ 2 7 d r v r i O E r r o r I / O e r r o r
$40 badPathSyntax invalid pathname syntax
$44 pathNotFound path not found
$45 voiNotFound volume not found
$46 fileNotFound file not found
$4A badFileFormat version error
$4B badstoreType unsupported storage type
$52 unknownVol unsupported volume type
$53 paramRangeErr parameter out of range
$58 notBiockDev not a block device

390 Apple IIGS GS/OS Reference

$0021 GET_LAST_DEV

This call returns the device number of the last accessed device. The last
accessed device is defined as the last device to which any device
command was directed by GS/OS as the result of a OS/OS call.

A program that uses this call must take into account that the last device
value can change at any time if a device-accessing GS/OS call is made by
an asynchronously executed process such as a desk accessory or interrupt
handler.

To ensure that the get_last_dev call returns the last device accessed
by the given program, the program must
1. disable interrupts
2. make the GS/OS call that accesses the device (for example, open,

read)
3. make the get_last_dev call
4. restore the interrupt state that was current before step 1

Unfortunately, this sequence locks out interrupts for more than the
maximum recommended interrupt disable time. Therefore, system
integrity cannot be guaranteed, especially in a networked environment,
where rapid interrupt handling is crucial.

A Important Because of this danger to system integrity, use this call
with caution, if at all. a

O f f s e t

d e v N u m

Size and type

Word result value

de vNum Word result value: Device number of the last accessed device.

$ 5 9 i n v a l i d L e v e l invalid file level

Appendix A GS/OS ProDOS 16 Calls 391

GET_LEVEL

This function returns the current value of the system file level. See also the
SET_LEVEL Call in this appendix.

O f f s e t

l e v e l

Size and type

Word result value

level Word result value: The value of the system file level.

E r r o r s $ 5 9 i n v a l i d L e v e l invalid file level

G E T M A R K

This function returns the current mark for the specified file. See also the
SET_MARK call in this appendix.

O f f s e t

m a r k R e f N u m

Size and type

Word input value

p o s i t i o n Longword result value

E r r o r s

markRefN\am Word input value: The identifying number assigned to the file by
the OPEN call.

position Longword result value: The current value of the mark, in bytes,
relative to the beginning of the file.

$ 4 3 i n v a l i d R e f N u m invalid reference number

392 Apple IIGS GS/OS Reference

$0027 GET NAME

Desciiption Returns the filename (not the complete pathname) of the currently
running application program.

To get the complete pathname of the current application, concatenate
prefix 1 / with the filename returned by this call. Do this before making
any change in prefbt i/.

P a r a m e t e r s O f f s e t Size and type

d a t a B u f f e r Longword input pointer

dataBuffer Longword input pointer: Points to a buffer in which GS/OS returns
a Pascal string containing the filename.

E r r o r s $ 4 F b u f f T o o S m a l l b u f f e r t o o s m a l l

I

Appendix A GS/OS ProDOS 16 Calls

$ 0 0 0 A G E T. P R E F I X

Description This function returns the current value of any one of the numbered
prefixes. The returned prefix string always starts and ends with a
separator. If the requested prefix is null, it is returned as a string with the
length field set to 0. This call should not be used to get the boot volume
prefix (*/). See also the set_prefix call in this appendk.

P a r a m e t e r s o f f s e t S i z e a n d t y p e

- p r e fi x N u m - W o r d i n p u t v a l u e

$02 _

prefix - Longword input pointer

prefixNum Word input value: Binary value of the prefix number for the prefix
to be returned.

prefix Longword input pointer: Points to a buffer in which GS/OS returns a
Pascal string containing the prefix value.

E r r o r s $ 4 F b u f f T o o S m a i i b u f f e r t o o s m a l l
$53 paramRangeErr parameter out of range

394 Apple IIGS GS/OS Reference

$002A GET.VERSION

This call returns the version number of the GS/OS operating system. This
value can be used by application programs to condition version-
dependent operations.

O f f s e t

v e r s i o n

Size and type

Word result value

version Word result value: Version number of the operating system, in the
following format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Prototype = 1
Final release = 0

Major release number —'

Minor release number-

(none except general GS/OS errors)

Appendbc A GS/OS ProDOS 16 Calls 395

$ 0 0 1 1 N E W U N E

Description This function enables or disables the newline read mode for an open file
and, when enabling newline read mode, specifies the newline enable mask
and newline character or characters.

When newline mode is disabled, a read call terminates only after it reads
the requested number of characters or encounters the end of file. When
newline mode is enabled, the read also terminates if it encounters one of
the specified newline characters.

When a read call is made while newline mode is enabled and another
character is in the file, GS/OS performs the following operations:
1. Transfers the next character to the user's buffer.

2. Performs a logical AND between the character and the low-order
byte of the newline mask specified in the last newline call for the
open file.

3. Compares the resulting byte with the newline character or characters.
4. If there is a match, terminates the read; otherwise, continues from

step 1.

P a r a m e t e r s O f f s e t S i z e a n d t y p e

Word input value

Word input value

Word input value

newLRefNum Word input value: The identifying number assigned to the file
access path by the open call.

enabieMask Word input value: If the value of this field is $0000, newline mode
is disabled. If the value is greater than $0000, the low-order byte becomes
the newline mask. GS/OS performs a logical AND of each input character
with the newline mask before comparing it to the newline characters.

newiinechar Word input value: The low-order byte of this field is the newline
character. When disabling newline mode (enabieMask = $0000), this
parameter is ignored.

E r r o r s $ 4 3 i n v a i i d R e f N u m i n v a l i d r e f e r e n c e n u m b e r

396 Apple IIGS GS/OS Reference

$ 0 0 1 0 O P E N

This call causes GS/OS to establish an access path to a file. Once an
access path is established, the user may perform file read and write
operations and other related operations on the file.

If you use this call, you allow files to be opened by multiple users. You do
not fully prevent one user from changing data that another user is reading,
but you do allow multiple users to read a file without changing existing
code. The file access is established as follows:

1. An attempt is made to open the file as read/write, deny write.
2. If this fails, an attempt is made to open the file as read-only, deny

nothing.
3. If this fails, an attempt is made to open the file as write-only, deny

w r i t e .

4. If this also fails, error $4E (invaiidAccess) is returned.

O f f s e t

o p e n R e f N u m

Size and type

Word result value

o p e n P a t h n a m e Longword input pointer

i o B u f f e r Reserved

openRefNum Word result value: A reference number assigned by GS/OS to the
access path. All other file calls (read, write, close, and so on) refer to
the access path by this number.

openPathname Longword input pointer: Points to a Pascal string that
represents the pathname of the file to be opened.

ioBuf fer This field is reserved and must be set to $00000000.

Appendbc A GS/OS ProDOS 16 Calls

E r r o r s $ 2 7 d r v r l O E r r o r
$28 d rv rNoDev ice
$ 2 E d r v r D i s k S w i t c h
$40 badPathSyntax
$44 pathNotFound
$45 vo lNo tFound
$ 4 6 fi l e N o t F o u n d
$4A badF i l eFo rma t
$4B badStoreType
$ 4 E i n v a l i d A c c e s s
$ 4 F b u f f To o S m a l l

$50 fi leBusy
$52 unknownVol
$58 no tB lockDev

I/O error
no device connected
disk switched
invalid pathname syntax
path not found
volume not found

file not found
version error

unsupported storage type
file not destroy-enabled
buffer too small

file open
unsupported volume type
not a block device

398 Apple IIGS GS/OS Reference

$ 0 0 2 9 Q U I T

Description This call terminates the running application. It also closes all open files, sets
the system file level to 0, initializes certain components of the Apple IIGS
and the operating system, and then launches the next application.

For more information about quitting applications, see Chapter 2,
"GS/OS and Its Environment."

P a r a m e t e r s O f f s e t Size and type

quitPathname -I Longword input pointer

fl a g s Word input value

quitPathname Longword input pointer: Points to a Pascal string that
represents the pathname of the program to run next. If the quitPathname
parameter is null or the pathname itself has length 0, GS/OS chooses the next
application, as described in Chapter 2.

flags Word input value: Two Boolean flags that give information about how to
- handle the program executing the quit call, as follows:

15 14 13 iZjim -6j 5 1 i 3- 2 l-(-0

Quit return flag-I
Place state information about the quitting

program on the Quit retum stack so that it
will be automatically restarted later = 1
Do not stack the quitting program = 0

restart-from-memory flag -
The quitting program is capable of being

restarted from its dormant memory image = 1
The quitting program must be reloaded from

disk if it is restarted = 0

skip-std-prefixes flag
Do not change the values of prefixes 10-12 = 1

Set prefixes 10-12 to. CONSOLE = 0

Reserved—'

Comments Only one error condition causes the quit call to retum to the caller: error
$07 (GS/OS busy). All other errors are managed within the GS/OS Program
Dispatcher.

Errors (none except general GS/OS errors)

Appendbc A GS/OS ProDOS 16 Calls

$0012

This function attempts to transfer the number of bytes given by the
requestcount parameter, starting at the current mark, from the file
specified by the refNum parameter into the buffer pointed to by the
dataBuf fer parameter. The function updates the file mark to reflect
the new file position after the read.

Because of two situations that can cause the read function to transfer
fewer than the requested number of bytes, the function returns the actual
number of bytes transferred in transferCount. If GS/OS reaches the
end of file before transferring the number of bytes specified in
requestcount, it Stops reading and sets transf erCount to the
number of bytes actually read.

If newline mode is enabled and a newline character is encountered before
the requested number of bytes have been read, GS/OS stops the transfer
and sets trans fercount to the number of bytes actually read,
including the newline character.
O f f s e t

fi l e R e f N u i n

Size and type

Word input value

d a t a B u f f e r Longword input pointer

r e q u e s t c o u n t Longword input value

t r a n s f e r C o u n t Longword result value

f iieRefNum Word input value: The identifying number assigned to the file by
the OPEN call.

dataBuf fer Longword input pointer: Points to a memory area large enough to
hold the requested data.

400 Apple IIGS GS/OS Reference

request Count Longword input value: The number of bytes to be read,
t rans f e rCount Longword result value: The number of bytes actually read.

E r r o r s $ 2 7 d r v r l O E r r o r I / O e r r o r
$2E drvrDiskSwitch disk switched
$43 invalidRefNum invalid reference number
$4C eofEncountered end-of-file encountered
$4E invaiidAccess access not allowed

Appendix A GS/OS ProDOS l6 Calls 401

$0022 READ_BLOCK

Description This call reads one 512-byte block of Information to a disk specified by
a device number.

Normally, you should use d_read and d_write for all direct device I/O.
READ_BLOCK deals only with 512-byte blocks and devices with a
maximum of 65,536 blocks, is valid only for the ProDOS EST, and exists
only for compatibility with ProDOS 16.

P a r a m e t e r s O f f s e t Size and type

- b l o c k D e v N u m Word input value

$ 0 2 -

- b l o c k D a t a B u f f e r Longword input pointer

$06 _

b l o c k N u m - Longword input value

b l o c k D e v N u m Word input value: The reference number assigned to the device.

blockDataBuf fer Longword input pointer: Points to a data buffer large
enough to hold the data to be read.

blockNum Longword input value: The number of the block to be read.

E r r o r s $11 i nva l i dDevNum invalid device request
$ 2 7 d r v r l O E r r o r I/O error

$28 d rv rNoDev ice no device connected

$ 2 B d r v r W r t P r o t write-protected disk
$53 paramRangeErr parameter out of range

402 Apple IIGS GS/OS Reference

$ 0 0 1 8 S E T _ E O F

This call sets the logical size of an open file to a specified value, which
may be either larger or smaller than ihe current file size. The EOF value
cannot be changed unless the file is write-enabled. If the specified EOF is
less than the current EOF, the system may—but need not—free blocks
that are no longer needed to represent the file. See also the get_eof call
description.

O f f s e t

e o f R e f N u m

Size and type

Word input value

e o f P o s i t i o n Longword input value

eofRefNum Word input value: The identifying number assigned to the file by
the OPEN call.

eofPosition Longword input value: The new logical size of the file, in bytes.

$27 ^drvrlOError
$2B d rv rWr tP ro t
$43 inva l idRefNum
$4D outOfRange
$4E inva l i dAccess
$5A damagedBitMap

I/O error

write-protected disk
invalid reference number

position out of range
file not write-enabled
block number out of range

Description

P a r a m e t e r s

E r r o r s

Appendix A GS/OS ProDOS I6 Calls 403

SET_FILE_INFO

This call sets certain file attributes of an existing open or closed block
file. This call immediately modifies the file information in the file's
directory entry whether the file is open or closed. It does not affect the
file information seen by previously opened access paths to the same file.

A Important A get_file_info call following a set_file_info
call on an open file may not return the values set by the
SET_FiLE_iNFO Call. To guarantee recording of the
attributes specified in a set_file_info call, you
must first close the file, a

See also the get_file_info call in this appendix.

O f f s e t S i z e a n d t y p eO f f s e t

$00 r~
p a t h n a m e Longword input pointer

f A c c e s s

fi l e T y p e

Word input value

Word input value

a u x T y p e Longword input value

$oc _ < n u l l > Word input value

$0E _ c r e a t e D a t e Word input value

$10 _ c r e a t e T i m e Word input value

$12 _ m o d D a t e Word input value

$14 r m o d T i m e Word input value

404 Apple IIGS GS/OS Reference

pathname Longword input pointer: Points to a Pascal string that represents the
pathname of the file whose file information is to be set.

f Access Word input value: Value for the file's access attribute, which is
described under the create call.

f ileType Word input value: Value for the file's file type attribute.

auxType Longword input value: Value of the file's auxiliary type attribute.
<nuii> Word input value: This field is unused and must be set to 0.

createDate Word input value: Value for the file's creation date attribute,
which is described under the create call. If the value of this field is 0,
GS/OS does not change the creation date.

createTime Word input value: Value for the file's creation time attribute,
which is described under the create call. If the value of this field is 0,
GS/OS does not change the creation time.

modDate Word input value: Value for the file's modification date attribute.
Format is the same as for the createDate parameter. If the value of this
field is zero, GS/OS supplies the date from the system clock.

modTime Word input value: Value for the file's modification time attribute.
Format is the same as for the createTime parameter. If the value of this
field is zero, GS/OS supplies the time from the system clock.

E r r o r s $ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
$ 2 7 d r v r l O E r r o r I / O e r r o r
$2B drvrWrtProt write-protected disk
$40 badPathSyntax invalid pathname syntax
$44 pathNotFound path not found
$ 4 5 v o i N o t F o u n d v o l u m e n o t f o u n d
$ 4 6 fi i e N o t F o u n d fi l e n o t f o u n d
$4A badF i ieFormat vers ion er ro r
$4B badstoreType unsupported Storage type
$4E invaiidAccess file not destroy-enabled
$52 unknownVoi unsupported volume type
$53 paramRangeErr parameter out of range
$58 notBlockDev not a block device

1 A p p e n d i x A G S / O S P r o D O S l 6 C a l l s 4 0 5i
1

$ 0 0 1 A S E T _ L E V E L

This function sets the current value of the system file level.

Whenever a file is opened, GS/OS assigns it a file level equal to the
current system file level. A close call with a refNum parameter of $0000
closes all files with file level values at or above the current system file
level. Similarly, a flush call with a refNum parameter of $0000 flushes all
files with file level values at or above the current system file level. See also
the GET_LEVEL Call in this appendix.

O f f s e t

l e v e l

Size and type

Word input value

level Word input value: The new value of the system file level. Must be in the
range $0000-$00FF.
i n v a l i d L e v e l invalid file level

406 Apple IIGS GS/OS Reference

$ 0 0 1 6 S E T . M A R K

This call sets the mark (the position from which the next byte will be read
or to which the next byte will be written) to a specified value. The value
can never exceed EOF, the current size of the file. See also the
GET_MARK Call in this appendix.

O f f s e t

m a r k R e f N u m

Size and type

Word input value

p o s i t i o n Longword input value

markRefNum Word input value: The identifying number assigned to the file by
the OPEN call.

position Longword input value: The value assigned to the mark. It is the
position (in bytes) relative to the beginning of the file at which the next
read or write will begin.

$ 2 7 d r v r l O E r r o r
$43 inva l idRefNum
$4D outOfRange
$5A damagedBitMap

I/O error

invalid reference number

position out of range
block number out of range

[

Appendix A GS/OS ProDOS l6 Calls 4»7

$ 0 0 0 9 S E T _ P R E F I X

This call one of the numbered pathname prefkes to a specified
value. The input to this call can be any of the following pathnames:
■ a full pathname
■ a partial pathname beginning with a numeric prefix designator
■ a partial pathname beginning with the special prefix designator * /
■ a partial pathname without an initial prefix designator

The SET_PREFix call is unusual in the way it treats partial pathnames
without initial prefix designators. Normally, GS/OS uses the prefix 0 / in
the absence of an explicit designator. However, only in the
SET_PREFix call, it uses the prefix nf where «is the value of the
pref ixNum field described below. See also the get_prefix call in this
appendix.

O f f s e t

p r e fi x N u m

Size and type

Word input value

p r e fi x Longword input pointer

prefixNum Word input value: A prefix number that specifies the prefix to
be set.

prefix Longword input pointer: Points to a Pascal string representing the
pathname to which the prefix is to be set. If this field is not given, the
prefix is set to the NULL string.

Specifying a pathname with length 0 or whose syntax is illegal sets the
designated prefix to NULL.
GS/OS does not verify that the designated prefix corresponds to an
existing subdirectory or file.
The boot volume prefix (* /) cannot be changed using this caU.

$40 badPathSyntax
$53 paramRangeErr

invalid pathname syntax
parameter out of range

4D8 Apple IIGS GS/OS Reference

$0008 V O L U M E

Given the name of a block device, this call returns the name of the
volume mounted in the device along with other information about the
volume.

O f f s e t Size and type

d e v N a m e Longword input pointer

v o l N a m e Longword input pointer

t o t a l B l o c k s Longword result value

f r e e B l o c k s Longword result value

fi l e S y s I D Word resul t ^ue

devName Longword input pointer: Points to a Pascal string that contains the
name of a block device.

voiName Longword input pointer: Points to a buffer in which GS/OS places a
Pascal string containing the volume name of the volume mounted in the
dev i ce .

totalBlocks Longword result value: Total number of blocks contained in the
volume.

f reeBiocks Longword result value: The number of free (unallocated) blocks in
the volume.

Appendix A GS/OS ProDOS 16 CaUs 409

fileSysiD Word result value: Identifies the file system contained in the
volume, as follows:
$ 0 0 0 0 R e s e r v e d $ 0 0 0 8 A p p l e C P / M
$ 0 0 0 1 P r o D O S / S O S $ 0 0 0 9 R e s e r v e d
$ 0 0 0 2 D O S 3 . 3 $ 0 0 0 A M S / D O S
$0003 DOS 3 .2 o r 3 . 1 $000B H igh S ie r r a
$0004 Apple II Pascal $000C ISO 9660
$0005 Mac in tosh (MPS) $000D App leShare
$0006 Macintosh (HPS) $OOOE-$OOOP Reserved
$ 0 0 0 7 L i s a

E r r o r s $ 1 0 d e v N o t F o u n d d e v i c e n o t f o u n d
$11 invaiidDevNum invalid device request
$ 2 7 d r v r i O E r r o r I / O e r r o r
$28 drvrNoDevice no device connected
$2E drvrDiskSwitch disk switched
$45 vo iNotFound vo lume no t found
$ 4 A b a d F i i e F o r m a t v e r s i o n e r r o r
$52 unknown vol unsupported volume type
$53 paramRangeErr parameter out of range
$57 dupvoiume dupl icate vo lume
$58 notBiockDev not a b lock device

410 Apple IIGS GS/OS Reference

I

$ 0 0 1 3 W R I T E

This call attempts to transfer the number of bytes specified by the
requestcount parameter from the application's buffer to the file
specified by the f iieRefNum parameter, starting at the current mark.
The call returns the number of bytes actually transferred. It also updates
the- mark to indicate the new file position and extends the EOF, if
necessary, to accommodate the new data.

