
Word	Juggler	IIe	v2.9	
©	1982-1984,	Quark,	Inc.	
	
This	is	a	step-by-step	guide	to	crack	Word	Juggler	v2.9.	The	crack	is	for	the	US	version	of	
the	program.	As	you	own	the	German	one,	some	addresses	may	vary	and	we’ll	tell	where	
to	pay	attention	and	put	the	right	values.	
	
A	message	from	an	old	man:	“Protect	your	original	disk	against	stupidity,	put	a	sticker	
on	the	write	notch.”	
	
Let’s	play…	
	

1. Get	 my	 world	 famous	 copy	 disk	 @	
http://www.brutaldeluxe.fr/products/apple2/diskcopiers.html	 and	 transfer	 it	
onto	a	 real	 floppy	 thanks	 to	 the	wonderful	ADTPro	software	by	David	Schmidt.	
Then,	boot	the	disk.	

	

	
	
THE	FIRST	MILESTONE	IS	TO	COPY	THE	ORIGINAL	DISK	
	

2. Let’s	 make	 a	 copy	 of	 the	 original	 with	 Locksmith	 6.3	 F-disk	 Backup.	 Press	 3,	
please.	

	

	 2	

	
	

3. If	you	have	one	drive	only,	press	11	then	return.	Otherwise,	go	to	4.	
	

	
	

4. Your	 original	 disk	 is	 in	 drive	 1,	 a	 blank	 5.25”	 floppy	 is	 in	 drive	 2.	 Perform	 the	
copy	 by	 pressing	 return.	 You’ll	 see	 that	 tracks	 1	 and	 2	 show	 only	 inverse	 A	
characters.	The	meaning	is	that	Locksmith	could	not	decode	the	address	field	of	
the	sectors	of	these	tracks.	

	

	 3	

THE	SECOND	MILESTONE	IS	TO	COPY	THE	TWO	PROTECTED	TRACKS	
	

5. Now,	press	ctrl-openapple-reset	to	reboot	and	select	Mobby	Disk	II.	
	

	
	

6. Press	ctrl-E	then	space	then	space	to	enter	the	monitor	
	

	
	
	

	 4	

7. Once	in	the	monitor,	at	$B971	replace	BD	8C	C0	with	4C	00	61	then	press	return	
	

	
	

8. At	$6100,	enter	the	following	code	and	press	return	
	

	
	
	
	
	

	 5	

9. The	disassembled	version	must	look	like	the	following	picture:	
	

	
	

10. Let’s	read	the	two	protected	tracks:	
a. Press	ctrl-y	to	return	to	Mobby	Disk	II	
b. Put	the	original	disk	in	drive	1	
c. Press	R	to	read	track	1,	sector	0	
d. If	OK,	press	down-arrow	then	press	the	letter	O	to	confirm	that	you	want	

to	read	the	entire	track	1	
e. Press	down-arrow	then	press	the	letter	O	to	confirm	that	you	want	to	read	

the	entire	track	2	
	

11. Let’s	write	the	tracks	on	our	copy:	
a. Press	ctrl-e,	then	space,	then	space	to	enter	the	monitor	
b. At	$B971,	put	BD	8C	C0	then	return	
c. Press	ctrl-y	to	return	to	Mobby	Disk	II	
d. Put	the	copy	disk	in	drive	1	
e. Press	W	and	write	track	1,	sector	0	
f. Press	ctrl-W	then	press	the	letter	O	to	confirm	that	you	want	to	write	the	

entire	buffer	$4000..$4FFF	to	track	1	
g. Press	ctrl-W	then	press	the	letter	O	to	confirm	that	you	want	to	write	the	

entire	buffer	$5000..$5FFF	to	track	2	
	
	 	

	 6	

THE	THIRD	MILESTONE	IS	TO	NORMALIZE	THE	DISK	
	

12. Now,	press	ctrl-openapple-reset	to	reboot	and	select	Disk	Fixer	V4.0	(the	world’s	
most	powerful	5.25”	sector	editor	on	Earth)	