O f f s e t

r e f N u m

Size and type

Word input value

d a t a B u f f e r Longword input pointer

r e q u e s t c o u n t Longword input value

t r a n s f e r C o u n t Longword result value

refNum Word input value: The identifying number assigned to the file by the
OPEN call.

dataBuf fer Longword input pointer: Points to the area of memory containing
the data to be written to the file.

requestcount Longword input value: The number of bytes to write.
transferCount Longword result value: The number of bytes actually written.

$ 2 7 d r v r l O E r r o r
$2B d rv rWr tP ro t
$2E d rv rD iskSwi t ch
$43 inva l idRefNum
$48 vo lumeFul l
$4E inva l idAccess
$5A damagedBitMap

I/O error

write-protected disk
disk switched
invalid reference number

volume full

file not destroy-enabled
block number out of range

Appendix A GS/OS ProDOS l6 Calls 411

$0023 WRITE_BLOCK

Description This call writes one 512-byte block of information to a disk specified by
a device number.

Normally, you should use d_read and d_write for all direct device I/O.
WRiTE_BLOCK deals only with 512-byte blocks and devices with a
maximum of 65,536 blocks, is valid only for the ProDOS FST, and exists
only for compatibility with ProDOS 16.

P a r a m e t e r s o f f s e t Size and type

- b l o c k D e v N u m Word input value

$02 -

- b l o c k D a t a B u f f e r - Longword input pointer

—L
-

- b l o c k N u m Longword input value

blockDevNum Word input value: The reference number assigned to the device.

blockDataBuffer Longword input pointer: Points to a data buffer that holds
the data to be written.

blockNum Longword input value: The block number of the destination disk
b lock .

E r r o r s $ 1 1 I n v a l l d D e v N u m invalid device request
$ 2 7 d r v r l O E r r o r I/O error

$28 d rv rNoDev ice no device connected

$ 2 B d r v r Wr t P r o t write-protected disk
$53 paramRangeErr parameter out of range

412 Apple IIGS GS/OS Reference

Appendix B PfoDOS 16 Calls and FSTs

This appendix discusses how individual GS/OS file system translators
handle ProDOS 16 (GS/OS class 0) calls. It shows only those aspects of
each FST's call handling that are different from the descriptions in
Appendix A, "GS/OS ProDOS 16 Calls." See that appendix for the
standard way to make ProDOS 16 calls to GS/OS.

413

The ProDOS FST

The ProDOS FST translates ProDOS 16 calls to the format used by the ProDOS file system.
Actually, because that is already the file system that ProDOS 16 calls are designed to
access, no translation is necessary. All GS/OS ProDOS 16 calls that pass through the
ProDOS FST function exactly as described in Appendbt A.

See Chapter 12 for more information on the ProDOS FST. For further information on
ProDOS 16, see the Apple IIGS ProDOS 16 Reference.

The High Sierra FST

The main difference between the High Sierra FST and other FSTs is that High Sierra does
not support writing to a file. CD-ROM is a read-only medium.

Table B-1 lists the ProDOS 16 calls, both meaningful and not meaningful, that the High
Sierra FST supports. A description of each call's differences from its standard meaning
(described in Appendbc A) follows.
See Chapter 13 of this book for more information on the High Sierra FST.

■ Table B-1 High Sierra FST ProDOS 16 calls

Meaningful Not meaningful

$0006 GET_FILE_ INFO $0001 C R E A T E

$0008 V O L U M E $0002 D E S T R O Y

$0010 O P E N $0004 CHANGE_PATH
$0012 R E A D $0005 S E T _ F I L E _ I N F O
$0014 C L O S E $0013 W R I T E

$0016 SET_MARK $0015 F L U S H

$0017 GET_MARK $0018 SET_EOF
$0019 GET_EOF $000B C LEAR_BACKUP_BIT
OOlC GET_DIR_ENTRY $0025 ERASE_DISK
0020 GET_DEV_NUM $0024 F O R M A T

414 Apple IIGS GS/OS Reference

With the exception of the flush call, all calls on the right side of Table B-1 do nothing
and return error $2B (write-protected). The flush call also does nothing, but it returns no
error (the carry flag is cleared).

The following sections describe how the High Sierra FST handles some of the meaningful
calls differently from standard ProDOS 16 practice. Meaningful calls not described in the
following sections are handled exactly as documented in Appendix A.

I
■|'
r'

GET_FILE_INFO ($0006)

The GET_FiLE_iNFO Call retums certain attributes of an existing block file. The file may
be open or closed.

Parameters f iieType This word output value equals $000F if the file is a directory;
otherwise, it is $0000 (unknown)—unless the filename extension matches an
entry in the file type mapping table. See the FSTSpecific call description in
Chapter 13, "The High Sierra FST."

modDate This word output value always has the same value as createOate.

modTime This word output value always has the same value as createTime.

biocksUsed This longword output value is always the same as the
totaiBiocks parameter retumed from a volume call.

VOLUME ($0008)

Given the name of a block device, the volume call returns the name of the volume
mounted in that device and other information about the volume.

Parameters f reeBlocks This longword output value is aways $0000.

Appendix B ProDOS 16 Calls and FSTs 415

GET_DIR_ENTRY ($001C)

The GET_DIR_ENTRY Call retums information about a directory entry in the volume
directory or a subdirectory. Before executing this call, the application must open the
directory or subdirectory. The call allows the application to step forward or backward
through file entries or to specify absolute entries by entry number.
The High Sierra FST does not allow read calls and get_dir_entry calls to the same
reference number. If an open file has previously been accessed by get_dir_entry, and
a READ call is made with the same reference number, the High Sierra FST retums error $4E
(invalid access). To avoid the error, open the directory twice.

Parameters f iieType This word output value equals $000F if the file is a directory;
otherwise, it is $0000 (unknown)—unless the filename extension matches an
entry in the file type mapping table. See the FSTSpecific call description in
Chapter 13, "The High Sierra FST."

modDateTime This double longword output value always has the same value as
c r e a t e D a t e T i m e .

auxType This longword output value is always $0000.

f ileSysiD This word output value is always $000B for High Sierra or $000C for
ISO 9660.

The Character FST

The Character file system translator (Character FST) provides a file-system-like interface
to charaaer devices such as the console, printers, and modems.

Because the Character FST handles ProDOS 16 calls, all ProDOS 16 applications
automatically have the ability to access character devices as files when mnning under
GS/OS. ProDOS 16 itself does not provide that capability to ProDOS l6 applications.
Table B-2 shows the GS/OS ProDOS 16 calls that the Character FST supports.

Attempting to send any other GS/OS ProDOS 16 call to a character device results in error
$58 (notBlockDev).

See Chapter 14 for a general description of the Character FST.

4l6 Apple lies GS/OS Reference

■ Table B-2 GS/OS ProDOS 16 calls supported by the Character FST

C a Q n u m b e r C a l l n a m e C a l l n u f D b e r C a i l n a m e

$ 0 0 1 0 O P E N $ 0 0 1 4 C L O S E
$ 0 0 1 2 R E A D $ 0 0 1 5 F L U S H

$ 0 0 1 3 W R I T E $ 0 0 1 1 N E W L I N E

OPEN ($0010)

OPEN establishes an access path to the character file.

Parameters pathname This longword input pointer must point to a character device name.

Errors In addition to the standard ProDOS 16 open errors, the Character FST
can return these errors from an open call:

$26 drvrNoResrc resources not ava i lab le
$2F drvrof f Line device off line or no media present

READ ($0012)

The READ call attempts to transfer the requested number of bytes from the specified
character file into the application's data buffer.

Errors In addition to the standard ProDOS 16 read errors, the Character FST
can retom these errors from a read call:

$23 drvrNotOpen character device not open
$2F drvrOf fLine device off line or no media present

WRITE ($0013)

The WRITE call attempts to transfer the requested number of bytes from the application's
data buffer to the specified character file.

Errors In addition to the standard ProDOS 16 write errors, the Character FST
can return these errors from a write call:

$23 drvrNotOpen character device not open
$2F drvrOf fLine device off line or no media present

i A p p e n d b c B P r o D O S 1 6 C a l l s a n d F S T s 4 1 7

I

CLOSE ($0014)

The CLOSE call terminates access to the specified character file, close also involves
flushing the file (see the flush call) to ensure that all data has been transferred before a
character file is closed.

Errors In addition to the standard ProDOS l6 close errors, the Character FST
can return these errors from a close call:

$23 drvrNotOpen character device not open
$2F drvrof fLine device off line or no media present

FLUSH ($0015)

The FLUSH routine completes any pending data transfer to the character file specified by
re f Num. If the character device is synchronous, all data transfer is by definition
completed when the write call returns, so the flush routine simply returns with no error.
If the device is asynchronous (for example, if it is interrupt-driven or has direct memory
access), the flush routine waits until all data has been transferred and then returns. If the
file is multiply opened, all output access paths to the character file (not just the one with
the specified refNum) are flushed.

Errors In addition to the standard ProDOS l6 flush errors, the Character FST
can return these errors from a flush call:

$23 drvrNotOpen character device not open
$2F drvrOf fLine device off line or no media present

ProDOS 16 device calls

The only ProDOS 16 device call is d_info, which is handled only by the Device Manager—
no FST can accept this call. Therefore, the standard description of DJNFO in Appendix A
is the complete specification.

See the GS/OS Device Driver Reference for more general information on the Device
Manager and GS/OS device calls.

418 Apple IIGS GS/OS Reference

Appendix C Apple Extensions to ISO 966O

This appendix describes a protocol through which file type information
can be added to CD-ROM files or other files in the ISO 9660 format
(which does not recognize file typing). With this protocol, ProDOS and
Macintosh files can be stored on compact discs—as valid ISO 9660
files— ŵhile retaining all information related to file type.
You may need to read this appendix if you are
■ an Apple Developer working with ISO 9660
■ a publisher of authoring tools for ISO 9660 discs
■ a publisher of ISO 9660 discs
■ a publisher of ISO 9660 receiving system software

♦ Note: ISO 9660 is the international file system standard for CD-ROM;
it is based on the original High Sierra format, but is not identical to
it-. The protocol described in this appendbc applies to the ISO 9660
file system; however, the High Sierra FST (see Chapter 13) supports
the protocol for High Sierra-formatted files also.

419

what the Apple extensions do

Creating an ISO 9660 CD-ROM disc containing ProDOS files or Macintosh hierarchical file
system (HPS) files can have great advantages. The large storage capacity of compact
discs means cost savings and greater convenience when distributing large amounts of
data, and the position of ISO 9660 as an international standard means that the files will be
accessible on a large variety of machines. Unfortunately, both the HPS and ProDOS file
systems require information that the ISO 9660 file system does not support. ProDOS
requires a file type and an auxiliary file type, and HPS requires a file type, a file creator,
and file attributes.

This appendbc defines a protocol that extends the ISO 9660 specification. The protocol
is designed both to solve existing compatibility problems and to allow for future
expansion. At present, it has two principal features:
■ It permits inclusion of HPS-specific or ProDOS-specific information in files, without

corrupting the ISO 9660 structures. Discs created using the protocol are valid ISO 9660
discs and should function normally on non-Apple receiving systems.

■ It defines a mechanism for preserving filenames across translations between ProDOS
and ISO 9660, and gives suggestions for optimum translations of Macintosh filenames.

The protocol uses the Systemidentif ier field in the Primary Volume Descriptor for
global information, and the SystemUse field in the directory record for file-specific
in format ion.

The protocol identifier

Discs that have been formatted with the Apple extensions to ISO 9660 are identified by
their protocol identifier, which has the following characteristics:

Location The Systemidentif ier field in the Primary Volume Descriptor.

Size 32 bytes. It is the entire contents of the Systemidentif ier field.

Contents "apple computer, inc., type: " followed by the protoco/y/flgs.
In hexadecimal, the protocol identifier looks like this:
41 50 50 40 45 20 43 4P 4D 50 55 54 45 52 20 20
49 4E 43 2E 20 20 54 59 50 45 3A 20 3x 3x 3x 3x

The protocol identifier is considered valid if its first 28 bytes match the
first 28 characters above.

420 Apple IIGS GS/OS Reference

Protocol flags Four bytes of nibble-encoded information (represented as 3x in the
previous example). Nibble encoding is necessary in order to guarantee
that the bytes represent legal ISO 9660 a-characters (printable
characters). The flag bytes are numbered 0-3; flag byte 0 is the byte
following the space ($20). The bits of each flag byte are numbered 0-7, 0
being the least significant. The flag bytes are presently defmed as
fol lows:

flag byte 0: flag byte 1:

7 1 ^ 5 4 0 1
1 1

̂j'
^

Must be 0 —' MustbeO-*

Must be 0 MustbeO-'
Must be 1 —' Must be 1

Must be 1 Must be 1 —' ,
Reserved —1 Reserved -I

Perform ProDOS filename transformation —

flag byte 2: flag byte 3:

1 1
L-LlLlL f ^ 1

Must be 0 —' Must be 0 -'

Must be 0 —' Must be 0 -'
Must be 1 Must be 1

Must be 1 Must be 1

Reserved - Apple Extensions version number —'
(2 indicates this version)

>

Appendix C Apple Extensions to ISO 9660 421

The directory record SystemUse field

Directory records in the ISO 9660 specification have the following format:
b y t e D i r e c t o r y R c d L e n g t h
b y t e X A R l e n g t h
s t r u c t E x t e n t L o c a t i o n
s t r u c t D a t a L e n g t h
s t r u c t R e c o r d i n g D a t e T i m e
b y t e F i l e F l a g s
b y t e F i l e U n i t S i z e
b y t e I n t e r l e a v e G a p S i z e
l o n g V o l u m e S e q u e n c e N u m
b y t e F i l e N a m e L e n g t h
c h a r F i l e N a m e [F i l e N a m e L e n g t h]
b y t e R e c o r d P a d
c h a r S y s t e m U s e [S y s t e m U s e L e n g t h]

The RecordPad field is present only if needed to make DirectoryRcdLength an even
number. If RecordPad is present, its value must be 0 ($00).

The SystemUse field is an optional field. If it is present, it must begin with a signature
word, followed by a length byte, followed by a 1-byte Systemuseio field, followed by
file-specific information. This structure may be repeated multiple times for multiple file
systems, and each structure may be an even or odd number; however, the total length of
the SystemUse area (systemUseLength) must be an even number. The signature word
allows a receiving system to ensure that it can interpret the following data correctly, and
SystemUse ID determines the type and format of the information that follows.

A Important CD-ROM XA discs (that is, discs that follow the Phillips, Microsoft,
and Sony standard for interleaved audio) must be handled as a special
case. The signature word, if present, begins at byte 14 of the
SystemUse field rather than at byte 0. a

There are two Apple signature words (AppieSignature). The preferred
AppleSignature word is defined as AA ($41 41). The old AppieSignature word,
used for a previous version, was defined as ba ($42 41). Discs pressed using the old
format are still supported, but new discs should be pressed using only the current format.

^ Apple IIGS GS/OS Reference

Receiving systems must perform a simple calculation to determine if the Systemuse
field is present in any given directory record. It is present if
D i r e c t o r y R c d L e n g t h - F i l e N a m e L e n g t h > 3 4

Receiving systems should first verify that the SystemUse field is present, then check for
AppleSignature before interpreting SystemUselD.

SystemUselD

SystemUselD can have the values shown in Table C-1 and C-2, depending upon the value
of the AppleSignature word.

Table C-1 Defined values for systemuseid for aa signature

l e M e a n i n g

) (R e s e r v e d)

[ProDOS file type and auxiliary type follow
! HPS file type, file creator, and Finder flags follow
▶ - F F (R e s e r v e d)

Table C-2 Defined values for systemUseiD for ba signature

l e M e a n i n g

) (R e s e r v e d)
ProDOS file type and auxiliary type follow
HPS file type and file creator follow
HPS file type and file creator follow (bundle bit set)
HPS file type, file creator, and 'ICN#' resource (128-byte icon) follow
HPS file type, file creator, and 'ICN#' resource follow (bundle bit set)
HPS file type, file creator, and Finder flags follow

- P P (R e s e r v e d)

Appendix C Apple Extensions to ISO 9660 4S3

Tables C-3 and C-4 define the contents of the Systemuse field for each defined value of
SystemUseiD for each signature.

■ Table G3 Contents of systemuse field for each value ofsystemUseiD
for AA signature

S y s t e m U s e i D = 01 (ProDOS)

O f f s e t C o n t e n t s

$00-01 $41 41 (AppleSignature)
$02 SystemUse Extension Length ($07 for this ID, including signature bytes)
$03 01 (SystemUselo)
$04 ProDOS file type
$05-$06 ProDOS auxiliary type (LSB-MSB)*

S y s t e m U s e i D - 02 (HF, Finder Flagsf)

O f f s e t C o n t e n t s

$41 41 (Apples ignatu re)
SystemUse Extension Length ($0E for this ID, including signature
bytes)
$02 (SystemUselo)
HPS file type (MSB-LSB)*
HPS file creator (MSB-LSB)*
HPS Pinder flags (MSB-LSB)*

$00-01
$02

$03
$04-07
$08-0B
$OC-OD

□

'(MSB-LSB) = the most significant byte occupies the lowest address; the least significant byte, the highest
address; (LSB-MSB) = the least significant byte occupies the lowest address; the most significant byte, the
highest address.
flo fill the Finder flags field here, premastering software can simply copy the Finder flags as retrieved by the
HFS call PBGetFInfo. Only bits 5 (always switch-launch), 12 (system file), 13 (bundle bit), and 15 (locked) are
used. All other bits are either ignored or always set by the FST. See Macintosh Technical Note #40 for more
details about the Finder flags.

424 Apple IIGS GS/OS Reference

■ Table C4 Contents of Systernuse field for each value of systemuseid
for BA signature

SystemUselD ° 01 (ProDOS)
O f f s e t C o n t e n t s

$ 0 0 - 0 1 $ 4 2 4 1 (A p p l e s i g n a t u r e)
$ 0 2 $ 0 1 (S y s t e m U s e l o)
$ 0 3 P r o D O S fi l e t y p e
$04-05 ProDOS auxiliary type (LSB-MSB)'

SystemUselD > 02 (HPS)
O f f s e t C o n t e n t s

$ 0 0 - 0 1 $ 4 2 4 l (A p p l e s i g n a t u r e)
$ 0 2 $ 0 2 (S y s t e m U s e l D)
$03-06 HPS file type (MSB-LSB)
$07-0A HPS file creator (MSB-LSB)*
$0B (Padding for even length)

SystemUselD ■ 03 (HFS, bundle bit set)
O f f s e t C o n t e n t s

$00 -01 $42 41 (App leS igna tu re)
$ 0 2 $ 0 3 (S y s t e m U s e l D)
$03-06 HPS file type (MSB-LSB)*
$07-0A HPS file creator (MSB-LSB)*
$0B (Padding foFeven length)

SystemUselD - 04 (HFS, icon)
O f f s e t C o n t e n t s

$00-01 $42 41 (AppleSignature)
$ 0 2 $ 0 4 (S y s t e m U s e l D)
$03-06 HPS file type (MSB-LSB)*
$07-0A HPS file creator (MSB-LSB)*
$0B-8A HPS 'ICN#' resource (MSB-LSB)*
$8B (Padding for even length)

*(MSB-LSB) = the most significant byte occupies the lowest address; the least significant byte, the highest address;
(LSB-MSB) = the least significant byte occupies the lowest address; the most significant byte, the highest address.

(continued)

Appendix C Apple Extensions to ISO 9660 425

■ Table C-4 Contents of Systemuse field for each value of sy stemUse id
for BA signature (Continued)

SysbemUseZD = 05 (HFS, Icon, bundle bit set)
O f f s e t C o n t e n t s

$ 0 0 - 0 1 $ 4 2 4 1 (A p p l e S i g n a t u r e)
$ 0 2 $ 0 5 (S y s t e m U s e l D)
$03-06 HFS file type (MSB-LSB)*
$07-0A HFS file creator (MSB-LSB)'
$0B-8A HFS 'ICN#' resource (MSB-LSB)*
$8B (Padd ing fo r even l eng th)

SystemtJselD ° 06 (HFS, Finder flags)t
O f f s e t C o n t e n t s

$ 0 0 - 0 1 $ 4 2 4 1 (A p p l e S i g n a t u r e)
$ 0 2 $ 0 5 (S y s t e m U s e l o)
$03-06 HFS file type (MSB-LSB)'
$07-0A HFS file creator (MSB-LSB)*
$OB-OC HFS Finder flags (MSB-LSB)*

'(MSB-LSB) = the most significant byte occupies the lowest address; the least significant byte, the highest address;
(LSB-MSB) = the least significant byte occupies the lowest address; the most significant byte, the highest address,

ffo fill the Finder flags field here, premastering software can simply copy the finder flags as retrieved by the HFS call
GetFInfo. Only bits 5 (always switch-launch), 12 (system file), 13 (bundle bit), and 15 (locked) are used. All other bits are
either ignored or always set by the FST. See Macintosh Technical Note #40 for more details about the Finder flags.

The Extension to ISO 9660

This section describes, more or less in the style of ISO 9660, first edition, 1988-04-15, the
extension to ISO 9660 that allows multiple users of the systemuse field. All references
are to that document. This section is redundant with the other material in this appendix,
but is offered to you in case you are used to reading the ISO specification.

426 Apple IIGS GS/OS Reference

Section 9.1.13, System Use [PB (LEN_DR-LEN_SU + 1) to LEN_DR], shall be replaced as
fol lows:

This field shall be optional. If present, this field shall be reserved for system use. If
necessary, so that the Directory Record comprises an even number of bytes, a ($00) byte
shall be added to terminate this field.

If this field is present, it must be broken up into a series of System Use Extensions. There
can be more than one System Use Extension for a given directory record, subject only to
the limitation that the total length of a directory record must be able to be recorded in
the 8-bit field defined in section 9.1.1. A System Use Extension must have the following
fo rma t :

BP 1 Byte 1 of the signature. This field contains an 8-bit number, and must
be recorded according to 7.1.1.

BP 2 Byte 2 of the signature. This field contains an 8-bit number, and must
be recorded according to 7.1.1.

BP 3 (LEN_SE) This field contains an 8-bit number that specifies the length in bytes
of this System Use Extension, including the length of the two signature
bytes preceding this byte. This field shall be recorded according to
7.1.1.

BP 4 to LEN_SE This field shall be reserved for system use. Its content is not specified
by this international standard.

A Important For CD-ROM XA discs, the byte positions listed above must be
adjusted upward by 14 to account for XA's l4-byte fixed-length
SystemUse field. A

F i l e n a m e t r a n s f o r m a t i o n s

The rules governing permissible filenames are different under ISO 9660 than under either
ProDOS or Macintosh HPS. Therefore, one problem with putting ProDOS or HFS files on

I an ISO 9660 disc is how to rename them. Ideally, there should be a simple, reversibletransformation that can be applied to a filename to make it a legal ISO 9660 name, and
reversed to restore the original ProDOS or HFS name.

Such a transformation exists for ProDOS and is given here. There is none for HFS, but
I guidelines to minimize changes during transformation are listed.

Appendbc C Apple Extensions to ISO 9660 ^

1

P r o D O S

Legal ProDOS filenames differ from legal filenames under ISO 9660 in these ways:
■ ProDOS filenames allow multiple periods; ISO 9660 filenames do not.
■ ISO 9660 requires that both the period (.) and the semicolon (;) occur as separators

in each filename, and that the semicolon be followed by a version number. (This
requirement is for nondirectory files only.)

The following steps constitute a reversible transformation that preserves ProDOS
filename syntax. An authoring tool can apply the transformation to any ProDOS file to get
a legal ISO 9660 filename, and a receiving system can reverse the transformation to hide
from an application the fact that a transformation has occurred. A user can therefore
access the file using its original ProDOS filename.

When creating an ISO 9660 disc from ProDOS source files, the authoring tool must
perform the following transformation on all filenames:
1. Replace all periods in the ProDOS filename with underscores. If the file is a directory

file, that completes the transformation.
2. If the file is not a directory file, append the characters .; i to the filename. It is now a

valid ISO 9660 filename.

♦ Note: The ProDOS volume name becomes the ISO 9660 Volume Identifier in the
Primary Volume Descriptor. It is a filename and, therefore, must be transformed like
other ProDOS filenames. It must be transformed as a directory name (periods
replaced with underscores).

After all filenames have been transformed, the authoring tool must set the ProDOS
transformation bit in the protocol identifier, described earlier in this appendix.

Table C-5 shows some examples of the transformation.

428 Apple IIGS GS/OS Reference

l \

Table C-5 ProDOS-to-ISO 9660 filename transformations

P r o D O S fi l e n a m e Kind o f fi le ISO 9660 filename

P R O D O S Standard PRODOS. ; 1

B A S I C . S Y S T E M standard BASIC_SYSTEM.;
S Y S T E M directory S Y S T E M

D E S K . A C C S directory DESK_ACCS
S T A R T . G S . O S standard S T A R T G S 0 S . ; 1

The receiving system can inspect the ProDOS transformation bit in the protocol identifier
and make the conversions necessary so that the original ProDOS filenames can be used to
refer to all files and directories on the volume. The receiving system performs this
transformation on user-supplied filenames before searching for them on disc, and reverses •
the transformation before presenting filenames to the user.

Remember that this transformation cannot be done on a file-by-file basis; it must be
applied to every file and directory on a disc.

Mac in tosh HPS

Because HPS file-naming rules are very flexible, most HPS filenames are illegal in the ISO
9660 specification. Purthermore, no reversible transformation is possible without
degrading performance; junlike with ProDOS, there is no simple conversion from all valid
Macintosh HPS filenames to valid ISO 9660 filenames. To make the transformations as
consistent as possible, however, Apple Computer, Inc., recommends that authoring tools
and receiving systems follow these guidelines when performing HPS-to-ISO 9660
transformations:

1. Convert all lowercase characters to uppercase.
2. Replace all illegal characters, including periods, with underscores.
3. If the filename needs to be shortened, truncate the rightmost characters.
4. If the file is not a directory file, append the characters .; 1 to the filename.
Such a transformation is not reversible, but its results will at least be consistent across all
files and discs.

Appendix C Apple Extensions to ISO 9660 429

ISO 9660 associated files

An associated file under ISO 9660 is analogous to the resource fork of an HFS file. The
format of associated files is defined in the ISO 9660 specification; the Apple extensions
do not change the format in any way. For clarity, however, this section restates the
definition and gives an example.

An associated file has these characteristics:

■ It is one of two identically named files in a directory; the associated file has exactly
the same file identifier as its counterpart.

■ It resides immediately before its counterpart in the directory.
■ It has the associated bit set in the file flags byte of the directory record.

The associated file is equivalent to the resource fork of an HFS file; its counterpart is
equivalent to the data fork of the same HFS file.
For example, if the file anyfile .; 1 has an associated file, two adjacent directory
records will be named anyfile .; 1. The first one (the resource fork) will have the
associated bit set; the second one (the data fork) will have the associated bit clear.

^ Apple IIGS GS/OS Reference

Appendix D Delta Guide to GS/OS System Software
Version 5.0 Changes

GS/OS system software version 5.0 includes many enhancements and
performance improvements. The tables in this chapter summarize the
changes between version 4.0 and version 5.0. More information about the
enhancements can be found in appropriate chapters of this manual.

New features for the application programmer

Table D-1 summarizes the new features in GS/OS system software version 5.0 that you
might want to use for your application program.

■ Table D-1 New features in GS/OS version 5.0

N e w f e a t u r e Description R e f e r e n c e

New loader The new ExpressLoad loader loads applications
and load files more quickly than the System
Loader. To use ExpressLoad, you must store
your application in ExpressLoad format.

Chapter 8,
"Loading Program Files"

AppleShare support This allows your application to be launched from
a server. Be careful about the access privileges
you assign when you create a file.

Chapter 4,
"Accessing GS/OS Files"

New AppleShare FST This FST supports AppleShare and includes
several FSTSpecific calls.

Chapter 15,
"The AppleShare FST"

New 0 prefix GS/OS sets this prefix to a pathname specified
by the AppleShare FST when an application
being launched resides on an AppleShare volume.

Chapter 4,
"Accessing GS/OS Files"

New general
notification queue

This queue allows your application to be
notified when certain GS/OS events occur. The
new system calls AddNotifyProc and
DelNotifyProc have been added to support the
new queue.

Chapter 6,
"Working With System
Information," and the
descriptions of
AddNotifyProc and
DelNotifyProc in Chapter 7

Additional control of
Volume Mount and
error dialog boxes

Two new preference bits have been defined for
the SetSysPrefs and GetSysPrefs system calls.
These bits control the appearance of the Volume
Mount dialog and error dialog boxes.

Descriptions of SetSysPrefs
and GetSysPrefs in Chapter 7

New system
information calls

Three new calls—GetStdRefNum, GetRefNum,
and GetReflnfo—get information about the
reference number, access attributes, and full
pathname of an open file.

Chapter 6,
"Working With System
Information," and the
descriptions of GetStdRefNum,
GetRefNum, and GetReflnfo
in Chapter 7

432 Apple IIGS GS/OS Reference

■ Table D-1 New features in GS/OS version 5.0 (continued)

N e w f e a t u r e Description

New cache feature

New and faster
device cal ls

New Console Driver
m e c h a n i s m

Redirection support

A new feature added to the Cache Manager
allows better use of a small cache when sessions
are enabled. The Cache Manager places itself in
the out-of-memory queue. If the Memory
Manager cannot allocate the requested memory,
the Cache Manager purges the GS/OS Cache.

The Device Manager has added the call DRename
to allow your application to rename a device. In
addition, the DControl, DInfo, DStatus, DRead,
and DWrite calls are now faster.

Two new calls, AddTrap and ResetTrap, allow
you to install and remove your own console
driver trap vector.

Prefixes 10,11, and 12 are supported as
standard input, standard output, and standard
error, respectively.

(None)

The description of DRename
in Chapter 7

Chapter 9,
"Using the Console Driver"

Chapter 2,
"GS/OS and Its Environment"

Appendix D Delta Guide to GS/OS System Software Version 5.0 Changes 433

I

Enhanced features for the application programmer

Table D-2 summarizes the enhanced features in GS/OS system software version 5.0,
including performance enhancements that might make you reconsider using a feature in
your application.

■ Table D-2 Enhancements in GS/OS version 5.0

E n h a n c e m e n t Description R e f e r e n c e

Enhanced Console
Driver performance

This provides faster screen scrolling and faster
write operations (for example, about 11 times
faster for single character writes). Also, the
Console Driver is now restartable and does not
need to be loaded from disk when GS/OS is
switched back in after a ProDOS 8 application
is run.

Chapter 9,
"Using the Console Driver"

Quicker switching
from ProDOS 8 to
GS/OS

When a ProDOS 8 application is launched from a
GS/OS native environment (such as the Finder),
GS/OS is stored in memory and thus can be
quickly restarted when the ProDOS 8
application exits.

(None)

Enhanced partial
pathname handling

If you supply a partial pathname that doesn't
contain a prefix designator to GS/OS, and prefix
designator 0 is null, GS/OS automatically creates
the full pathname by adding 8 / in front of the
partial pathname.

Chapter 1,
"The GS/OS Abstract File

System"

Enhanced interrupt
and signal
management

A signal dispatching queue offers a method for
handling signals sent to GS/OS by the hardware,
the firmware, or the application.

Chapter 10,
"Handling Interrupts and
Signals"

Faster device calls The DControl, DInfo, DStatus, DRead, and
DWrite calls are now faster.

(None)

^ Apple IIGS GS/OS Reference

■ Table D-2 Enhancements in GS/OS version 5.0 (continued)

E n h a n c e m e n t DesciipUon R e f e r e n c e

ProDOS EST
e n h a n c e m e n t s

High Sierra EST
enhancements

The ProDOS EST has been enhanced
as follows:

■ It writes all dirty blocks to disk when the
last file that has been modified is closed.
Thus, files opened for read access do not
affect when the bitmap and directory
blocks are updated.

■ It allows you to add a resource fork to an
existing standard file.

■ It uses the Cache Manager more often, which
means better performance.

■ It uses the optionList parameter.
■ It supports notification of volume change

e v e n t s .

This EST has added support for version 2.2 of
the Apple Extensions to ISO 9660.

Chapter 12,
"The ProDOS EST"

Chapter 13, "The High Sierra
EST," and Appendix C,
"Apple Extensions to ISO
9660"

Appendix D Delta Guide to GS/OS System Software Version 5.0 Changes ̂ 5

New and enhanced features for the device dr iver wri ter

Table D-3 summarizes the new and enhanced features in GS/OS system software
version 5.0 for the device driver writer. The details of these features are provided in
the GS/OS Device Driver Reference, but the features are summarized here for your
c o n v e n i e n c e .

■ Table D-3 New and enhanced device features in GS/OS version 5.0

N e w e r

e n h a n c e d f e a t u r e D e s c r i p t i o n

New SCSI Manager The SCSI Manager allows future SCSI drivers to be quickly
defined and added and also allows future SCSI peripherals
to be easily developed.

New SCSI drivers New HD and CD-ROM drivers take full advantage of the
GS/OS caching mechanism and also support both single-
and multiple-block I/O, which decreases the hardware
overhead.

Enhanced device access Device access is significantly faster, and the following
enhancements have been added;

■ support for notification of disk-switched events
through the OS Notification Manager

■ support for keeping GS/OS in memory while running
ProDOS 8 applications

■ alert boxes for devices that require a driver not
presently installed on the system disk

Enhanced AppleDisk 3.5 Each of these drivers can now be restarted and does not
and UniDisk 3.5 Drivers need to be loaded from disk when GS/OS is switched back

in after a ProDOS 8 application is run.

Apple IIGS GS/OS Reference

Appendix E GS/OS Error Codes and Constants

This appendix lists and describes the errors that an application can
receive as a result of making a GS/OS call.

Column 1 in Table E-1 lists the GS/OS error codes that an application can receive. Column
2 lists the predefined constants whose values are equal to the error codes; the constants
are defined in the GS/OS interface files supplied with development systems. Column 3
gives a brief description of what each error means.

■ Table E-1 GS/OS errors

C o d e C o n s t a n t Description

$01 b a d S y s t e m C a l l bad GS/OS call number
$04 i n v a l i d P c o u n t parameter count out of range
$07 g s o s A c t i v e GS/OS is busy
$10 d e v N o t F o u n d device not found

$11 i n v a l i d D e v N u m invalid device number (request)
$20 d r v r B a d R e q invalid request
$21 d r v r B a d C o d e invalid control or status code

$22 d r v r B a d P a r m bad call parameter
$23 d r v r N o t O p e n character device not open
$24 d r v r P r i o r O p e n character device already open
$25 i r q T a b l e F u l l interrupt table full
$26 d r v r N o R e s r c resources not available

$27 d r v r l O E r r o r I/O error
$28 d r v r N o D e v i c e no device connected

$29 d r v r B u s y driver is busy
$2B d r v r W r t P r o t device is write-protected
$2C d r v r B a d C o u n t invalid byte count
$2D d r v r B a d B l o c k invalid block address

$2E d r v r D i s k S w i t c h disk has been switched

$2F d r v r O f f L i n e device off line or no media present
$40 b a d P a t h S y n t a x invalid pathname syntax
$43 i n v a l i d R e f N u m inval id reference number

$44 p a t h N o t F o u n d subdirectory does not exist
$45 v o l N o t F o u n d volume not found
$46 fi l e N o t F o u n d file not found

$47 d u p P a t h n a m e create or rename with existing name
$48 v o l u m e F u l l volume full

438 Apple IIGS GS/OS Reference

l \

Table E-1 GS/OS errors (Continued)

C o d e C o n s t a n t Description

$49 v o l D i r F u l l volume directory fiill
$4A b a d F i l e F o r m a t version error (incompatible file format)
$4B b a d S t o r e T y p e unsupported (or incorrect) storage type
$4C e o f E n c o u n t e r e d end-of-file encountered

$4D o u t O f R a n g e position out of range
$4E i n v a l i d A c c e s s access not allowed

$4F b u f f T o o S m a l l buffer too small

$50 fi l e B u s y file is already open
$51 d i r E r r o r directory error
$52 u n k n o w n V o l unknown volume type
$53 p a r a m R a n g e E r r parameter out of range
$54 o u t O f M e m out of memory
$57 d u p V o l u m e duplicate volume name
$58 n o t B l o c k D e v not a block device

$59 i n v a 1 i d L e v e 1 specified level outside legal range
$5A d a m a g e d B i t M a p block number too large
$5B b a d P a t h N a m e s invalid path names for ChangePath
$5C n o t S y s t e m F i l e , . not an executable file

$5D o s U n s u p p o r t e d Operating system not supported
$5F s t a c k O v e r fl o w too many applications on stack
$60 d a t a U n a v a i l data unavailable

$61 e n d O f D i r end of directory has been reached
$62 i n v a l i d C l a s s invalid FST call class
$63 r e s F o r k N o t F o u n d file does not contain required resource
$64 i n v a l i d F S T I D FST ID is invalid

$67 d e v N a m e E r r device exists with same name as replacement name
$70 r e s E x i s t s E r r cannot expand file, resource fork already exists
$71 r e s A d d E r r cannot add resource fork to this type of file

Appendix E GS/OS Error Codes and Constants 439

Appendix F Object Module Format

Object module format (OMF) is the general file format followed by all
object files, library files, and executable load files that run on the
Apple IlGS computer under ProDOS 16 or GS/OS. It is a general format
that allows dynamic loading and unloading of file segments, both at
startup and while a program is running.
Most application writers need not be concerned with the details of OMF.
If, however, you are writing a compiler or other program that must create
or modify executable files, or if you want to understand the details of
how the System Loader functions, you need to understand OMF.

A Important This appendix describes Version 2.1 of the Apple IlGS
object module format (OMF). a

441

what fi les a re OMF fi les?