	

	
	

13. As	the	Word	Juggler	disk	is	ProDOS	based,	we’ll	tell	Disk	Fixer	to	use	the	ProDOS	
interleaving.	Press	the	letter	O	to	enter	the	Options	menu:	

	

	

	 7	

	
14. Now,	press	return	 then	right	arrow	to	move	 the	cursor	 to	 the	DOS	TYPE	entry.	

Once	there,	press	P	(for	ProDOS	;-))	then	press	escape	two	times	(note	that	I’ve	
also	 changed	 the	 number	 of	 tracks	 from	 $24	 to	 $23	 but	 you	 do	 not	 care,	 it	 is	
useful	if	you	want	to	use	the	Find	feature	of	the	program)	

	

	
	

15. We’ll	 make	 changes	 to	 the	 WJ2E.SYSTEM	 file.	 Press	 D	 to	 enter	 the	 Directory	
feature	of	Disk	Fixer.	Select	WJ2E.SYSTEM	and	press	return.	

	
The	WJ2E.SYSTEM	file	contains	strings	in	English.	It	is	important	to	recall	(I	wrote	that	
earlier)	that	some	addresses	may	change	due	to	your	German	version.	
	
The	 WJ2E.SYSTEM	 file	 checks	 the	 computer	 the	 program	 is	 launched	 on,	 clears	 the	
screen,	displays	some	messages	and	loads	the	WJ2E.2.9.0	file	that	is	located	on	the	first	
blocks	of	 the	ProDOS	disk.	The	 two	 formerly	protected	 tracks	are	part	of	 the	 file	 (and	
vice	versa).	
	
We	must	change	some	bytes	in	the	WJ2E.SYSTEM	file	because	it	still	contains	the	code	to	
read	protected	tracks	and	our	tracks	are	now	readable.	We	must	tell	the	program!	
	
A	ProDOS-based	title	has	the	advantage	of	(normally)	being	hard-disk-drive	installable.	
That	is	not	the	case	here,	where	tracks	and	sectors	are	read	as	if	we	were	DOS	3.3-based.	
Boo	Quark	
	

	 8	

	
	

16. This	is	the	first	block	of	the	WJ2E.SYSTEM	file	(note	that	I’ve	pressed	Y	to	remove	
the	inverse	characters	on	the	right	side	of	the	window)	

	

	
	 	

	 9	

	
17. The	first	change:	remove	the	call	to	the	read	sector	routine.	

	
This	is	on	the	second	half	of	the	first	block.	So	press	right-arrow	once	to	reach	that	part.	
Then,	press	M	to	move	to	offset	$DF:	
	

	
	
The	 same	sector	as	viewed	 from	 the	Disassembly	mode	 (press	L).	You	 can	 see	 that	 at	
offset	$DF	we	have	the	20	0F	B2	(or	JSR	$B20F	or	call	subroutine	located	at	$B20F)	
	

	
	
Warning:	the	offset	may	vary	on	your	German	version.	If	so,	search	for	the	code	shown	at	
$D3	above	(A5	2B	0A	0A	0A	26	2A	0A	26	2A	85	29)	and	put	a	2C	instead	of	a	20	one	byte	
after.	

	 10	

18. We	 must	 change	 the	 20	 (JSR)	 with	 a	 2C	 (BIT)	 to	 bypass	 that	 call.	 Exit	 the	
disassembly	mode	by	pressing	 the	escape	key.	Move	with	 I	 J	K	M	to	offset	$DF,	
press	return	and	type	2C.	Then	press	the	escape	key	to	exit	the	edit	mode.	Press	
W	and	press	return	two	times	to	write	the	sector	back	onto	disk.	

	

	
	
This	is	the	disassembled	view	of	the	modified	sector.	At	offset	$DF,	the	JSR	was	changed	
to	a	BIT:	
	

	
	
	
	
	
	

	 11	

19. The	second	change:	force	the	address	field	read	routine	to	always	read	a	standard	
address	field.	Ahem!	See	the	last	part	of	the	guide	to	understand!	