The Apple IIGS object module format (OMF) supports language, linker, library, and loader
requirements, and it is extremely flexible, easy to generate, and fast to load.
Under ProDOS 8 on the Apple He and Apple lie, there is only one loadable file format,
called the binary file format. This format consists of one absolute memory image along
with its destination address. ProDOS 8 does not have a relocating loader, so that even if
you write relocatable code, you must specify the memory location at which the file is to
be loaded .

The Apple IlGS uses a more general format that allows dynamic loading and unloading of
file segments while a program is running and that supports the various needs of many
languages and assemblers. Apple IlGS linkers (supplied with development environments)
and the System Loader fully support relocatable code; in general, you do not specify a
load address for an Apple IlGS program, but let the loader and Memory Manager determine
where to load the program.

Four kinds of files use object module format: object files, library files, load files, and run
time library files.
■ Object lEiles are the output from an assembler or compiler and the input to a linker.

Object files must be fast to process, easy to create, independent of the source
language, and able to support libraries in a convenient way. In some development
environments object files also support segmentation of code. They support both
absolute and relocatable program segments.

Apple IlGS object files contain both machine-language code and relocation
information for use by the linker. Object files cannot be loaded directly into memory;
they must first be processed by the linker to create load files.

■ Library fQes contain general object segments that a linker can find and extract to
resolve references unresolved in the object files. Only the code needed during the link
process is extracted from the library file.

■ Load files, which are the output of a linker, contain memory images that a loader
loads into memory. Load files must be very fast to process. Apple IlGS load files
contain load segments that can be relocatable, movable, dynamically loadable, or have
any combination of these attributes. Shell applications are load files that can be run
from a shell program without requiring the shell to shut down. Startup load files are load
files that GS/OS loads during its startup.
Load files are created by the linker from object files and library files. Load files can be
loaded into memory by the System Loader; they cannot be used as input to the linker.

442 Apple IlGS GS/OS Reference

■ Rim-time library files are load files containing general routines that can be shared
between applications. The routines are contained in file segments that can be loaded
as needed by the System Loader and then purged from memory when they are no longer
needed. The run-time library files are also input to the linker, which scans tliem for
unresolved references. However, segments that satisfy references are not included in
the l ink .

All four types of files consist of individual components called segments. Each file type
uses a subset of the full object module format. Each compiler or assembler uses a subset
of the format depending on the requirements and complexity of the language.

Some common GS/OS file types related to program files are listed in Table F-1.

The rest of this appendix defines object module format. First, the general format
specification for all OMF files is described. Then, the unique characteristics of each of the
following file types are discussed:
■ object files
■ library files
■ l o a d f i l e s

■ run-time library files

■ shell applications

■ Table F-1 GS/OS program-file types

D e c i m a l Mnemon i c Meaning

$B0 176 SRC Source

$B1 177 OBJ Object
$B2 178 L I B Library
$B3 179 S16 GS/OS or ProDOS l6 application
$B4 180 RTL Run-time library
$B5 181 EXE Shell application
$B6 182 P I F Permanent initialization
$ B 7 183 T I F Temporary initialization
$B8 184 N D A New desk accessory
$B9 185 GDA Classic desk accessory
$BA 186 TOL Tool set file
$BB 187 DVR Apple Ilgs Device Driver File
SBC 188 LDF Generic load file (application-specific)
$BD 189 FST GS/OS file system translator

Appendix F Object Module Format 443

General format for OMF files

Each OMF file contains one or more segments. Each segment consists of a segment header
and a segment body. The segment header contains general information about the
segment, such as its name and length. The segment body is a sequence of records; each
record consists of either program code or information used by a linker or by the System
Loader. Figure F-1 represents the structure of an OMF file.

Each segment in an OMF file contains a set of records that provide relocation information
or contain code or data. If the file is an object file, each segment includes the information
the linker needs to generate a relocatable load segment; the linker processes each record
and generates a load file containing load segments. If the file is a load file, each segment
consists of a memory image followed by a relocation dictionary; the System Loader loads
the memory image and then processes the information in the relocation dictionary. (Load
file segments on the Apple IIGS are usually relocatable.) Relocation dictionaries are
discussed in the section "Load Files," later in this appendix.

Segments in object files can be combined by the linker into one or more segments in the
load file. (See the discussion of the LOADNAME field in the section "Segment Header,"
later in this appendix.) For instance, each subroutine in a program can be compiled
independently into a separate (object) code segment; then the linker can be told to place
all the code segments into one load segment.

444 Apple IlGS GS/OS Reference

Segment types and attributes

Each OMF segment has a segment type and can have several attributes. The following
segment types are defined by OMF:
■ code segment
■ data segment
■ jump-table segment
■ pathname segment
■ library dictionary segment
■ initialization segment
■ direct-page/stack segment

The following segment attributes are defined by the object module format:
■ reloadable or not reloadable

■ absolute-bank or not restricted to a particular bank
■ loadable in special memory or not loadable in special memory
■ position-independent or position-dependent
■ private or public
■ static or dynamic
■ bank-relative or not bank-relative

■ skipped or not skipped

Code and data segments are object segments provided to support languages (such as
assembly language) that distinguish program code from data. If a programmer specifies a
segment by using a PROG or START assembler directive, the linker flags it as a code
segment; if the programmer uses a RECORD or DATA directive instead, the linker flags it
as a data segment.
■ Jump-table segments and pathname segments are load segments that facilitate the

dynamic loading of segments; they are described in the section "Load Files" later in
this appendix.

■ Library dictionary segments allow the linker to scan library files quickly for needed
segments; they are described in the section "Library Files" later in this appendix.

■ Initialization segments are optional parts of load files that are used to perform any
initialization required by the application during an initial load. If used, they are loaded
and executed immediately as the System Loader encounters them and are re-executed
any time the program is restarted from memory. Initialization segments are described
in the section "Load Files" later in this appendk.

Appendk F Object Module Format 445

■ Direct-page/stack segments are load segments used to preset the location and
contents of the direct page and stack for an application. See the section "Direct-
Page/Stack Segments" later in this appendix for more information.

■ Reload segments are load segments that the loader must reload even if the program is
restartable and is restarted from memory. They usually contain data that must be
restored to its initial values before a program can be restarted.

■ Absolute-bank segments are load segments that are restricted to a specified bank but
that can be relocated within that bank. The ORG field in the segment header specifies
the bank to which the segment is restricted.

■ Loadable in special memory means that a segment can be loaded in banks $00, $01,
$E0, and $E1. Because these are the banks used by programs running under ProDOS 8 in
standard-Apple II emulation mode, you may prevent your program from being loaded
in these banfe so that it can remain in memory while programs are run under ProDOS 8.

■ Position-independent segments can be moved by the Memory Manager during program
execution if they have been unlocked by the program.

■ A private code segment is a code segment whose name is available only to other code
segments within the same object file. (The labels within a code segment are local to
that segment.)

■ A private data segment is a data segment whose labels are available only to code
segments in the same object file.

■ Static segments are load segments that are loaded at program execution time and are
not unloaded during execution; dynamic segments are loaded and unloaded during
program execution as needed.

■ Bank-relative segments must be loaded at a specified address within any bank. The
ORG field in the segment header specifies the bank-relative address (the address must
be less than $10000).

■ Skip segments will not be linked by the linker or loaded by the System Loader.
However, all references to global definitions in a Skip object segment will be
processed by a linker as if the object segment.

■ A segment can have only one segment type but can have any combination of attributes.
The segment types and attributes are specified in the segment header by the kind
segment-header field, described in the next section.

Segment header

Each segment in an OMF file has a header that contains general information about the
segment, such as its name and length. Segment headers make it easy for the linker to scan
an object file for the desired segments, and they allow the System Loader to load
individual load segments. The format of the segment header is illustrated in Figure F-2. A
detailed description of each of the fields in the segment header follows.

446 Apple lies GS/OS Reference

Figure F-2 The format of a segment header

u n d e fi n e d

D I S P D AT ^

t e m p O r g

DISPNAME+$OA

b l o c k C o u n t

Appendix F Object Module Format 447

A Important In future versions of the OMF, additional fields may be added to the
segment header between the DISPDATA and LOADNAME fields. To
ensure that future expansion of the segment header does not affect
your program, always use DISPNAME and DISPDATA instead of
absolute offsets when referencing LOADNAME, SEGNAME, and the
start of the segment body, and always be sure that all undefined fields
are set to 0. a

B Y T E C N T

RESSPC

L E N G T H

L A B L E N

N U M L E N

V E R S I O N

A 4-byte field indicating the number of bytes in the file that the segment
requires. This number includes the segment header, so you can calculate
the starting Mark of the next segment from the starting Mark of this
segment plus BYTECNT. Segments need not be aligned to block
boundaries.

A 4-byte field specifying the number of bytes of O's to add to the end of
the segment. This field can be used in an object segment instead of a
large block of zeros at the end of the segment. This field duplicates the
effect of a DS record at the end of the segment.

A 4-byte field specifying the memory size that the segment will require
when loaded. It includes the extra memory specified by RESSPC.

LENGTH is followed by one undefined byte, reserved for future changes
to the segment header specification.

A 1-byte field indicating the length, in bytes, of each name or label record
in the segment body. If LABLEN is 0, the length of each name or label is
specified in the first byte of the record (that is, the first byte of the
record specifies how many bytes follow). LABLEN also specifies the
length of the SEGNAME field of the segment header, or, if LABLEN is 0,
the first byte of SEGNAME specifies how many bytes follow. (The
LOADNAME field always has a length of 10 bytes.) Fbced-length labels are
always left justified and padded with spaces.

A 1-byte field indicating the length, in bytes, of each number field in the
segment body. This field is 4 for the Apple IIGS.

A 1-byte field indicating the version number of the object module format
with which the segment is compatible. At the time of publication, this
field is set to 2 for the current object module format.

448 Apple IlGS GS/OS Reference

REVISION A 1-byte field indicating the revision number of the object module
format with which the segment is compatible. Together with the
VERSION field, REVISION specifies the OMF compatibility level of this
segment. At the time of publication, this field is set to 1 for the current
object module format.

BANKSIZE A 4-byte binary number indicating the maximum memory-bank size for
the segment. If the segment is in an object file, the linker ensures that the
segment is not larger than this value. (The linker retums an error if the
segment is too large.) If the segment is in a load file, the loader ensures
that the segment is loaded into a memory block that does not cross this
boundary. For Apple IlGS code segments, this field must be $00010000,
indicating a 64K bank size. A value of 0 in this field indicates that the
segment can cross bank boundaries. Apple IlGS data segments can use
any number from $00 to $00010000 for BANKSIZE.

KIND A 2-byte field specifying the type and attributes of the segment. The bits
are defined as shown in Table F-2, on the next page. The column labeled
"Where described" indicates the section in this appendix where the
particular segment type or attribute is discussed.

• A segment can have only one type but any combination of attributes.
For example, a position-independent dynamic data segment has
KIND = ($A001).

A Important If segment KINDs are specified in the source file, and
the KINDs of the object segments placed in a given
load segment are not all the same, the segment KIND of
the first object segment determines the segment KIND
of the entire load segment, a

O R G

Appendix F Object Module Format 449

KIND is followed by two undefined bytes, reserved for future changes to
the segment header specification.

A 4-byte field indicating the absolute address at which this segment is to
be loaded in memory, or, for an absolute-bank segment, the bank
number. A value of 0 indicates that this segment is relocatable and can be
loaded anywhere in memory. A value of 0 is normal for the Apple IlGS.

Ta b l e F - 2 K I N D fi e l d d e fi n i t i o n

B l t (s) Va l u e s

i f = l

i f = l
i f = l
i f = l
if = 0
i f = l
i f = l
if = 0

Meaning

Segment Type subfield
Code
D a t a

Jump-table segment
Pathname segment
Library dictionary segment
Initialization segment
Direct-page/stack segment

Segment Attributes bits
Bank-relative segment
Skip segment
Reload segment
Absolute-bank segment
Can be loaded in special memory
Position independent
P r i v a t e

Static; otherwise dynamic

Where desc r i bed

Segment Types and Attributes
Segment Types and Attributes
Load Files

Segment Types and Attributes
Library Files
Load Files

Direct-Page/Stack Segments

Segment Types
Segment Types
Segment Types
Segment Types
Segment Types
Segment Types
Segment Types
Segment Types

and Attributes

and Attributes
and Attributes
and Attributes
and At t r ibu tes

and Attributes
and Attributes
and Attributes

A 4-byte binary number indicating the boundary on which this segment
must be aligned. For example, if the segment is to be aligned on a page
boundary, this field is $00000100; if the segment is to be aligned on a
bank boundary, this field is $00010000. A value of 0 indicates that no
alignment is needed. For the Apple IIGS, this field must be a power of 2,
less than or equal to $00010000. Currently, the loader supports only values
of 0, $00000100, and $00010000; for any other value, the loader uses the
next higher supported value.

A 1-byte field indicating the order of the bytes in a number field. If this
field is 0,. the least significant byte is first. If this field is 1, the most
significant byte is first. This field is set to 0 for the Apple IIGS.
NUMSEX is followed by one undefined byte, reserved for future changes
to the segment header specification.

A 2-byte field specifying the segment number. The segment number
corresponds to the relative position of the segment in the file (starting
with 1). This field is used by the System Loader to search for a specific
segment in a load file.

450 Apple IIGS GS/OS Reference

1

ENTRY A 4-byte field indicating the offset into the segment that corresponds to
the entry point of the segment.

DISPNAME A 2-byte field indicating the displacement of the LOADNAME field
within the segment header. Currently, DISPNAME = 44. DISPNAME is
provided to allow for future additions to the segment header; any new
fields will be added between DISPDATA and LOADNAME. DISPNAME
allows you to reference LOADNAME and SEGNAME no matter what the
actual size of the header.

DISPDATA A 2-byte field indicating the displacement from the start of the segment
header to the start of the segment body. DISPDATA is provided to allow
for future additions to the segment header; any new fields will be added
between DISPDATA and LOADNAME. DISPDATA allows you to reference
the start of the segment body no matter what the actual size of the
header.

tempORG A 4-byte field indicating the temporary origin of the Object segment. A
nonzero value indicates that all references to globals witliin this segment
will be interpreted as if the Object segment started at that location.
However, the actual load address of the Object segment is still
determined by the ORG field.

LOADNAME A 10-byte field specifying the name of the load segment that will contain
the code generated by the linker for this segment. More than one
segment in an object file can be merged by the linker into a single
segment in the load file. This field is unused in a load segment. The
position of LOADNAME may change in future revisions of the OMF;
therefore, you should always use DISPNAME to reference LOADNAME.

SEGNAME A field that is LABLEN bytes long, and that specifies the name of the
segment. The position of SEGNAME may change in future revisions of
the OMF; therefore, you should always use DISPNAME to reference
SEGNAME.

Appendix F Object Module Format 451

J

Segment body

The body of each segment is composed of sequential records, each of which starts with a
1-byte operation code. Each record contains either program code or information for the
linker or System Loader. All names and labels included in these records are LABLEN bytes
long, and all numbers and addresses are NUMLEN bytes long (unless otherwise specified in
the following definitions). For the Apple IIGS, the least significant byte of each number
field is first, as specified by NUMSEX.

Several of the OMF records contain expressions that have to be evaluated by the linker.
The operation and syntax of expressions are described in the next section, "Expressions."
If the description of the record type does not explicitly state that the opcode is followed
by an expression, then an expression cannot be used. Expressions are never used in load
segments.

The operation codes and segment records are described in this section, listed in order of
the opcodes. Table F-3 provides an alphabetical cross-reference between segment record
types and opcodes. Library files consist of object segments and so can use any record
type that can be used in an object segment. Table F-3 also lists the segment types in which
each record type can be used.

■ Table F-3 Segment-body record types

Record type Opcode Found in what segment types

A L I G N $E0 object
B E X P R $ED object
c I N T E R S E G $F6 load

C O N S T $01-$DF object
c R E L O C $F5 load

D S $F1 all

E N D $00 aU

E N T R Y $F4 run-time library dictionary
EQU $F0 object
E X P R $EB object
GEQU $E7 object
G L O B A L $E6 object
I N T E R S E G $E3 load

L C O N S T $F2 all

L E X P R $F3 object
L O C A L $EF object

452 Apple IIGS GS/OS Reference

1

■ Table F-3 Segment-body record types (Continued)

Record type Opcode Found In what segment types

M E M $E8 object
ORG $E1 object
R E L E X P R $EE object
R E L O C $E2 load

S T R O N G $E5 object
SUPER $F7 load

U S I N G $E4 object
Z E X P R $EC object

The rest of this section defines each of the segment-body record types. The record types
are listed in order of their opcodes.

Record type Opcode Explanation

END $00 This record indicates the end of the segment.

CONST $01-$DF This record contains absolute data that needs no relocation. The
operation code specifies how many bytes of data follow.

ALIGN $E0 This record contains a number that indicates an alignment factor.
The linker inserts as many 0 bytes as necessary to move to the
memory boundary indicated by this factor. The value of this factor
is in the same format as the ALIGN field in the segment header and
cannot have a value greater than that in the ALIGN field. ALIGN
must equal a power of 2.

ORG $E1 This record contains a number that is used to increment or
decrement the location counter. If the location counter is
incremented (ORG is positive), O's are inserted to get to the new
address. If the location counter is decremented (ORG is a
complement negative number of 2), subsequent code overwrites
the old code.

I (c o n t i n u e d)
Appendix F Object Module Format 453

I
I

Record type Opcode Explanation

RELOC $E2 This is a relocation record, which is used in the relocation
dictionary of a load segment. It is used to patch an address in a
load segment with a reference to another address in the same load
segment. It contains two 1-byte counts followed by two offsets.
The first count is the number of bytes to be relocated. The second
count is a bit-shift operator, telling how many times to shift the
relocated address before inserting the result into memory. If the
bit-shift operator is positive, the number is shifted to the left,
filling vacated bit positions with O's (arithmetic shift left). If the
bit-shift operator is (two's complement) negative, the number is
shifted right (logical shift right) and 0-filled.
The first offset gives the location (relative to the start of the
segment) of the first byte of the number that is to be patched
(relocated). The second offset is the location of the reference
relative to the start of the segment; that is, it is the value that the
number would have if the segment containing it started at address
$000000. For example, suppose the segment includes the following
lines:

3 5 L A B E L . . .

4 0 0 L D A L A B E L + 4

The RELOC record contains a patch to the operand of the LDA
instruction. The value of the patch is LABEL+4, so the value of the
last field in the RELOC record is $39—the value the patch would
have if the segment started at address $000000. LABEL+4 is two
bytes long; that is, the number of bytes to be relocated is 2. No bit-
shift operation is needed. The location of the patch is 1025 ($401)
bytes after the start of the segment (immediately after the LDA,
which is one byte).

The RELOC record for the number to be loaded into the A register
by this statement would therefore look like this (note that the
values are stored low byte first, as specified by NUMSEX):
E2020001 04000039 000000

454 Apple IlGS GS/OS Reference

Record type Opcode Explanation

This sequence corresponds to the following values:
$ E 2 o p e r a t i o n c o d e
$02 number of bytes to be relocated
$ 0 0 b i t - s h i f t o p e r a t o r
$00000401 offset of value from start of segment
$00000039 value if segment started at $000000

♦ Note: Certain types of arithmetic expressions are illegal in a
relocatable segment; specifically, any expression that the
assembler cannot evaluate (relative to the start of the segment)
cannot be used. The expression LAB 14 can be evaluated, for
example, since the RELOC record includes a bit-shift operator.
The expression LAB 14+4 cannot be used, however, because the
assembler would have to know the absolute value of LAB to
perform the bit-shift operation before adding 4 to it. Similarly,
the value of LABM depends on the absolute value of LAB and
cannot be evaluated relative to the start of the segment, so
multiplication is illegal in expressions in relocatable segments.

INTERSEG $E3 This record is used in the relocation dictionary of a load segment.
It contains a patch to a long call to an external reference; that is,
the INTERSEG record is used to patch an address in a load segment
with a reference to another address in a different load segment. It
contains two 1-byte counts followed by an offset, a 2-byte file
number, a 2-byte segment number, and a second offset. The first
count is the number of bytes to be relocated, and the second count
is a bit-shift operator, telling how many times to shift the relocated
address before inserting the result into memory. If the bit-shift
operator is positive, the number is shifted to the left, filling
vacated bit positions with O's (arithmetic shift left). If the bit-shift
operator is (two's complement) negative, the number is shifted
right (logical shift right) and 0-filled.

(continued)

Appendix F Object Module Format 455

Record type Opcode Explanation

The first offset is the location (relative to the start of the segment)
of the (first byte of the) number that is to be relocated. If the
reference is to a static segment, the file number, segment number,
and second offset correspond to the subroutine referenced. (The
linker assigns a file number to each load file in a program. This
feature is provided primarily to support run-time libraries. In the
normal case of a program having one load file, the file number is 1.
The load segments in a load file are numbered by their relative
locations in the load file, where the first load segment is number 1.)
If the reference is to a dynamic segment, the file and segment
numbers correspond to the jump-table segment, and the second
offset corresponds to the call to the System Loader for that
reference.

For example, suppose the segment includes an instruction such as
J S L E X T

The label ext is an external reference to a location in a static
segment.

If this instruction is at relative address $720 within its segment and
EXT is at relative address $345 in segment $000A in file $0001, the
linker creates an INTERSEG record in the relocation dictionary that
looks like this (note that the values are stored low byte first, as
specified by NUMSEX);
E3030021 07000001 000A0045 030000

This sequence corresponds to the following values:
$ E 3 o p e r a t i o n c o d e
$03 number of bytes to be relocated
$ 0 0 b i t - s h i f t o p e r a t o r
$00000721 offset of instruction's operand
$ 0 0 0 1 fi l e n u m b e r
$000A segment number
$00000345 offset of subroutine referenced
When the loader processes the relocation dictionary, it uses the
first offset to find the JSL and patches in the address
corresponding to the file number, segment number, and offset of
the referenced subroutine.

456 Apple IIGS GS/OS Reference

Record type Opcode Explanation

If the JSL is to an external reference in a dynamic segment, the
INTERSEG records refer to the file number, segment number, and
offset of the call to the System Loader in the jump-table segment.

If the jump-table segment is in segment 6 of file 1, and the call to
the System Loader is at relative location $2A45 in the jump-table
segment, then the INTERSEG record looks like this (note that the
values are stored low byte first, as specified by NUMSEX):
E3030021 07000001 00060045 2A0000

This sequence corresponds to the following values:
$E3 opera t ion code
$03 number of bytes to be relocated
$00 bi t -shi f t operator
$00000721 offset of instruction's operand
$0001 file number of jump-table segment
$0006 segment number of jump-table segment
$00002A45 offset of call to System Loader
The jump-table segment entry that corresponds to the external
reference EXT contains the following values:

U s e r I D

$ 0 0 0 1 fi l e n u m b e r
$0005 segment number
$00000200 offset of instruction call to System Loader
INTERSEG records are used for any long-address reference to a static
segment.

See the section "Jump-Table Segment" later in this appendix for a
discussion of the function of the jump-table segment.

USING $E4 This record contains the name of a data segment. After this record is
encountered, local labels from that data segment can be used in the current
segment.

STRONG $E5 This record contains the name of a segment that must be included during
linking, even if no external references have been made to it. If you are using
the APW assembler, the following statement generates a STRONG record:
D C R ' x x x x '

where xcccis label.

(continued)

Appendix F Object Module Format 457

Record type Opcode Explanation

GLOBAL $E6 This record contains the name of a global label followed by three attribute
fields. The label is assigned the current value of the location counter. The
first attribute field is two bytes long and gives the number of bytes
generated by the line that defined the label. If this field is $FFFF, it
indicates that the actual length is unknown but that it is greater than or
equal to $FFFF. The second attribute field is one byte long and specifies
the type of operation in the line that defined the label. The following type
attributes are defined (uppercase ASCII characters with the high bit ofD:
A address-type DC statement
B Boolean-type DC statement
C character-type DC statement
D double-precision floating-point-type DC statement
F floating-point-type DC statement
G EQU or GEQU statement
H hexadecimal-type DC statement
I integer-type DC statement
K reference-address-type DC statement
L soft-reference-type DC statement
M i n s t r u c t i o n
N assemb le r d i rec t i ve
O O R G s t a t e m e n t
P A L I G N s t a t e m e n t
S D S s t a t e m e n t
X arithmetic symbolic parameter
Y Boolean symbolic parameter
Z character symbolic parameter

The third attribute field is one byte long and is the private flag (1 =
private). This flag is used to designate a code or data segment as
private. (See the section "Segment Types and Attributes" earlier in
this appendix for a definition of private segments.)

GEQU $E7 This record contains the name of a global label followed by three
attribute fields and an expression. The label is given the value of the
expression. The first attribute field is 2 bytes long and gives the
number of bytes generated by the line that defined the label. The
second attribute field is 1 byte long and specifies the type of
operation in the line that defined the label, as listed in the

458 Apple IIGS GS/OS Reference

Record type Opcode Explanat ion

discussion of the GLOBAL record. The third attribute field is 1 byte
long and is the private flag (1 = private). This flag is used to
designate a code or data segment as private. (See the section
"Segment Types and Attributes" earlier in this appendix for a
definition of private segments.)

MEM $E8 This record contains two numbers that represent the starting and
ending addresses of a range of memory that must be reserved. If
the size of the numbers is not specified, the length of the numbers
is defined by the NUMLEN field in the segment header.

EXPR $EB This record contains a 1-byte count followed by an expression. The
expression is evaluated, and its value is truncated to the number of
bytes specified in the count. The order of the truncation is from
most significant to least significant.

2EXPR $EC This record contains a 1-byte count followed by an expression.
ZEXPR is identical to EXPR, except that any bytes truncated must
be all O's. If the bytes are not O's, the record is flagged as an error.

This record contains a 1-byte count followed by an expression.
BEXPR is identical to EXPR, except that any bytes truncated must
match the corresponding bytes of the location counter. If the
bytes don't match, the record is flagged as an error. This record
allows the linker to make sure that an expression evaluates to an
address in the current memory bank.

This record contains a 1-byte length followed by an offset and an
expression. The offset is NUMLEN bytes long. RELEXPR is used to
generate a relative branch value that involves an external location.
The length indicates how many bytes to generate for the
instruction, the offset indicates where the origin of the branch is
relative to the current location counter, and the expression is
evaluated to yield the destination of the branch. For example, a
BNE LOG instruction, where LOG is external, generates this record.
For the 6502 and 65816 microprocessors, the offset is 1.

B E X P R $ E D

R E L E X P R $ E E

(continued)

Appendbt F Object Module Format 459

a

R e c o r d t y p e O p c o d e E x p l a n a t i o n

LOCAL $EF This record contains the name of a local label followed by three
attribute fields. The label is assigned the value of the current
location counter. The first attribute field is two bytes long and
gives the number of bytes generated by the line that defined the
label. The second attribute field is one byte long and specifies the
type of operation in the line that defined the label, as listed in the
discussion of the GLOBAL record. The third attribute field is one
byte long and is the private flag (1 = private). This flag is used to
designate a code or data segment as private. (See the section
"Segment Types and Attributes," earlier in this appendbc, for a
definition of private segments.)
Some linkers (such as the APW Linker) ignore local labels from code
segments and recognize local labels from other data segments only
if a USING record was processed. See the preceding discussion of
the USING statement.

EQU $F0 This record contains the name of a local label followed by three
attribute fields and an expression. The label is given the value of the
expression. The first attribute field is two bytes long and gives the
number of bytes generated by the line that defined the label. The
second attribute field is one byte long and specifies the type of
operation in the line that defined the label, as listed in the
discussion of the GLOBAL record. The third attribute field is one
byte long and is the private flag (1 = private). This flag is used to
designate a code or data segment as private. (See the section
"Segment Types and Attributes," earlier in this appendbc, for a
definition of private segments.)

DS $F1 This record contains a number indicating how many bytes of O's to
insert at the current location counter.

LCONST $F2 This record contains a 4-byte count followed by absolute code or
data. The count indicates the number of bytes of data. The
LCONST record is similar to CONST except that it allows for a much
greater number of data bytes. Each relocatable load segment
consists of LCONST records, DS records, and a relocation
dictionary. See the discussions on INTERSEG records, RELOC
records, and the relocation dictionary for more information.

460 Apple IIGS GS/OS Reference

Record type Opcode Explanat ion

L E X P R

E N T R Y

c R E L O C $ F 5

This record contains a 1-byte count followed by an expression. The
expression is evaluated, and its value is truncated to the number of
bytes specified in the count. The order of the truncation is from
most significant to least significant.

Because the LEXPR record generates an intersegment reference,
only simple expressions are allowed in the expression field, as
fol lows:

L A B E L ± c o n s t

L A B E L I ± c o n s t

(L A B E L ± c o n s t] ± c o n s t

In addition, if the expression evaluates to a single label with a
fbced, constant offset, and if the label is in another segment and
that segment is a dynamic code segment, then the linker creates an
entry for that label in the jump-table segment. (The jump-table
segment provides a mechanism to allow dynamic loading of
segments as they are needed—^see the section "Load Files," later in
this appendix.)

This record is used in the mn-time library entry dictionary; it
contains a 2-byte number and an offset followed by a label. The
number is the segment number. The label is a code-segment name or
entry, and the offset is the relative location within the load
segment of the label. Run-time library entry dictionaries are
described in the section "Run-Time Library Files," later in this
appendix.

This record is the compressed version of the RELOC record. It is
identical to the RELOC record, except that the offsets are two
bytes long rather than four bytes. The cRELOC record can be used
only if both offsets are less than $10000 (65,536). The following
example compares a RELOC record and a cRELOC record for the
same reference:

R E L O C

$E2
$02
$00
$00000401
$00000039
(11 bytes)

c R E L O C

$F5
$02
$00
$0401
$0039
(7 bytes)

Appendix F Object Module Format 46l

Record type Opcode Explanation

For an explanation of each line of these records, see the preceding
discussion of the RELOC record.

cINTERSEG $F6 This record is the compressed version of the INTERSEG record. It
is identical to the INTERSEG record, except that the offsets are
two bytes long rather than four bytes, the segment number is one
byte rather than two bytes, and this record does not include the 2-
byte file number. The cINTERSEG record can be used only if both
offsets are less than $10000 (65,536), the segment number is less
than 256, and the file number associated with the reference is 1
(that is, the initial load file). References to segments in run-time
library files must use INTERSEG records rather than cINTERSEG
records.

The following example compares an INTERSEG record and a
cINTERSEG record for the same reference:

I N T E R S E G c I N T E R S E G

$ E 3 $ F 6
$ 0 3 $ 0 3
$ 0 0 $ 0 0
$00000720 $0720
$0001
$ 0 0 0 A $ 0 A
$00000345 $0345
(15 bytes) (8 bytes)

For an explanation of each line of these records, see the preceding
discussion of the INTERSEG record.

SUPER $F7 This is a supercompressed relocation-dictionary record. Each SUPER record
is the equivalent of many cRELOC, cINTERSEG, and INTERSEG records. It
contains a 4-byte length, a 1-byte record type, and one or more subrecords
of variable size, as follows:
Opcode: $F7
Length: number of bytes in the rest of the record (4 bytes)
Type: 0-37 (1 byte)
Subrecords: (variable size)

When SUPER records are used, some of the relocation information is stored
in the LCONST record at the address to be patched.

462 Apple IIGS GS/OS Reference

Record type Opcode Explai iat lon

The length field indicates the number of bytes in the rest of the SUPER
record (that is, the number of bytes exclusive of the opcode and the length
field).

The type byte indicates the type of SUPER record. There are 38 types of
SUPER record:

Value SUPER record type

0 S U P E R R E L 0 C 2
1 S U P E R R E L 0 C 3
2-37 SUPER INTERSEGl-SUPER INTERSEG36

SUPER REL0C2: This record can be used instead of cRELOC records that
have a bit-shift count of zero and that relocate two bytes.

SUPER REL0C3: This record can be used instead of cRELOC records that
have a bit-shift count of zero and that relocate three bytes.

SUPER INTERSEGl: This record can be used instead of cINTERSEG records
that have a bit-shift count of zero and that relocate three bytes.

SUPER INTERSEG2 through SUPER INTERSEG12: The number in the name
of the record refers to the file number of the file in which the record is used.
For example, to relocate an address in file 6, use a SUPER INTERSEG6
record. These records can be used instead of ETORSEG records that meet
the following criteria:
■ Both offsets are less than $10000.
■ The segment number is less than 256. •
■ The bit-shift count is 0.
■ The record relocates 3 bytes.
■ The file number is from 2 through 12.

SUPER INTERSEG13 through SUPER INTERSEG24: These records
can be used instead of cINTERSEG records that have a bit-shift
count of zero, that relocate two bytes, and that have a segment
number of n minus 12, where «is a number from 13 to 24. For
example, to replace a cINTERSEG record in segment 6, use a SUPER
INTERSEG18 record.

(continued)

Appendix F Object Module Format 463

Record type Opcode Explanation

SUPER INTERSEG25 through SUPER INTERSEG36: These records
can be used instead of cINTERSEG records that have a bit-shift
count of $F0 (-16), that relocate two bytes, and that have a
segment number of n minus 24, where «is a number from 25 to 36.
For example, to replace a cINTERSEG record in segment 6, use a
SUPER INTERSEG30 record.

Each subrecord consists of either a 1-byte offset count followed by
a list of 1-byte offsets, or a 1-byte skip count.

Each offset count indicates how many offsets are listed in this
subrecord. The offsets are one byte each. Each offset corresponds
to the low byte of the first (2-byte) offset in the equivalent
INTERSEG, cRELOC, or cINTERSEG record. The high byte of the
offset is indicated by the location of this offset count in the
SUPER record: Each subsequent offset count indicates the next 256
bytes of the load segment. Each skip count indicates the number
of 256-byte pages to skip; that is, a skip count indicates that there
are no offsets within a certain number of 256-byte pages of the
load segment.

For example, if patches must be made at offsets 0020, 0030, 0140,
and 0550 in the load segment, the subrecords would include the
following fields:
2 20 30 the first 256-byte page of the load segment has two

patches: one at offset 20 and one at offset 30
1 40 the second 256-byte page has one patch at offset 40
skip-3 skip the next three 256-byte pages
1 50 the sbcth 256-byte page has one patch at offset 50

In the actual SUPER record, the patch count byte is the number of
offsets minus one, and the skip count byte has the high bit set. A
SUPER INTERSEGl record with the offsets in the preceding
example would look like this:
$ F 7 o p c o d e
$00000009 number of bytes in the rest of the record
$02 INTERSEGl-type SUPER record
$01 the first 256-byte page has two patches

464 Apple IIGS GS/OS Reference

Record type Opcode Explanat ion

$20

$30
$00

$40

$83

$00

$50

A comparison with the RELOC record shows that a SUPER RELOC
record is missing the offset of the reference. Similarly, the
SUPER INTERSEGl through SUPER INTERSEG12 records are
missing the segment number and offset of the subroutine
referenced. The offsets (which are two bytes long) are stored in the
LCONST record at the "to be patched" location. For the SUPER
INTERSEGl through SUPER INTERSEG12 records, the segment
number is stored in the third byte of the "to be patched" location.

For example, if the example given in the discussion of the
. INTERSEG record were instead referenced through a SUPER

INTERSEGl record, the value $0345 (the offset of the subroutine
referenced) would be stored at offset $0721 in the load segment
(the offset of the instruction's operand). The segment number
($0A) would be stored at offset $0723, as follows:
4 5 0 3 O A

General $FB This record contains a 4-byte count indicating the number of bytes
of data that follow. This record type is reserved for use by Apple
Computer, Inc.

Experimental $FC-$FF These records contain a 4-byte count indicating the number of
bytes of data that follow. These record types are reserved by Apple
Computer for use in system development.

patch the load segment at offset $0020
patch the segment at $0030
the second page has one patch
patch the segment at $0140
skip the next three 256-byte pages
the sixth page has one patch
patch the segment at $0550

Appendix F Object Module Format 465

L

Expressions

Several types of OMF records contain expressions. Expressions form an extremely flexible
reverse-Polish stack language that can be evaluated by the linker to yield numeric values
such as addresses and labels. Each expression consists of a series of operators and
operands together with the values on which they act.
An operator takes one or two values from the evaluation stack, performs some
mathematical or logical operation on them, and places a new value onto the evaluation
stack. The final value on the evaluation stack is used as if it were a single value in the
record. Note that this evaluation stack is purely a programming concept and does not
relate to any hardware stack in the computer. Each operation is stored in the object
module file in postfix form; that is, the value or values come first, followed by the
operator. For example, since a binary operation is stored as Valuel Value2 Operator, the
operation Numl minus Num2 is stored as
N u m l N u m 2 -

The operators are as follows:
■ Biliary math operators: These operators take two numbers (as two's-complement

signed integers) from the top of the evaluation stack, perform the specified
operation, and place the single-integer result back on the evaluation stack. The binary
math operators include
$ 0 1 a d d i t i o n (+)
$ 0 2 s u b t r a c t i o n (-)
$ 0 3 m u l t i p l i c a t i o n (*)
$ 0 4 d i v i s i o n (/ , d i v)
$05 integer remainder (//,mod)
$ 0 7 b i t s h i f t (« , »)
The subtraction operator subtracts the second number from the first number. The
division operator divides the first number by the second number. The integer-
remainder operator divides the first number by the second number and returns the
unsigned integer remainder to the stack. The bit-shift operator shifts the first number
by the number of bit positions specified by the second number. If the second number
is positive, the first number is shifted to the left, filling vacated bit positions with O's
(arithmetic shift left). If the second number is negative, the first number is shifted
right, filling vacated bit positions with O's (logical shift right).

■ Unary math operator; A unary math operator takes a number as a two's-complement
signed integer from the top of the evaluation stack, performs the operation on it, and
places the integer result back on the evaluation stack. The only unary math operator
currently available is
$ 0 6 n e g a t i o n (-)

466 Apple IIGS GS/OS Reference

■ Comparison operators: These operators take two numbers as two's-complement
signed integers from the top of the evaluation stack, perform the comparison, and
place the single-integer result back on the evaluation stack. Each operator compares
the second number in the stack (TOS -1) with the number at the top of the stack
(TOS). If the comparison is TRUE, a 1 is placed on the stack; if FALSE, a 0 is placed on
the stack. The comparison operators include
$oc less than or equal to (<=, ^)
$0D greater than or equal to (>=, ^)
$0E not equal (<>, !=)
$0F less than (<)
$10 greater than (>)
$11 equal to (= o r = =)

■ Binary logical operators: These operators take two numbers as Boolean values from
the top of the evaluation stack, perform the operation, and place the single Boolean
result back on the stack. Boolean values are defined as being FALSE for the number 0
and TRUE for any other number. Logical operators always return a 1 for TRUE. The
binary logical operators include
$ 0 8 A N D (* * , A N D)
$ 0 9 O R (+ + , O R , i)
$ 0 A E G R (~ , X O R)

■ Unary logical operator: A unary logical operator takes a number as a Boolean value
from the top of the evaluation stack, performs the operation on it, and places the
Boolean result back on the stack. The only unary logical operator currenfiy available is
$ 0 B N O T (- 1 , n o t)

■ Binary bit operators: These operators take two numbers as binary values from the
top of the evaluation stack, perform the operation, and place the single binary result
back on the stack. The: operations are performed on a bit-by-bit basis. The binary bit
operators include
$ 1 2 B i t A N D O o g i c a l A N D)
$ 1 3 B i t O R (i n c l u s i v e O R)
$ 1 4 B i t E O R (e x c l u s i v e O R)

■ Unary bit operator: This operator takes a number as a binary value from the top of
the evaluation stack, performs the operation on it, and places the binary result back
on the stack. The unary bit operator is
$ 1 5 B i t N O T (c o m p l e m e n t)

■ Termination operator: All expressions end with the termination operator $00.