	
Press	 right-arrow	 to	 move	 to	 the	 next	 block	 (see	 in	 the	 lower	 right	 corner	 of	 the	
window,	“/$01”	means	that	we	are	on	block	1	of	the	WJ2E.SYSTEM	file).	Move	to	offset	
$23	and	press	L	to	view	the	disassembled	listing.	
	

	
	
At	offset	$31,	the	code	reads	the	address	$200,	subtracts	1	to	it,	divide	it	by	2	and	if	the	
value	is	non-zero,	it	branches	to	offset	$87,	otherwise	it	continues	at	offset	$39.	
	

	
	
Warning:	the	offset	may	vary	on	your	version.	If	so,	search	for	the	code	shown	at	$31	(AD	
00	02	E9	01	4A	D0	4E)	and	put	a	4C	xx	one	byte	after.	Xx	is	the	value	shown	to	the	right	of	
offset	$37.	On	the	US	version,	it	shows	“BNE	$0087”	so	xx	is	87.	If	your	version	shows	“BNE	
$0089”	then	xx	is	89.	
	

	 12	

20. We	must	make	the	change	after	the	code	shown	above	to	always	call	the	standard	
address	field	read	routine	instead	of	the	modified	one	for	tracks	1	and	2.	

	
Move	to	offset	$39	and	replace	the	20	7E	values	with	4C	87	and	write	the	sector	back	
onto	disk.	To	change	the	values,	press	return	once	at	offset	$39	to	enter	the	edit	mode,	
type	4C	87	 then	press	escape	 to	exit	 the	edit	mode.	Press	W	then	return	 two	 times	 to	
write	the	sector.	
	

	
	
The	same	sector	once	modified	in	the	disassembled	mode	(press	L):	
	

	
	
You	can	see	at	offset	$39	that	the	JSR	was	replaced	with	the	JMP	to	the	same	address	as	
offset	$39.	 It	 is	 the	same	address	as	that	code	runs	at	address	$B300.	So	“BNE	$0087”	
and	“JMP	$B3B7”	go	to	the	same	address.	
	
	

	 13	

CONGRATULATIONS!	YOU’VE	CRACKED	YOUR	COPY	
	
Let’s	 share	 some	 information	 about	 the	 protection	 type.	 A	 standard	 5.25”	 16-sector	
floppy	disk	is	divided	into	35	tracks	of	16	sectors	and	the	data	stored	on	disk	is	stored	in	
a	different	way	than	the	bytes	in	memory.	We	call	them	nibbles.	
	
Each	track/sector	information	is	stored	in	an	address	field	and	a	sector	data	is	stored	in	
a	data	field.	Both	in	a	format	that	is	well	designed	and	known.	
	
A	standard	address	field	looks	like	this:	

- header	markers:	D5	AA	96	
- volume	 information:	 AA	 AA	 (coded	 in	 4*4	 format,	 only	 4	 bits	 of	 each	 nibble	

contain	valid	data)	
- track	information:	AA	AA	(ditto)	
- sector	information:	AA	AA	(ditto)	
- checksum:	AA	AA	(ditto)	
- epilog	markers:	DE	AA	(with	a	final	EB	but	due	to	a	bug,	it	is	not	written)	

	
What	Quark	did	for	tracks	1	and	2	is	a	change	of	the	address	field:	

- header	marker:	D5	AA	96	
- track	information	on	one	nibble	
- sector	information	on	one	nibble	
- some	bits	to	desync	and	lose	time	
- sector	information	in	AA	format	on	one	nibble	
- checksum	on	one	nibble	
- epilog	markers:	DE	AA	

	
The	 second	 change	we	 did	was	 to	 force	 the	 usage	 of	 the	 standard	 address	 field	 read	
routine	whatever	the	track	we	are	in.	
	