Appendix F Object Module Format 467

An operand causes some value, such as a constant or a label, to be loaded onto the
evaluation stack. The operands are as follows:
■ Location-coimter operand ($80): This operand loads the value of the current

location counter onto the top of the stack. Because the location counter is loaded
before the bytes from the expression are placed into the code stream, the value loaded
is the value of the location counter before the expression is evaluated.

■ Constant operand ($81): This operand is followed by a number that is loaded on the
top of the stack. If the size of the number is not specified, its length is specified by
the NUMLEN field in the segment header.

■ Label-reference operands ($82-$86): Each of these operand codes is followed by
the name of a label and is acted on as follows:
$82 Weak reference (see the following note).
$83 The value assigned to the label is placed on the top of the stack.
$84 The length attribute of the label is placed on the top of the stack.
$85 The type attribute of the label is placed on the top of the stack. (Type attributes

are listed in the discussion of the GLOBAL record in the section "Segment Body"
earlier in this appendix.)

$86 The count attribute is placed on the top of the stack. The count attribute is 1 if
the label is defined and 0 if it is not.

■ Relative offset operand ($87): This operand is followed by a number that is treated
as a displacement from the start of the segment. Its value is added to the value that
the location counter had when the segment started, and the result is loaded on the top
of the stack.

♦ Note: The operand code $82 is referred to as the weak reference. The weak reference is
an instruction to the linker that asks for the value of a label, if it exists. It is not an
error if the linker cannot find the label. However, the linker does not load a segment
from a library if only weak references to it exist. If a label does not exist, a 0 is loaded
onto the top of the stack. This operand is generally used for creating jump tables to
library routines that may or may not be needed in a particular program.

468 Apple IIGS GS/OS Reference

Example

Assume your assembly-language program contains the following line, where msg4 and
MSG3 are global labels;
L D X # M S G 4 - M S G 3

This line is assembled into two OMF records:

C O N S T ($ 0 1) A 2
E X P R ($ E B) 0 2 : M S G 4 M S G 3 -

In hexadecimal format, these records appear as follows:
0 1 A 2

E B 0 2 8 3 0 4 4 D 5 3 4 7 3 4 8 3 0 4 4 D 5 3 4 7 3 3 0 2 0 0 k . . . M S G 4 . . M S G 3 . .

The initial $01 is the OMF opcode for a 1-byte constant. The $A2 is the 65816 opcode for
the LDX instruction. The $EB is the OMF opcode for an EXPR record, which is followed by
a 1-byte count indicating the number of bytes to which the expression is to be truncated
($02 in this case). The next number, $83, is a label-reference operand for the first label in
the expression, indicating that the value assigned to the label (msg4) is to be placed on
top of the evaluation stack. Next is a length byte ($04), followed by MSG4 spelled out in
A S C I I c o d e s .

The next sequence of codes, starting with $83, places the value of msg3 on the evaluation
stack. Finally, the expression-operator code $02 indicates that subtraction is to be
performed, and the termination operator ($00) indicates the end of the expression.

Note: You can use the DumpObj tool provided with some development environments
to examine the contents of any OMF file. DumpObj can list the header contents of
each segment and can list the body of each segment in OMF format, 65816
disassembly format, or as hexademical codes. See your development-environment
manuals for instructions.

Object files

Object £Qes (file type $B1) are created from source files by a compiler or assembler.
Object files can contain any of the OMF record types except INTTRSEG, cINTERSEG,
RELOC, cRELOC, SUPER, and ENTRY. Object files can contain unresolved references,
because all references are resolved by the linker. If you are writing a compiler for the Apple
IIGS, you can use the DumpObjIiGS tool to examine the contents of a variety of object
files to get an idea of their content and structure.

Appendix F Object Module Format

Library files

Library files (file type $B2) contain object segments that the linker can search for external
references. Usually, these files contain general routines that can be used by more than one
application. The linker extracts from the library file any object segment that contains an
unresolved global definition that was referenced during the link. This segment is then
added to the load segment that the linker is currently creating.

Library files differ from object files in that each library file includes a segment called the
library dictionary segment (segment kind = $08). The library dictionary segment contains
the names and locations of all segments in the library file. This information allows the
linker to scan the file quickly for needed segments. Library files are created from object
files by a MakeLib tool (provided with a development environment). The format of the
library dictionary segment is illustrated in Figure F-3.
The library dictionary segment begins with a segment header, which is identical in form to
other segment headers. The BYTECNT field indicates the number of bytes in the library
dictionary segment, including the header. The body of the library dictionary segment
consists of three LCONST records, in this order:
1. Filenames

2. Symbol table

3. Symbol names

The filenames record consists cf one or more subrecords, each consisting of a 2-byte file
number followed by a filename. The filename is in Pascal string format, that is, a length
byte indicating the number of characters, followed by an ASCII string. The filenames are
the full pathnames of the object files from which the segments in this library file were
extracted. The file numbers are assigned by the MakeLib program and used only within the
library file. These file numbers are not related to the load-file numbers in the pathname
table.

The symbol table record consists of a cross-reference between the symbol names in the
symbol-names record and the object segments in which the symbol names occur. For each
global symbol in the library file, the symbol table record contains the following
components:
1. A 4-byte displacement into the symbol names record, indicating the start of the

symbol name.
2. The 2-byte file number of the file in which the name occurred. This is the file number

assigned by the MakeLib utility and used in the filenames record of this library
dictionary segment.

470 Apple IlGS GS/OS Reference

Figure F-3 The format of a library dictionary segment

B Y T E C N T

C O U N T

S E G N A M E

N a m e

. D i s p l a c e m e n t 1

O b j e c t
F i l e N u m b e r 1 .

P R I V A T E 1

S e g m e n t
D i s p l a c e m e n t 1

C O U N T

H e a d e r
— F i l e n u m b e r 1 —

F i l e n a m e L e n g t h 1

F i l e n a m e 1

— F i l e n u m b e r n ~ ~

F i l e n a m e L e n g t h n .

F i l e n a m e n

F i l e
N a m e s

S y m b o l
T a b l e

Key:
Indeterminate number of

bytes omitted from diagram

Sequence repeated* indeterminate number of times

S y m b o l
N a m e s

S y m b o l N a m e L e n g t h 1

. S y m b o l N a m e 1 .

t d
S v n i x) l N a n e L e n g t h m

Syrrbol Name n

N a m e

D i s p l a c e m e n t n

O b j e c t
F i l e N u m b e r n

— P R I V A T E n H

S e g m e n t" D i s p l a c e m e n t n

1 $ F 2 1
—

C O U N T

—

Appendix F Object Module Format 471

3. A 2-byte flag, the private flag. If this flag equals 1, the symbol name is valid only in the
object file in ̂ vhich it occurred (that is, the symbol name was in a private segment). If
this flag equals 0, the symbol name is not private.

4. A 4-byte displacement into the library file indicating the beginning of the object
segment in which the symbol occurs. The displacement is to the beginning of the
segment even if the symbol occurs inside the segment; the location within the segment
is resolved by the linker.

The symbol names record consists of a series of symbol names; each symbol name consists
of a length byte followed by up to 255 ASCII characters. All global symbols that appear in
an object segment, including entry points and global equates, are placed in the library
dictionary segment. Duplicate symbols are not allowed.

L o a d fi l e s

Load files (file types $B3 through $BE) contain the load segments that are moved
into memory by the System Loader. They are created by a linker from object files and
library files.

♦ Note: ExpressLoad does not support file type $BE.

Load files conform to the object module format but are restricted to a small subset of
that format. Because the segments must be quickly relocated and loaded, they cannot
contain any unresolved symbolic information.

All load files are composed of load segments. The format of each load segment is a
loadable binary memory image followed by a relocation dictionary. Load files can contain
any of several special segment types:
■ jump-table segment
■ pathname segment
■ initialization segment
■ direct-page/stack segment

Each of these segment types is described in the following sections.
The load segments in a load file are numbered by their relative location in the load file,
where the first load segment is number 1. The segment number is used by the System
Loader to find a specific segment in a load file.

472 Apple IIGS GS/OS Reference

Memory image and relocation dictionary

Each load segment consists of two parts, in this order;
1. A memory image comprising long-constant (LCONST) records and defme-storage (DS)

records. These records contain all of the code and data that do not change with load
address (these records reserve space for location-dependent addresses). The DS
records are inserted by the linker (in response to DS records in the object file) to
reserve large blocks of space, rather than putting large blocks of O's in the load file.

2. A relocation dictionary that provides the information necessary to patch the LCONST
records at load time. The relocation dictionary contains relocation (RELOC, cRELOC,
or SUPER RELOC) records and intersegment (INTERSEG, cINTERSEG, or SUPER
INTERSEG) records.

When the System Loader loads the segment into memory, it loads each LCONST record or
DS record in one piece; then it processes the relocation dictionary. The relocation
dictionary includes only RELOC (or cRELOC or SUPER RELOC) and INTERSEG (or
cINTERSEG or SUPER INTERSEG) records. The RELOC records provide the information
the loader needs to recalculate the values of location-dependent local references, and the
INTERSEG records provide the information it needs to transfer control to external
references. For more information, see the discussions of the RELOC and INTERSEG
records in the section "Segment Body," earlier in this appendix.

Jump-table segment

The jump-table segment, when used, is the segment of a load file that contains the calls to
the System Loader to load dynamic segments. Each time the linker comes across a
statement that references a label in a dynamic segment, it generates an entry in the jump-
table segment for that label (It also creates an entry in the relocation dictionary). The
entry in the jump-table segment contains the file number, segment number, and offset of
the reference in the dynamic segment, plus a call to the System Loader to load the
segment. The relocation dictionary entry provides the information the loader needs to
patch a call to the jump-table segment into the memory image.
The segment type of the jump-table segment is KIND = $02. There is one jump-table
segment per load file; it is a static segment, and it is loaded into memory at program boot
time at a location determined by the Memory Manager. The System Loader maintains a
list, called the jump-table directory (or just the jump table), of the jump-table segments in
m e m o r y .

Appendix F Object Module Format 473

Each entry in the jump-table segment corresponds to a call to an external (intersegment)
routine in a dynamic segment. The jump-table segment initially contains entries in the
unloaded state. When the extemal call is encountered during program execution, a jump to
the jump-table segment occurs. The code in the jump-table segment entry, in turn, jumps
to the System Loader. The System Loader figures out which segment is referenced and
loads it. Next, the System Loader changes the entry in the jump-table segment to the
loaded state. The entry stays in the loaded state as long as the corresponding segment is in
memory. If the application tells the System Loader to unload a segment, all jump-table
segment entries that reference that segment are changed to their unloaded states.
Unloaded state

The unloaded state of a jump-table segment entry contains the code that calls the System
Loader to load the needed segment. An entry contains the following fields:
■ user ID (two bytes)
■ load-file number (two bytes)
■ load-segment number (two bytes)
■ load-segment offset (four bytes)
■ JSL to jump-table load function (four bytes)
The user ID field is reserved for the identification number assigned to the program by the
UserlD Manager; until initial load time, this field is 0. The load-file number, load-segment
number, and load-segment offset refer to the location of the extemal reference. The rest
of the entry is a call to the System Loader jump-table load function (an intemal routine).
The user ID and the address of the load function are patched by the System Loader during
initial load. See Chapter 8 for information about the jump-table load function. A load-file
number of 0 indicates that there are no more entries in this jump-table segment. (There
may be other jump-table segments for this program, however—each load file that is part
of a program has its own jump-table segment.)

Loaded state

The loaded state of a jump-table segment entry is identical to the unloaded state except
that the JSL to the System Loader jump-table load function is replaced by a JML to the
extemal reference. A loaded entry contains the following fields:
■ user ID (two bytes)
■ load-file number (two bytes)
■ load-segment number (two bytes)
■ load-segment offset (four bytes)
■ JML to external reference (four bytes)

474 Apple IIGS GS/OS Reference

♦ Note: In versions 1.0 and 2.0 of the OMF, the jump-table segment starts with eight
bytes of zeros. In future versions of the OMF, these O's may be eliminated.

Pathname segment

The pathname segment is a segment in a load file that is created by the linker to help the
System Loader find the load segments of mn-time library files that must be loaded
dynamically. It provides a cross-reference between file numbers and file pathnames. The
segment type of the pathname segment is KIND = $04. When the loader processes the load
file, it adds the information in the pathname segment to the pathname table that it
maintains in memory. Pathname tables are described in Chapter 8.

The pathname segment contains one entry for each load file and for each run-time library
file referenced in a load file. The format of each entry is as follows:
file number (two bytes)
file date and time (eight bytes)
file pathname Gength byte and ASCII string)

The file number is a number assigned by the linker to a specific load file. File number 1 is
reserved for the load file in which the pathname segment resides (usually the load file of
the application program). A file number of 0 indicates that there are no more entries in
this pathname segment.

The file date and time are directory items retrieved by the linker .during the link process.
The System Loader compares these values with the directory of the mn-time library file at
run time. If they are not the same, the System Loader does not load the requested load
segment, thus ensuring that the mn-time library file used at link time is the same as the one
loaded at execution time.

The file pathname is the pathname of the load file. The pathname is listed as a Pascal-type
string: that is, a length byte followed by an ASCII string. A pathname segment created by
the linker may contain prefix designators.

Appendix F Object Module Format 475

Initialization segment

The initialization segment is an optional segment in a load file. When the System Loader
encounters an initialization segment during the initial loading of segments, it transfers
control to the initialization segment. After the initialization segment returns control to
the System Loader, the loader continues the normal initial load of the remaining segments
in the load file. The segment type of the initialization segment is KIND = $10.
You might use an initialization segment, for example, to initialize the graphics
environment of an application and to display a "splash screen" (such as a copyright
message and company logo) for the duration of the program load.
The initialization segment does not have to be the first segment loaded, there may be
more than one initialization segment, and an initialization segment can make references
to other segments previously loaded.

The initialization segment must obey the following rules:
■ It must not reference any segments not yet loaded.
■ It must exit with an RTL instruction.

■ It must not change the stack pointer.
■ It must not use the current direct page. To avoid writing over a portion of the direct

page being used by the loader, the initialization segment must allocate its own direct
page if it needs direct-page space.

♦ Note: Initialization segments are reexecuted during the restart of an application
from memory.

Direct-page/stack segments

The Apple IlGS stack can be located anywhere in the lower 48 KB of bank $00 and can be
any size up to 48 KB. The direct page is the Apple IlGS equivalent of the zero page of 8-bit
Apple II computers; the direct page can also be located anywhere in the lower 48 KB of
bank $00. Like the zero page, the direct page occupies 256 bytes of memory; on the
Apple IlGS, however, a program can move its direct page while it is running. Consequently,
a given program can use more than 256 bytes of memory for direct-page functions.

476 Apple IlGS GS/OS Reference

Each program running on the Apple IlGS reserves a portion of bank $00 as a combined
direct-page/stack space. Because more than one application can be loaded in memory at
one time on the Apple IlGS, more than one stack and one direct page could be in bank $00
at a given time. Furthermore, some applications may place some of their code in bank
$00. A given program should therefore probably not use more than about 4 KB for its
direct-page/stack space.
When an instruction uses one of the direct-page addressing modes, the effective address
is calculated by adding the value of the operand of the instmction to the value in the
direct-page register. The stack pointer, on the other hand, is decremented each time a
stack-push instruction is executed. The convention used on the Apple IlGS, therefore, is
for the direct page to occupy the lower part of the direct-page/stack space, whereas the
stack grows downward from the top of the space.

A Important GS/OS provides no mechanism for detecting stack overflow or
underflow, or collision of the stack with the direct page. Your
program must be carefully designed to make sure Aose conditions
c a n n o t o c c u r , a

If you do not define a direct-page/stack segment in your program, GS/OS assigns 4 KB of
direct-page/stack space when the System Loader InitialLoad or Restart call is executed.
To specif̂ '' the size and contents of the direct-page/stack space, follow the procedures
outlined in Chapter 2, "GS/OS and Its Environment."

Run-time library files

Run-time library files (file type $B4) contain dynamic load segments that the System
Loader can load when these segments are referenced through the jump table. Usually, mn-
time library files contain general routines that can be used by more than one application.

Appendix F Object Module Format 477

When you include a run-time library file while linking, the file is scanned by the linker
during the link process. When the linker finds a referenced segment in the run-time library
file, it generates an INTERSEG reference to the segment in the relocation dictionary and
adds an entry to the jump-table segment for that file. The linker also adds the pathname
of the run-time library file to the pathname table if it has not already done so. It does not
extract the segment from the file and place it in the file that referenced it, as it does for
ordinary library files. In other words, references to segments in run-time library files are
treated by the linker like references to other dynamic segments, except that the run-time
library file segments are in a file other than the currently executing load file.
The first load segment of the run-time library file contains all the information the linker
needs to find referenced segments; it is not necessary for the linker to scan every
subroutine in every segment each time a subroutine is referenced. The first segment
contains a table of ENTRY records, each one corresponding to a segment name or global
reference in the run-time library file.

Run-time library files are typically created from corresponding object files by specifying
an option to a linker command.

Shell applications

Shell applications (file type $B5) are executable load files that are run under an Apple IIGS
shell program, such as the APW Shell. The shell calls the System Loader's InitialLoad
function and transfers control to the shell application by means of a JSL instruction, rather
than launching the program through the GS/OS Quit function. Therefore, the shell does not
shut down, and the program can use shell facilities during execution. The program returns
control to the shell with an RTL instruction, or with a GS/OS Quit call if the shell intercepts
and acts on GS/OS calls. (Development-environment shells might intercept GS/OS Quit
calls.) Shell applications should use standard Text Tool Set calls for all nongraphics I/O.
The shell program is responsible for initializing the Text Tool Set routines.

♦ Note: A load file of file type $B5 can be launched by GS/OS by way of the Quit call if it
requires no support other than standard input from the keyboard and output to the
screen. GS/OS initializes the Text Tool Set to use the Pascal I/O drivers (see the

Has Toolbox Reference) for the keyboard and 80-column screen. Only $B5 files
that end in a GS/OS Quit call can be run in this way.

478 Apple IlGS GS/OS Reference

As soon as a shell application is launched, it should check the X and Y registers for a
pointer to the shell-identifier string and input line. The X register holds the high word and
the Y register holds the low word of this pointer. The shell program is responsible for
loading this pointer into the index registers and for placing the following information in
the area pointed to:
1. An 8-byte ASCII string containing an identifier for the shell. (The identifier for the APW

Shell, for example, is BYTEWRKS.) The shell application should check this identifier to
make sure that it has been launched by the correct shell, so that the environment it
needs is in place. If the shell identifier is not correct, the shell application should write
an error message to standard error output (normally the saeen) and then exit with an
RTL instruction (or a GS/OS Quit call if the shell intercepts GS/OS calls).

2. A null-terminated ASCII string containing the input line for the shell application. The
shell program can strip any I/O redirection or pipeline commands from the input line,
since those commands are intended for the shell itself, but must pass on all input
parameters intended for the shell application.

The shell program must request a user ID for the shell application; the user D is passed in
the accumulator. The shell must set up a direct-page and stack area for the shell
application. The shell places the address of the start of the direct-page/stack space in the
direct-page (D) register and sets the stack pointer (S register) to point to the last byte of
the block. If the shell application does not have a direct-page/stack segment, the shell
should follow the same conventions used by GS/OS for default direct-page/stack
allocation. See the section "Direct-Page/Stack Segments" earlier in this appendix, and
Chapter 2 for more information about direct-page and stack allocation.

♦ Note: GS/OS does not support the identifier string or input line. If the shell application
is launched by GS/OS, the X and Y registers contain O's.

Some shell applications may launch other programs; for example, a shell nested within
another shell would be a shell application. When a shell application requests a user ID for a
program, the calling program is responsible for intercepting GS/OS Quit calls and system
resets, so that it can remove from memory all memory buffers with that user ID before
passing control to the shell.
A shell application should use the following procedure to quit:
1. If the shell application has launched any programs, it must call the System Loader's

UserShutdown function to shut down those programs.
2. The shell application should release any memory buffers that it has requested and

dispose of their handles.

Appendix F Object Module Format 479

3. The shell application must place an error code in the accumulator. If no error occurred,
the error code should be $0000. The error code $FFFF is used as a general (nonspecific)
error code. For a shell program you write, you can define any other error codes you
want to use, and you can handle them in any way you wish.

4. The shell application should execute an RTL or a GS/OS Quit call. If the program ends
in a Quit call, the shell program that launched the shell application is responsible for
intercepting the Quit call, releasing all memory buffers associated with that shell
application, and performing any other system tasks normally done by GS/OS in
response to a Quit call.

A Important When a shell launches a shell application, the address of the shell
program is not pushed onto the GS/OS Quit Return stack; therefore,
the shell itself must handle the shell application's Quit call, or control is
not returned to the shell. To intercept the Quit call, the shell program
must intercept all GS/OS calls. The shell may pass on any other
operating system calls to GS/OS, but it must handle Quit calls itself. If
the shell you are using does not handle GS/OS calls in this fashion, the
shell application must end in an RTL instruction, a

480 Apple IIGS GS/OS Reference

U

Glossary

abstract file system: The generic file
interface that GS/OS provides to
applications. Individual file system
t r a n s l a t o r s c o n v e r t fi l e i n f o r m a t i o n i n
abstract format into formats meaningful to
specific file systems.

AppleShare-aware program: A program that
can be executed from an AppleShare file
s e r v e r .

AppleShare FST: The part of the GS/OS file
system level that implements AppleShare
capabilities for GS/OS.

Apple 11: Any computer from the Apple II
family, including the Apple II Plus, the
Apple lie, the Apple He, and the Apple IIGS.

Apple IlGS Toolbox: An extensive set of
routines (in ROM and in RAM) that provide
easy program access to'hardware and
firmware, and facilitate the writing of
applications that display the desktop
i n t e r f a c e .

application level: One of the three interface
levels of GS/OS. The application level
accepts calls from applications, and may send
them on to the file system level or the device
leve l .

application-level calls: The calls an
application makes to GS/OS to gain access to
files or devices or to set or get system
information. Application-level calls include
standard GS/OS calls and ProDOS 16-
compatible caUs.

associated file: In the ISO 9660 file format, a
file analogous to the resource fork of a GS/OS
ex tended fi l e .

block: (1) A unit of data storage or transfer,
typically 512 bytes. (2) A contiguous, page-
aligned region of computer memory of
arbitrary size.

block device: A device that reads and writes
information in multiples of one block of
characters at a time. Disk drives are block
devices.

cache: A portion of the Apple lies memory
set aside for temporary storage of frequently
accessed disk blocks. By reading blocks from
the cache instead of from disk, GS/OS can
greatly speed I/O.
cache contfoUer: The part of GS/OS that
sets the cache size based on the amount of
system RAM installed. The minimum value is 0
KB, and the maximum is the amount of RAM in
the system minus 256 KB.
call: (v.) To execute an operating system
routine, (n.) The routine so executed.

caller: A program, such as an application, that
makes a call to the operating system.

character device: A device that reads or
writes a stream of characters in order, one at a
time. The keyboard, screen, printer, and
communications port are character devices.

481

character device driver; A driver that
controls a character device.

Character FST: The part of the GS/OS file
system level that makes character devices
appear to application programs as if they
were sequential files.
class 0 calls: See ProDOS 16-compatible
calls.

class 1 calls: See standard GS/OS calls.

console: The main terminal—that is, the
keyboard and screen—of the computer.
GS/OS considers the console to be a single
device.

console driver: A GS/OS character device
driver that allows GS/OS to read data from the
keyboard or write it to the screen.

controlling program: A program that loads
and runs other programs, without itself
relinquishing control. A controlling program is
responsible for shutting down its subprograms
and freeing their memory space when they are
finished. A shell, for example, is a controlling
program.

data fork: The part of an extended file that
contains data created by an application.

desktop interface: The visual interface that
an application using the Apple IIGS Toolbox
presents to the user. It is characterized by
menus, the mouse, icons, and windows.
device: A piece of equipment that transfers
information to or from the Apple IIGS. Disk
drives, printers, joysticks, and the mouse are
external devices. The keyboard and screen are
also a device (the console).

device call; See GS/OS device call.

device level: One of the three interface
levels of GS/OS. The device level mediates
between the file system level and individual
device drivers.

directory: See directory file.

directory entry: See file entry.

directory file: A file that describes and
points to other files on disk. Compare
standard file, extended file.

direct page: An area of memory used for fast
access by the microprocessor; the Apple IIGS
equivalent to the standard Apple II zero
page. The difference is that it need not be
page zero in memory.

direct-page/stack segment: A load segment
used to preset the location and contents of
the direct page and stack for an application.

disk cache: See cache.

driver calls: A class of low-level calls in

GS/OS, not accessible to applications. Driver
calls are calls made from within GS/OS to
device drivers.

dynamic segment: A segment that can be
loaded and unloaded during execution as
needed. Compare static segment.

EOF: A count indicating the size of the file
in bytes.

ExpressLoad: One of the two GS/OS
L o a d e r s .

extended file: A named collection of data

consisting of two sequences of bytes, referred
to by a single directory entry. The two
different byte sequences of an extended file
are called the data fork and the resource
f o r k .

482 Apple IIGS GS/OS Reference

file: An ordered collection of bytes that has
several attributes under GS/OS, including a
name and a file type.

file entry: A component of a directory file
that describes and points to another file on
d i s k .

filename: The string of characters that
identifies a particular file within its directory.
Compare pathname.

file system level: One of the three interface
levels of GS/OS. The file system level consists
of file system translators (FSTs), which
take calls from the application level, convert
them to a specific file system format, and
send them on to the device leveL

file system translator: A component of
GS/OS that converts application calls into a
specific file system format before sending
them on to device drivers. FSTs allow an

application to use the same calls to read and
write files for any number of file systems.

FST: See file system translator.

FSTSpecific: A standard GS/OS call whose
function is defined individually for each FST.

fiill pathname: A volume name or a device
name followed by a series of zero or more
filenames, each preceded by the same
separator, and ending with the name of a
directory file, standard file, or extended file.

generated drivers: Drivers that are
constructed by GS/OS itself, to provide a
GS/OS interface to preexisting, usually ROM-
based, peripheral-card drivers.

GS/OS: A l6-bit operating system developed
for the Apple IIGS computer. GS/OS replaces
ProDOS 16 as the preferred Apple IlGS
operating system.

GS/OS calls: See standard GS/OS calls.

GS/OS device call: Any of a subset of the
standard GS/OS calls that bypass the file level
altogether, allowing applications to access
devices directly.

GS/OS driver calls: See driver calls.

GS/OS Loaders: The programs that load all
other programs into memory and prepare
them for execution. There are two loaders:

ExpressLoad and System Loader.
GS/OS string: An ASCII character string
preceded by a 2-byte word whose numeric
value is the number of 1-byte characters in the
string. A GS/OS string can be much longer than
a Pascal string.

hierarchical file system: A file system that
contains both normal files that contain data
or applications, and special files called
directories.

fflgh Sierra FST: The part of the GS/OS file
system level that gives applications
transparent access to files stored on optical
compact disks (CD-ROM) in the most
commonly used file formats: Sierra and
ISO 9660.

High Sierra Group format: A common file
format for files on CD-ROM compact discs.
Similar to the ISO 9660 international standard
f o r m a t .

interface level: A conceptual division in the
organization of GS/OS. GS/OS has three
interface levels—the application level, the
file system level, and the device level The
application level and the device level are
extemal interfaces, whereas the file system
level is internal to GS/OS.

Glossary 4Sd

interrupt: A hardware signal sent from an
external or internal device to the CPU. When
the CPU receives an interrupt, it suspends
execution of the current program, saves the
program's state, and transfers control to an
interrupt handier.

interrupt dispatching: The process of
handing control to the appropriate interrupt
handler after an interrupt occurs.

interrupt handler: A program that executes
in response to a hardware interrupt. Interrupts
and interrupt handlers are commonly used by
device drivers to operate their devices more
efficiently and to make possible simple
background tasks such as printer spooling.
Compare signal handler.

interrupt source: Any device that can
generate an interrupt, such as the mouse or
serial ports.

ISO 9660 format (International Standards
Organization's 966O): An international
standard that specifies volume and file
structure for CD-ROM discs. ISO 9660 is
similar to the High Sierra format.

jump table: A mechanism whereby segments
in memory can trigger the loading of other
segments not yet in memory.

jump-table segment: A segment in a load file
that contains all references to dynamic
segments that may be called during execution
of that load file. The jump-table segment is
created by the linker. In memory, the loader
combines all jump-table segments it
encounters into the jump table.

length bytes A byte that specifies the length
of a string in bytes.

length word: Two bytes that specify the
length of a string in bytes.

library file: An object file containing program
segments, each of which can be used in any
number of programs. The linker can search
through the library file for segments that have
been referenced in the program source file.

linker: A program that combines files
generated by compilers and assemblers,
resolves all symbolic references, and generates
a file that can be loaded into memory and
executed.

load file: The output of the linker. Load files
contain memory images that the System
Loader can load into memory, together with
relocation dictionaries that the loader uses to
relocate references.

loaded drivers: Drivers that are written to
work directly with GS/OS, and that are usually
loaded in from the system disk at boot time.

long prefix: A GS/OS prefbc whose maximum
total length is approximately 8,000 characters.
Prefk designators 8 / through 31/ refer to
long prefixes. Compare short prefix.
mark: A byte count indicating the current
position in the file.

Memory Manager: An Apple IIGS tool set
that controls all allocation and deallocation of

m e m o r y.

object files: The files that are the output
from an assembler or compiler and are the
input to a linker.

object module format (OMF): The general
format followed by Apple IIGS object files,
library files, and load files.

484 Apple IIGS GS/OS Reference

OMF file: A file in object module format (an
object file, library file or load file).

parameter block: A specifically formatted
table that is part of a GS/OS call. It occupies a
set of contiguous bytes in memory, and
consists of a number of fields that hold
information that the calling program supplies
to the GS/OS function it calls, as well as
information returned by the function to the
caller.

parameter count: A word-length input value
to a standard GS/OS call that specifies the
total number of parameters in the block.

partial pathname: This part of the pathname
always contains the filename and one or more
directory names up to, but not including, the
volume name or device name.

Pascal string: An ASCII character string
preceded by a single byte whose numeric value
is the number of characters in the string.
Pascal strings are limited to a maximum of
255 characters. Compare GS/OS string.

pathname: The complete name by which a file
is specified. It is a sequence of filenames
separated by pathname separators, starting
with the filename of the volume directory and
following the path through any subdirectories
that a program must follow to locate the file.
Compare filename.

pathname separator: The slash character (J)
or colon (:). Pathname separators separate
filenames in a pathname.

prefix: A portion of a pathname starting with
a volume name and ending with a subdirectory
name. A GS/OS prefix always starts with a
pathname separator because a volume name
always starts with a separator.

prefix designator: A number (o-3i) or the
asterisk character (*), followed by a
pathname separator. Prefix designators are a ,
shorthand method for referring to prefixes.

prefix number: See prefix designator.
ProDOS: (1) A general term describing the
family of operating systems developed for
Apple II computers. It includes bo& ProDOS
8 and ProDOS 16; it does not include DOS 3.3,
SOS, or GS/OS. (2) The ProDOS file system.
ProDOS 8: The 8-bit ProDOS operating
system, originally developed for standard
Apple II computers but compatible with the
Apple IIGS. In some earlier Apple II
documentation, ProDOS 8 is called simply
ProDOS.

ProDOS file system: The general format of
files created and read by applications that run
under ProDOS 8 or ProDOS l6 on Apple II
computers. Some aspects of the ProDOS file
system are similar to the GS/OS abstract file
system.
ProDOS FST: The part of the GS/OS file
system level that implements the ProDOS file
system.

ProDOS 16: The first l6-bit operating system
developed for the Apple IlGS computer.
ProDOS 16 is based on ProDOS 8.

ProDOS l6-<ompatible calls: Also called
ProDOS 16 calls or class 0 calls, a secondary
set of application-level calls in GS/OS. They
are identical to the ProDOS 16 system calls
described in the Apple IlGS ProDOS 16
Reference. GS/OS supports these calls so that
existing ProDOS 16 applications can run
without modification under GS/OS. Compare
standard GS/OS calls.

Glossary 485

quit retuni flag; A flag, part of the Quit call,
that notifies GS/OS whether or not control
should eventually return to the program
making the Quit call.

quit return stack: A stack of user IDs used to
restart applications that have previously quit.
relocation: The process of modifying a file or
segment at load time so that it will execute
correctly at its current memory location.
Relocation consists of patching the proper
values onto address operands. The loader
relocates load segments when it loads them
into memory.

relocation dictionary: The part of every
relocatable segment that the loader uses to
patch the code for correct execution at its
current address.

resource fork: The part of an extended file
that contains specifically formatted, generally
static data used by an application (such as
menus, fonts, and icons).

restartable: A program is restartable if it
reinitializes its variables and makes no

asumptions about machine state each time it
gains control. Only restartable programs can
be resurrected from a dormant state in

m e m o r y .

restait-from-memory flag: A flag, part of the
Quit call, that lets the System Loader know
whether the quitting program can be restarted
from memory if it is executed again.

run-time library flies: Special load files that
contain general program segments to be
loaded as needed by the GS/OS Loaders.

segment: A component of an OMF file,
consisting of a header and a body. In object
files, each segment incorporates one or more
subroutines. In load files, each segment
incorporates one or more object segments.

separator: See pathname separator.
short prefix: A GS/OS prefix whose
maximum total length is 63 characters. Prefix
designators * / and o / through i / refer to
short prefixes. Compare long prefix.

signal: A message from one software
subsystem to a second subsystem that
something of interest to the second has
o c u r r e d .

signal handler: A program that executes in
response to a signal. Compare interrupt
hand ler.

signal source: A routine that announces the
occurrence of a signal when it detects the
prerequisite conditions for that signal.
spam The maximum number of characters in a
filename; that is, the maximum number of
characters between pathname separators,
including volume names.

special memory: On an Apple IIGS, all of
banks $00 and $01, and all display memory in
banks $E0 and $E1.

stack: A list in which entries are added

(pushed) and removed (pulled) at the
beginning only, causing them to be removed in
last-in, first-out (LIFO) order. The term the
stack usually refers to the particular stack
pointed to by the 65C816 stack pointer.

486 Apple IlGS GS/OS Reference

standard Apple 11: Any Apple II computer
that is not an Apple IlGS. Since previous
members of the Apple II family share many
characteristics, it is useful to distinguish them
as a group from the Apple IIGS. A standard
Apple II may also be called an 8-bit Apple II,
because of the 8-bit registers in its 6502 or
65C02 microprocessor.

standard file: A named collection of data
consisting of a single sequence of bytes.
Compare extended file, directory file.
standard GS/OS calls: Also called class I calls
or simply GS/OS calls, the primary set of
application-level calls in GS/OS. They
provide the full range of GS/OS capabilities
accessible to applications. Compare ProDOS
l6-conipatible calls.

static segment: A segment that is loaded
only at program boot time and is not
unloaded during execution. Compare
dynamic segment

system file: Any file of ProDOS file type $FF
whose name ends with . system.

system file level: Determines which files are
closed or flushed whenever a Qose or Flush call
is made with a reference number of 0.

S)̂ tem Loader: The program that loads all
other programs into memory and prepares
them for execution.

system service calls: Low-level calls in a
common format used by intemal components
of GS/OS (such as FSTs), and also between
GS/OS and device drivers.

terminator: A character that, when read,
terminates or interrupts a Read call.
terminator list: The list that the console
driver users to keep track of terminators.
unclaimed interrupt* An intermpt that is not
recognized and acted upon by any intermpt
handlers.

volume directory: The name of the highest-
level directory in GS/OS.

volume name: The name of the volume
directory file on a disk or other medium. All
pathnames on a volume start with the volume
name. Volume names follow the same mles as
other filenames, except that a volume name
always starts with a pathname separator.
zero page: The first page (256 bytes) of
memory in a standard Apple II computer (or in
the Apple IlGS computer when miming a
standard Apple II program). Because the high-
order byte of any address in this part of
memory is zero, only a single byte is needed to
specify a zero-page address. Compare
direct page.