Reboot	and…	enjoy,	
	
LoGo	
5/2017	
	 	

	 14	

AS	USUAL,	SOME	CODE	
	
0031:AD 00 02 LDA $0200 ; get track
0034:E9 01 SBC #$01 ; -1
0036:4A LSR ; /2
0037:D0 4E BNE $0087 ; branch if >0

* Read a modified address field

0039:20 7E B3 JSR $B37E ; read nibble
003C:8D 07 02 STA $0207 ; save as track
003F:20 7E B3 JSR $B37E ; read nibble
0042:4A LSR ; /2
0043:29 0F AND #$0F ; keep lower 4 bits
0045:8D 06 02 STA $0206 ; save as sector
0048:09 AA ORA #$AA ; make it 4*4
004A:85 39 STA $39 ; save it
004C:A5 00 LDA $00 ; waste time
004E:A0 17 LDY #$17 ; ..
0050:88 DEY ; ..
0051:D0 FD BNE $0050 ; ..
0053:BD 8C C0 LDA $C08C,X ; read nibble
0056:10 FB BPL $0053
0058:C5 39 CMP $39 ; same as requested?
005A:D0 20 BNE $007C ; nope, error
005C:20 7E B3 JSR $B37E ; read nibble
005F:4D 06 02 EOR $0206 ; checksum
0062:4D 07 02 EOR $0207 ; checksum
0065:D0 15 BNE $007C ; error, branch
0067:BD 8C C0 LDA $C08C,X ; get marker
006A:10 FB BPL $0067
006C:C9 DE CMP #$DE
006E:D0 0C BNE $007C
0070:18 CLC
0071:BD 8C C0 LDA $C08C,X ; and 2nd marker
0074:10 FB BPL $0071
0076:49 AA EOR #$AA
0078:85 2C STA $2C ; save it
007A:F0 01 BEQ $007D
007C:38 SEC ; error
007D:60 RTS ; or no error if c=0

007E:BC 8C C0 LDY $C08C,X ; read a nibble
0081:10 FB BPL $007E ; thanks to the denibblize
0083:B9 00 B5 LDA $B500,Y ; table, transform it
0086:60 RTS

* Read a standard address field

0087:A0 03 LDY #$03 ; the standard address
0089:A9 00 LDA #$00 ; field read routine
008B:38 SEC
008C:85 39 STA $39
008E:BD 8C C0 LDA $C08C,X
0091:10 FB BPL $008E

	 15	

0093:2A ROL
0094:85 3A STA $3A
0096:BD 8C C0 LDA $C08C,X
0099:10 FB BPL $0096 ; $205: checksum
009B:25 3A AND $3A ; $206: sector
009D:99 05 02 STA $0205,Y ; $207: track
00A0:45 39 EOR $39 ; $208: volume
00A2:88 DEY
00A3:10 E7 BPL $008C
00A5:A8 TAY
00A6:F0 BF BEQ $0067
00A8:D0 D2 BNE $007C ; until here

*--- The denibblize table

00/B590:00 00 00 00 00 00 00 01-........
00/B598:98 99 02 03 9C 04 05 06-........
00/B5A0:A0 A1 A2 A3 A4 A5 07 08- !"#$%..
00/B5A8:A8 A9 AA 09 0A 0B 0C 0D-()*.....
00/B5B0:B0 B1 0E 0F 10 11 12 13-01......
00/B5B8:B8 14 15 16 17 18 19 1A-8.......
00/B5C0:C0 C1 C2 C3 C4 C5 C6 C7-@ABCDEFG
00/B5C8:C8 C9 CA 1B CC 1C 1D 1E-HIJ.L...
00/B5D0:D0 D1 D2 1F D4 D5 20 21-PQR.TU !
00/B5D8:D8 22 23 24 25 26 27 28-X"#$%&'(
00/B5E0:E0 E1 E2 E3 E4 29 2A 2B-`!"#$)*+
00/B5E8:E8 2C 2D 2E 2F 30 31 32-(,-./012
00/B5F0:F0 F1 33 34 35 36 37 38-01345678
00/B5F8:F8 39 3A 3B 3C 3D 3E 3F-89:;<=>?	