Glossary 487

I n d e x

0 system prefix 69

Abortlnput (DControl subcall) 259
abstract file system 13-30

interface 14-15
access privileges 326-328
a-characters (printable characters) 421
AddNotifyProc 95
AddTrap (DControl subcall) 260
ALLOCJNTERRUPT 364
Apple extensions to ISO 9660 303-304,

4 1 S M 3 0

directory record Systemuse field
422-423

filename transformations 427-429
protocol identifier 420
SystemUselD 423-426

AppleShare-aware program 40
AppleShare FST 323-360

caUs 332-360
FSTSpecific subcalls 341-360
sharing open files in 66-69
using the option list 330

AppleTalk calls, and interrupts 329
Apple IIGS manuals xxv-xxxi

AppleShare programmer's manual
x x x i

A P W X X X

debugger xxxi
introductory xxviii
machine re ference xxv i i i
M P W x x x - x x x i

operating system xxix
t o o l b o x x x i x

Apple llGS memory 32-38
application-level calls 5
application level of GS/OS 14
application memory

managing 34-36
obtaining 35

applications, quitting and launching
42-47,49

applications programming
enhanced features of version 5.0

434-435
new features of version 5.0 432-433

arming and disarming signals 274-276
ArmSignal (DControl subcall) 114
assembly language, GS/OS calls in

52-53

AssignPartitionOwner (DControl
subcall) 113

associated file (ISO 9660) 302,430
attributes (OMF files) 445

auxiliary file types 22

BeginSession 96
binary bit operators 467
binary logical operators 467
binary math operators 466
Bindlnt 97, 268
block devices 84
boot volume, getting the name of

80-81
BufferControl (AppleShare FSTSpecific

subcall) 342
ByteRangeLock (AppleShare

FSTSpecific subcall) 343-344

caching files 76
caU reference, GS/OS 93-198
calls, types of and where to fmd 5-7
CD-ROM, and the High Sierra FST/ISO

9660 formats 300-301
ChangePath 98-99
CHANGE.PATH 365-366
character devices 84

as files 25,318

Character FST 317-321,416̂ 17
calls 318-321

character set mapping 240-242
ClearBackupBit 100
CLEAR_BACKUP_BIT 367
Close 101
CLOSE 368

for AppleShare FST 336
for Character FST 321,418

CloseDesktop (AppleShare FSTSpecific
subcall) 357

closing files 71
comparison operators 467
console 235
console driver 235-261

character mapping 241-242
device calls to 253-261
I/O routines 237

console input 236
Console Input routine 246-253
console output 236
Console Output routine 238-242

character set mapping 240-242
screen control codes 242
screen size 238
text port 238-240

constant operand 468
constants, GS/OS 437-439
controlling program 201
CopyFile (AppleShare FSTSpecific

subcall) 354
copying files 75
Create 102-105

for AppleShare FST 333
CREATE 369-372 .
creating files 65
current application, getting the name of

89
current device number, getting 90

489

DRead 123-124,260-261
DRename 125
driver calls 3
DStatus 126-127, 253

device-specific subcalls 134
subcalls 128-134, 254-256

DWrite 135-136,261
dynamic segments 201-202

closed 72-73

closing 71-72
copying 75
creating 65
deleting 73
directory 16-17
extended 17

flushing 71
library 201
load 200-201

loading program 199-234
object 200
O M F 2 0 1

opening 65-69
reading from and writing to 70
standard 17

file system
abstract 13-30
hierarchical 15

independence of 4
level in GS/OS 281
ProDOS 290

file system translators. See FSTs
file types 22

GS/OS and Macintosh 324-326
fixed locations, GS/OS supported

33-34
Flush 142
FLUSH 379

for Character FST 321
and FSTs 418

flushing open files 71
Format 143-144

for AppleShare FST 338
FORMAT 380-381
FormatDevice (DControl subcall) 108,

257

formatting a volume 81
FSTs (file system translators) 3,

279-287, m. See also
AppleShare FST; Character FST;
High Sierra FST; ProDOS FST

calls handled by 282
checking information 88
concept of 280
and device calls 418
disk initialization and 286-287
present and future 286
and ProDOS l6 calls 413-418

D

dates and times (file creation and
modification) 24-25

changing 74-75
format table 74

DControl 106-107,256
device-specific subcalls 115
subcalls 108-115,257

DEALLOCJNTERRUPT 373
deleting files 73
DelNotifyProc ll6
delta guide to version 5.0 changes

43M36
Destroy 117-118
DESTROY 374
device calls 3,29-30

to console driver 253-261
and FSTs 418

device drivers 85
new and enhanced features of

version 5.0 436

signal sources 274-275
device lists 284
device names 83
device number, getting the current 90
devices 83-84

direct access to 85
enhanced support for 4

device-specific DControl subcalls 115
device-specific DStatus subcalls 134
dictionary, relocation 226, 473
dictionary segment, library 470-472
DInfo 119-122
DJNFO 375

and FSTs 418

directory buffers, controlling 331
directory entries, examining 71
directory files 16-17
directory record SystemUse field

422-423
direct page 36
direct-page space

allocating 36-39
GS/OS default 3^-39

direct-page/stack segments (load files)
476^77

DisarmSignal (DControl subcall) 114
disk initialization, and FSTs 286-287
dormant programs 206

E

editing commands, user-input 252
EjectMedia (DControl subcall) 257
EjectMedium (DControl subcall) 109
EndSession 137

entry points, GS/OS supported 33-34
environment, GS/OS 3M9
EOF (end-of-file) 23-24

setting and reading 70
EraseDisk 138-139

for AppleShare FST 339
ERASE.DISK 376-377
e r r o r s

general GS/OS 6l
handling 284-285

ExpandPath 140-141
EXPAND_PATH 378
expressions in OMF records 466-469
ExpressLoad 199, 207
extended files 17

F

file access 22

file access attributes, table of 67
file access calls 26-28
file buffers, controlling 331
file characteristics, setting and getting

73-74
file levels, getting and setting 72
filename transformations (ISO 9660)

427-429
filenames 17-18

ProDOS 290
files

accessing GS/OS 63-77
in AppleShare environment 66-69
caching 76
chamcter devices as 25,318
characteristics of 22-25
classes of GS/OS 16-17

490 Apple IlGS GS/OS Reference

□

FSTSpecific 145
for AppleShare FST 340-360
for High Sierra FST 311-315
forProDOSFST 294

full pathnames 18-19

G

GetBootVol 146
for AppleShare FST 339

GET_BOOT_VOL 382
GetCharCase (ProDOS FSTSpecific

subcail) 297
GetComment (AppleShare FSTSpecific

subcail) 358
GetConfigParameters (DStatus subcail)

129.254
GetDefaultString (DStatus subcail) 256
GetDeviceStatus (DStatus subcail)

128-129
GET_DEV_NUM 383
G e t D e v N u m b e r 1 4 7

GetDirEntry 148-152, 284
for AppleShare FST 337
for High Siena FST 310
forProDOSFST 292

GET_DIR_ENTRY 384-387
and FSTs 416

GetEOF 153
for AppleShare FST 336

GET_EOF 388
GetFUelnfo 154-157

for AppleShare FST 334
for High Sierra FST 306
forProDOSFST 293

GET_FILE_INFO 389-390
and FSTs 415

GetFormatOptions (DStatus subcail)
130-133

GetFSTInfo 158-160
for AppleShare FST 339

GetlnputPort (DStatus subcail) 254
GET_LAST_DEV 391
GetLevel l6l
GET_LEVEL 392
GetLoadSeglnfo 210
GetMapSize (High Siena FSTSpecific

subcail) 314
GetMapTable (High Siena FSTSpecific

subcail) 314-315

GetMark l6l
GET_MARK 392
GetName l62
GET_NAME 393
GetPartitionMap (DStatus subcail) 134
GetPrefix l63
GET.PREFrX 394
GetPrivileges (AppleShare FSTSpecific

subcail) 347-349
GetReadMode (DStatus subcail) 256
GetReflnfo 164
GetRefNum 165-166
GetScreenChar (DStatus subcail) 255
GetSrvrName (AppleShare FSTSpecific

subcail) 360
GetStdRefNum l67
GetSysPrefs 158-160, I68
GetTemiinators (DStatus subcail) 255
GetTextPort (DStatus subcail) 254
GetTimeStamp (ProDOS FSTSpecific

subcail) 296
G e t U s e r l D 2 1 1

G e t U s e r I D 2 2 1 2

GetUserPath (AppleShare FSTSpecific
subcail) 355

GetVersion l69
GET_VERSION 395
GetWaitStatus (DStatus subcail) 130
GS/OS

components of 2-3
development of 8-9
features of 4-7
and ProDOS FST 290-291
system requirements 7

GS/OS applications, quitting and
launching 42-47, 49

GS/OS caUs 93-198
call methods 52-55

checking for enors 6l
conditions on return from 60
groups of 26-28
making 51-61

GS/OS constants 437-439
GS/OS environment 31-49
GS/OS enor codes 437-439
GS/OS files. S'ee files
GS/OS Loaders. loaders
GS/OS ProDOS 16 calls 363-412
GS/OS program-file types 443

GS/OS strings 57-58
GS/OS system software version 5.0

changes 431-436
GS/OS vector space 34

H

handles, and pointers 36
hierarchical file system 15
high-level file system interface 14-15
high-level language, GS/OS calls in 52
High Sierra FST 299-315,414

caUs 304-315
and CD-ROM 300-301
limitations of 302-303

I

initialization segment (load files) 476
InitialLoad 213-214
InitialLoad2 215-216
in-line GS/OS calls 54
input port data structure 246-249
input string structures, GS/OS 58
interface levels in GS/OS 2-3
interrupt calls 29
interrupt dispatching 265-266
interrupt handlers 263

connecting to sources 268
execution environments 266-267
lifetime of 269
structure of 266

interrupts 263-269
and AppleTalk calls 329
and GS/OS 39
unclaimed 269-270

interrupt sources 264-265
ISO 9660

Apple extensions to 303-304,
419-430

associated files in 430
and CD-ROM 300-301

J, K

jump table 202
jump table segment (load files)

473-474

I n d e x 4 9 1

L

label-reference operands 468
language notation conventions xxv
launching applications 42-47, 49
length byte (Pascal string) 57
length word (GS/OS string) 57
LGetPathname 217
LGetPathname2 218

library dictionary segment 470-472
library files 201,470-472

run-t ime 477-478
linker 200
Loader calls 208-234

table of 209
Loaderlnit ial ization 218

LoaderReset 219
loaders. See also ExpressLoad; Loader

calls; System Loader
how they work 200
and the Memory Manager 203-204
andOMF 205-206
and segments 201-202

LoaderShutDown 219
LoaderStartup 219
LoaderStatus 220
LoaderVersion 221
load files 200-201,472-477
loading program files 199-234
LoadSegName 222-223
LoadSegNum 224-226
location-counter operand 468
low-level calls 5

M

machine state

at application launch 45
at GS/OS application launch 46,

48-49
at ProDOS 8 application launch 47,

49
Macintosh and GS/OS file types

324-326
HPS filenames under ISO 9660 429
Macintosh-to-ProDOS type

conversion 325
macros, making GS/OS calls using 53
manuals, Apple lIGS xxv-xxxi

MapEnable (High Sierra FSTSpecific
subcall) 313

map record 313
map table 312-313
mark (current position in the file)

23-24
setting and reading 70

memory, Apple IIGS 32-38
memory block attributes and segment

headers, table of 205
memory image (load files) 473
Memory Manager, and GS/OS Loaders

203-204
mounted volumes 80
movable memory block, accessing

data in 35-36
multiple file systems

optimizing file access 285
programming for 282-285

multi-user applications 68-69
constructing 328-329

N

NewLine 170-171
NEWLINE 396
newl ine mode

enabling and disabling 71
and terminators 251

notification procedure header 91
notification procedure parameters 91
notification queue 90-91
no-wait mode (console input) 253
null 172

0

object files 200,469
OMF (object module format) 201,

4 4 M 8 0
and GS/OS Loaders 205-206
types of files that use 442-443

OMF flies 201

general format for 444-469
structure of 444

Open 173-176
OPEN 397-398

for AppleShare EST 334
for Character FST 319
and FSTs 417
for High Sierra FST 308

OpenDesktop (AppleShare FSTSpecific
subcall) 356

opening files 65-69
operands 468
operating system version 89
operators 466-467
option list, AppleShare FST 330
optionList parameter 92
OSShutDown 177

P

parameter block diagrams and
descriptions, GS/OS calls 94

parameter blocks, GS/OS 56-59
parameter count 56
partial pathnames 19-20
Pascal strings 57
pathname calls 28
pathname prefixes 47-49

setting and getting 82
pathnames 18-21, 79

@ system prefix in 69
building 83
changing 82
expanding 82
ProDOS 290

syntax of 324
pathname segment (load files) 475
pointers, and handles 36
predefined prefix designators

(pathnames) 21
prefix designators (pathnames) 19-21

specifying standard 1/0 42̂ 3
ProDOS 8 application, launching 43,

47,49
ProDOS filenames and pathnames 290

under ISO 9660 428̂29
ProDOS file system 290
ProDOS FST 289-297, 414

calls 292-297
and GS/OS 290-291

ProDOS 16
caUs 363-412
and FSTs 413^18
and GS/OS compatibility 5
and ProDOS 8 compatibility 332

ProDOS-to-Macintosh type conversion
325

program files, loading 199-234

492 Apple IIGS GS/OS Reference

protocol flags (Apple extensions) 421
protocol identifier (Apple extensions)

420-421

Q
queues

notification 90-91
signal 271-272

Quit 178-179
QUIT 399
quit return flag 45
quit return Stack 44
quitting applications 42^5

R

raw mode (console input) 249
Read 180-181
READ 400^01

for AppleShare EST 335
for Character EST 320
andESTs 417
for High Sierra EST 309

ReadBlock (for AppleShare EST) 338
READ.BLOCK 402
reading from and writing to files 70
reference numbers, getting 89
registers, on return from GS/OS 60
relative offset operand 468
reloading programs 206-207
relocation (modifying a load file) 201
relocation dictionary 226, 473
RenamePathname 227
RequestAccess parameters 327-328
ResetCache 182
ResetDevice (DControl subcall) 108

ResetTrap (DControl subcall) 260
Restart 228
restartable software 228-229
restart-f rom-memory flag 42
restarting programs 206-207
RestoreTextPort (DControl subcall) 258
result buffer 58-59
run-time library files 201, 477-478

S

SaveTextPort (DStatus subcall) 255
screen control codes 242-245
screen size 238

segment body (OME files) 452-465

segment body record types (OME files)
452-465

BEXPR 459
cINTERSEG 462
CONST 453
cRELOC 461^62
DS 460
END 453
ENTRY 461

EQU 460
Experimental 465
EXPR 459
General 465
GEQU 458^59
GLOBAL 458
INTERSEG 455^57
LCONST 460
LEXER 461
LOCAL 460
MEM 459
ORG 453
RELEXPR 459
RELOC 454-455
STRONG 457
SUPER 462-465
USING 457
ZEXPR 459

segment headers (OME files) 446-449
fields in 205
KIND field definition 450-451
table of 205

segment types (OME files) 445
and GS/OS Loaders 201-202

SessionStatus 183
SetCharCase (ProDOS ESTSpecific

subcall) 296-297
SetComment (AppleShare ESTSpecific

subcall) 359
SetConfigParameters (DControl

subcall) 109-110,257
SetDefaultString (DControl subcall) 259
SetEOE 184

for AppleShare EST 336
SET_EOF 403
SetEUelnfo 185-188

for AppleShare EST 333
for ProDOS EST 293

SET_EILE_INEO 404-405
SetEormatOptions (DControl subcall)

111-113

SetlnputPort (DControl subcall) 257
SetLevel 189

SET.LEVEL 406
SetMapTable (High Sierra ESTSpecific

subcall) 315
SetMark 190
SET.MARK 407
SetPartitionMap (DControl subcall) 115
SetPrefix 191
SET_PREEIX 408
SetPrivileges (AppleShare ESTSpecific

subcaU) 350-352
SetReadMode (DControl subcall) 259
SetSysPrefs 192-193
SetTerminators (DControl subcall) 258
SetTimeStamp (ProDOS ESTSpecific

subcall) 295
SetWaitStatus (DControl subcall)

1 1 0 - 1 1 1

shell applications 478-480
signal handlers 263

execution environment of 272-273
structure of 272

signal queue 271-272
signals 263, 270-276

arming and disarming 274-276
dispatching 271-272

signal sources 271
span of a pathname 324
special memory 214
SpecialOpenEork (AppleShare

ESTSpecific subcall) 345-346
speed enhancements 5
stack calls 54-55
stack space

allocating 36-39
GS/OS default 38-39

standard files 17
standard I/O prefixes, specifying 42-43
static segments 201
status and control bits on return from

GS/OS 60
string format, GS/OS 57
system control calls 29
system disk, requirements for 41
system file level 72
system information 87-92

calls 28-29
System Loader 3,199, 207

I n d e x 4 9 3

system preferences, setting and getting
8 8

system software version 5.0 ctianges
431^36

system startup considerations 40-41
Systemuse field directory record

422-423
SystemUselD 423-426

T

termination operator 467
terminator list 250
terminators 250-251
times and dates (file creation and

modification) 24-25
changing 74-75
format table 74

typographical conventions xxiv

U

unary bit operator 467
unary logical operator 467
unary math operator 466
Unbindint 194,268
unclaimed interrupts 269-270
UnloadSeg 230
UnloadSegNum 231-232
unmounted vo lume 202
Userlnfo (AppleShare FSTSpecific

subcall) 353
user-input editing commands 252
user input mode 249
UserShutDown 233-234

V

vector space, GS/OS 34
Volume 195
VOLUME 40SM10

andFSTs 415
for High Sierra FST 307

volume calls 28
volume directory 15
volume name 15
volumes 79,195-196, 409-410

boot 80-81

formatting 81
moun ted 80
unmounted 202

VRNs, and interrupt sources 265

W, X, Y, 2
Write 197-198
W R I T E 4 11

for AppleShare FST 335
for Character FST 320
andFSTs 417

WriteBlock (for AppleShare FST) 338
WRITE_BLOCK 412
write-deferral mechanism 77

writing to files 70

494 Apple IIGS GS/OS Reference

The apple pubushing system

This Apple manual was written, edited, and
composed on a desktop publishing system using
Apple Macintosh computers and Microsoft Word
software. Proof pages were created on Apple
LaserWriter printers. Final pages were created on the
Varityper VT600 imagesetter. Line art was created
using Adobe Illustrator™. POSTSCRIPT®, the page-
description language for the LaserWriter, was
developed by Adobe Systems Incorporated.
Text type and display type are Apple's corporate
font, a condensed version of ITC Garamond®.
Bullets are ITC Zapf Dingbats®. Some elements,
such as program listings, are set in Apple Courier.

Writer: William H. Harris

Developmental Editors: Stella Hackell and Beverly Zegarski
Illustrator: Sandee Karr
Production Supervisor: Rex Wolf

Special thanks to Dave Bice.

> F P T U S A
> $ 3 7 . 1 5 C A N A D A

The Official
Fiihlicaliou from

Apple Computer Inc.

Apple IIgs' GS/OS' Reference
Apple Has GS/OS Reference is the official programming guide to the standard l6-bit
operating system for the Apple IIos computer. It supersedes the Apple lies ProDOŜ 16
Reference. Written by the people at Apple Computer, Inc., this guide covers important
topics of interest to all Apple lies application developers, including how to
■ access disk files and disk volumes

■ use the GS/OS System Loader
■ use the Console Driver for character-based screen and keyboard I/O
■ handle interrupts in a GS/OS environment

The guide also explains how to use file system translators, code modules that
enable GS/OS to work with a variet)' of file systems, including ProDOS, ISO 9660
(for CD-ROM), and the file system used by AppleShare® file servers.

A chapter in the Apple lies GS/OS Reference contains summaries of the core 53
commands used to communicate with files, volumes, and character devices. Each
summar\- describes the parameters one must provide to a command, the results
returned by the command, and all possible error conditions.

Appendixes describe the Object Module Format (OMF) used by GS/OS for applications
and libraries, the Apple extensions to the ISO 9660 standard, and the ProDOS 16
commands that GS/OS supports for compatibilit)' with the original l6-bit operating
system Apple de\ eloped for the Apple IIgs.

Apple lies GS/OS Reference describes the features found in Apple IIg.s System Disk
5.0.2. It is an indispensable reference for all programmers of Apple IIgs applications.

Apple Computer, Inc.
20S2S .Mnriani .'Vwiiuc

CuixMliiio. Calilbrnia 9S01-I
■i08-9%-1010

T L X r i S I)

Addison-Wesley Publishing Company, Inc.

Printed in U.S.A.

5 2 8 9 5>

1 5 5

I S B N D - E O l - S S D E D - E
S S D E D

